A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renewable Sustainable Energy Rev. 33, 102–109 (2014).

[Crossref]

A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renewable Sustainable Energy Rev. 33, 102–109 (2014).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Computat. 6(2), 182–197 (2002).

[Crossref]

A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renewable Sustainable Energy Rev. 33, 102–109 (2014).

[Crossref]

S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, “Graphene-based transparent strain sensor,” Carbon 51, 236–242 (2013).

[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602 (2013).

A. Y. P. iggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874–5883 (2019).

[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Double-deep Q-learning to increase the efficiency of metasurface holograms,” Sci. Rep. 9(1), 10899–8 (2019).

[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. 5(1), 27 (2019).

[Crossref]

S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, “Graphene-based transparent strain sensor,” Carbon 51, 236–242 (2013).

[Crossref]

Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).

[Crossref]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).

[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).

[Crossref]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).

[Crossref]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).

[Crossref]

J. Baxter, A. C. Lesina, J. M. Guay, A. Weck, P. Berini, and L. Ramunno, “Plasmonic colours predicted by deep learning,” Sci. Rep. 9(1), 8074 (2019).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

J. Baxter, A. C. Lesina, J. M. Guay, A. Weck, P. Berini, and L. Ramunno, “Plasmonic colours predicted by deep learning,” Sci. Rep. 9(1), 8074 (2019).

[Crossref]

C. M. Bishop, Pattern recognition and machine learning (springer, 2006).

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Gei, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).

[Crossref]

Y. Xing, D. Spina, A. Li, T. Dhaene, and W. Bogaerts, “Stochastic collocation for device-level variability analysis in integrated photonics,” Photonics Res. 4(2), 93–100 (2016).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Gei, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).

[Crossref]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

K. Were, D. T. Bui, Ø.B. Dick, and B. R. Singh, “A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape,” Ecol. Indic. 52, 394–403 (2015).

[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).

[Crossref]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).

[Crossref]

T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing,” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).

[Crossref]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective Optimization-Aided Metamaterials-by-Design With Application to Highly Directive Nanodevices,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 147–158 (2017).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206 (2018).

[Crossref]

D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D. Xu, “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat. Commun. 10(1), 4775 (2019).

[Crossref]

T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).

[Crossref]

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5(1), 11195 (2015).

[Crossref]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).

[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).

[Crossref]

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” arXiv:1901.10819 (2019).

Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).

[Crossref]

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

A. Chipperfield and P. Fleming, “The MATLAB genetic algorithm toolbox,” From IEE Colloquium on Applied Control Techniques Using MATLAB Digest No. 1995/014 (1995).

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).

[Crossref]

A. Roberts, D. Cormode, C. Reynolds, and T. Newhouse-Illige, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

A. da Silva Ferreira, C. H. da Silva Santos, M. S. Gonçalves, and H. E. H. Figueroa, “Towards an integrated evolutionary strategy and artificial neural network computational tool for designing photonic coupler devices,” Appl. Soft Comput. 65, 1–11 (2018).

[Crossref]

A. da Silva Ferreira, C. H. da Silva Santos, M. S. Gonçalves, and H. E. H. Figueroa, “Towards an integrated evolutionary strategy and artificial neural network computational tool for designing photonic coupler devices,” Appl. Soft Comput. 65, 1–11 (2018).

[Crossref]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

T. Zhang, J. Wang, Y. Dan, Y. Lanqiu, J. Dai, X. Han, and K. Xu, “Efficient training and design of photonic neural network through neuroevolution,” Opt. Express 27(26), 37150–37163 (2019).

[Crossref]

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, J. Li, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).

[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D: Appl. Phys. 51(5), 055103 (2018).

[Crossref]

T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Lightwave Technol. 35(23), 5142–5149 (2017).

[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D: Appl. Phys. 51(5), 055103 (2018).

[Crossref]

T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Lightwave Technol. 35(23), 5142–5149 (2017).

[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

[Crossref]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Computat. 6(2), 182–197 (2002).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206 (2018).

[Crossref]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D. Xu, “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat. Commun. 10(1), 4775 (2019).

[Crossref]

Y. Xing, D. Spina, A. Li, T. Dhaene, and W. Bogaerts, “Stochastic collocation for device-level variability analysis in integrated photonics,” Photonics Res. 4(2), 93–100 (2016).

[Crossref]

K. Were, D. T. Bui, Ø.B. Dick, and B. R. Singh, “A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape,” Ecol. Indic. 52, 394–403 (2015).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

H.-Y. Kim, K. Lee, N. McEvoy, C. Yim, and G. S. Duesberg, “Chemically modulated graphene diodes,” Nano Lett. 13(5), 2182–2188 (2013).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective Optimization-Aided Metamaterials-by-Design With Application to Highly Directive Nanodevices,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 147–158 (2017).

[Crossref]

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed metastructures that solve equations,” Science 363(6433), 1333–1338 (2019).

[Crossref]

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed metastructures that solve equations,” Science 363(6433), 1333–1338 (2019).

[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).

[Crossref]

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach Learn 63(1), 3–42 (2006).

[Crossref]

N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed metastructures that solve equations,” Science 363(6433), 1333–1338 (2019).

[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13(8), 8872–8878 (2019)..

[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).

[Crossref]

J. Jiang and J. A. Fan, “Simulator-based training of generative neural networks for the inverse design of metasurfaces,” Nanoscale (2019).

T. W. Hughes, M. Minkov, Y. Shi, and S. Fan, “Training of photonic neural networks through in situ backpropagation and gradient measurement,” Optica 5(7), 864–871 (2018).

[Crossref]

T. W. Hughes, M. Minkov, I. A. Williamson, and S. Fan, “Adjoint method and inverse design for nonlinear nanophotonic devices,” ACS Photonics 5(12), 4781–4787 (2018).

[Crossref]

T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Lightwave Technol. 35(23), 5142–5149 (2017).

[Crossref]

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).

[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).

[Crossref]

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).

[Crossref]

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

A. da Silva Ferreira, C. H. da Silva Santos, M. S. Gonçalves, and H. E. H. Figueroa, “Towards an integrated evolutionary strategy and artificial neural network computational tool for designing photonic coupler devices,” Appl. Soft Comput. 65, 1–11 (2018).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

A. Chipperfield and P. Fleming, “The MATLAB genetic algorithm toolbox,” From IEE Colloquium on Applied Control Techniques Using MATLAB Digest No. 1995/014 (1995).

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

X. Li, J. Shu, W. Gu, and L. Gao, “Deep neural network for plasmonic sensor modeling,” Opt. Mater. Express 9(9), 3857–3862 (2019).

[Crossref]

L. Gao, X. Li, D. Liu, L. Wang, and Z Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. (2019).

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).

[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Gei, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).

[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).

[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach Learn 63(1), 3–42 (2006).

[Crossref]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

A. da Silva Ferreira, C. H. da Silva Santos, M. S. Gonçalves, and H. E. H. Figueroa, “Towards an integrated evolutionary strategy and artificial neural network computational tool for designing photonic coupler devices,” Appl. Soft Comput. 65, 1–11 (2018).

[Crossref]

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

D. Gostimirovic and N. Y. Winnie, “An open-source artificial neural network model for polarization-insensitive silicon-on-insulator subwavelength grating couplers,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–5 (2019).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602 (2013).

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Gei, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).

[Crossref]

D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D. Xu, “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat. Commun. 10(1), 4775 (2019).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE international conference on robotics and automation (ICRA), (IEEE, 2017), 3389–3396.

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

J. Baxter, A. C. Lesina, J. M. Guay, A. Weck, P. Berini, and L. Ramunno, “Plasmonic colours predicted by deep learning,” Sci. Rep. 9(1), 8074 (2019).

[Crossref]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).

[Crossref]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Pérot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).

[Crossref]

E. Hendry, P. J. Hale, J. Moger, A. Savchenko, and S. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).

[Crossref]

K.-H. Han and J.-H. Kim, “Genetic quantum algorithm and its application to combinatorial optimization problem,” in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), (IEEE, 2000), 1354–1360.

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

T. Zhang, J. Wang, Y. Dan, Y. Lanqiu, J. Dai, X. Han, and K. Xu, “Efficient training and design of photonic neural network through neuroevolution,” Opt. Express 27(26), 37150–37163 (2019).

[Crossref]

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, J. Li, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).

[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D: Appl. Phys. 51(5), 055103 (2018).

[Crossref]

T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Lightwave Technol. 35(23), 5142–5149 (2017).

[Crossref]

X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renewable Sustainable Energy Rev. 33, 102–109 (2014).

[Crossref]

T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing,” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

J. He, C. He, C. Zheng, Q. Wang, and J. Ye, “Plasmonic nanoparticle simulations and inverse design using machine learning,” Nanoscale 11(37), 17444–17459 (2019).

[Crossref]

J. He, C. He, C. Zheng, Q. Wang, and J. Ye, “Plasmonic nanoparticle simulations and inverse design using machine learning,” Nanoscale 11(37), 17444–17459 (2019).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

R. S. Hegde, “Photonics inverse design: pairing deep neural networks with evolutionary algorithms,” IEEE J. Sel. Top. Quantum Electron. 26(1), 1–8 (2020).

[Crossref]

E. Hendry, P. J. Hale, J. Moger, A. Savchenko, and S. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).

[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13(8), 8872–8878 (2019)..

[Crossref]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE international conference on robotics and automation (ICRA), (IEEE, 2017), 3389–3396.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13(8), 8872–8878 (2019)..

[Crossref]

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

Z. Huang, X. Liu, and J. Zang, “The inverse design of structural color using machine learning,” Nanoscale 11(45), 21748–21758 (2019).

[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

[Crossref]

T. W. Hughes, M. Minkov, I. A. Williamson, and S. Fan, “Adjoint method and inverse design for nonlinear nanophotonic devices,” ACS Photonics 5(12), 4781–4787 (2018).

[Crossref]

T. W. Hughes, M. Minkov, Y. Shi, and S. Fan, “Training of photonic neural networks through in situ backpropagation and gradient measurement,” Optica 5(7), 864–871 (2018).

[Crossref]

A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renewable Sustainable Energy Rev. 33, 102–109 (2014).

[Crossref]

A. Y. P. iggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).

[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

[Crossref]

D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D. Xu, “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat. Commun. 10(1), 4775 (2019).

[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).

[Crossref]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective Optimization-Aided Metamaterials-by-Design With Application to Highly Directive Nanodevices,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 147–158 (2017).

[Crossref]

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Photonic Power Splitters,” Sci. Rep. 9(1), 1368 (2019).

[Crossref]

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).

[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13(8), 8872–8878 (2019)..

[Crossref]

J. Jiang and J. A. Fan, “Simulator-based training of generative neural networks for the inverse design of metasurfaces,” Nanoscale (2019).

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljacic, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6(5), 1168–1174 (2019).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206 (2018).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206 (2018).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).

[Crossref]

A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, “Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization,” ACS Cent. Sci. 5(2), 319–326 (2019).

[Crossref]

M. Maltamo and A. Kangas, “Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution,” Can. J. For. Res. 28(8), 1107–1115 (1998).

[Crossref]

M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature learning and deep learning for time-series modeling,” Pattern Recognit. Lett. 42, 11–24 (2014).

[Crossref]

A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, “Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization,” ACS Cent. Sci. 5(2), 319–326 (2019).

[Crossref]

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602 (2013).

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).

[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).

[Crossref]

H.-Y. Kim, K. Lee, N. McEvoy, C. Yim, and G. S. Duesberg, “Chemically modulated graphene diodes,” Nano Lett. 13(5), 2182–2188 (2013).

[Crossref]

S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, “Graphene-based transparent strain sensor,” Carbon 51, 236–242 (2013).

[Crossref]

K.-H. Han and J.-H. Kim, “Genetic quantum algorithm and its application to combinatorial optimization problem,” in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), (IEEE, 2000), 1354–1360.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Photonic Power Splitters,” Sci. Rep. 9(1), 1368 (2019).

[Crossref]

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Photonic Power Splitters,” Sci. Rep. 9(1), 1368 (2019).

[Crossref]

A. Y. P. iggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature learning and deep learning for time-series modeling,” Pattern Recognit. Lett. 42, 11–24 (2014).

[Crossref]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).

[Crossref]

S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, “Graphene-based transparent strain sensor,” Carbon 51, 236–242 (2013).

[Crossref]

H.-Y. Kim, K. Lee, N. McEvoy, C. Yim, and G. S. Duesberg, “Chemically modulated graphene diodes,” Nano Lett. 13(5), 2182–2188 (2013).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, “Graphene-based transparent strain sensor,” Carbon 51, 236–242 (2013).

[Crossref]

J. Baxter, A. C. Lesina, J. M. Guay, A. Weck, P. Berini, and L. Ramunno, “Plasmonic colours predicted by deep learning,” Sci. Rep. 9(1), 8074 (2019).

[Crossref]

S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE international conference on robotics and automation (ICRA), (IEEE, 2017), 3389–3396.

Y. Xing, D. Spina, A. Li, T. Dhaene, and W. Bogaerts, “Stochastic collocation for device-level variability analysis in integrated photonics,” Photonics Res. 4(2), 93–100 (2016).

[Crossref]

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).

[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, J. Li, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).

[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D: Appl. Phys. 51(5), 055103 (2018).

[Crossref]

T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Lightwave Technol. 35(23), 5142–5149 (2017).

[Crossref]

X. Li, J. Shu, W. Gu, and L. Gao, “Deep neural network for plasmonic sensor modeling,” Opt. Mater. Express 9(9), 3857–3862 (2019).

[Crossref]

T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).

[Crossref]

X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).

[Crossref]

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5(1), 11195 (2015).

[Crossref]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).

[Crossref]

L. Gao, X. Li, D. Liu, L. Wang, and Z Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. (2019).

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).

[Crossref]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

A. Liaw and M. Wiener, “Classification and regression by randomForest,” R news 2, 18–22 (2002).

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE international conference on robotics and automation (ICRA), (IEEE, 2017), 3389–3396.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

[Crossref]

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Photonic Power Splitters,” Sci. Rep. 9(1), 1368 (2019).

[Crossref]

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).

[Crossref]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3(3), 233–238 (2016).

[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).

[Crossref]

Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).

[Crossref]

L. Gao, X. Li, D. Liu, L. Wang, and Z Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. (2019).

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).

[Crossref]

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, J. Li, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).

[Crossref]

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).

[Crossref]

Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).

[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).

[Crossref]

Z. Huang, X. Liu, and J. Zang, “The inverse design of structural color using machine learning,” Nanoscale 11(45), 21748–21758 (2019).

[Crossref]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Pérot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).

[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).

[Crossref]

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” arXiv:1901.10819 (2019).

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).

[Crossref]

M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature learning and deep learning for time-series modeling,” Pattern Recognit. Lett. 42, 11–24 (2014).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

A. Y. P. iggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).

[Crossref]

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” arXiv:1901.10819 (2019).

M. Maltamo and A. Kangas, “Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution,” Can. J. For. Res. 28(8), 1107–1115 (1998).

[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).

[Crossref]

H.-Y. Kim, K. Lee, N. McEvoy, C. Yim, and G. S. Duesberg, “Chemically modulated graphene diodes,” Nano Lett. 13(5), 2182–2188 (2013).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D. Xu, “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat. Commun. 10(1), 4775 (2019).

[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).

[Crossref]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Computat. 6(2), 182–197 (2002).

[Crossref]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

E. Hendry, P. J. Hale, J. Moger, A. Savchenko, and S. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).

[Crossref]

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

T. W. Hughes, M. Minkov, I. A. Williamson, and S. Fan, “Adjoint method and inverse design for nonlinear nanophotonic devices,” ACS Photonics 5(12), 4781–4787 (2018).

[Crossref]

T. W. Hughes, M. Minkov, Y. Shi, and S. Fan, “Training of photonic neural networks through in situ backpropagation and gradient measurement,” Optica 5(7), 864–871 (2018).

[Crossref]

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602 (2013).

E. Hendry, P. J. Hale, J. Moger, A. Savchenko, and S. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).

[Crossref]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, “Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization,” ACS Cent. Sci. 5(2), 319–326 (2019).

[Crossref]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective Optimization-Aided Metamaterials-by-Design With Application to Highly Directive Nanodevices,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 147–158 (2017).

[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Gei, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).

[Crossref]

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

A. Roberts, D. Cormode, C. Reynolds, and T. Newhouse-Illige, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).

[Crossref]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).

[Crossref]

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Gei, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).

[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).

[Crossref]

A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, “Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization,” ACS Cent. Sci. 5(2), 319–326 (2019).

[Crossref]

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Photonic Power Splitters,” Sci. Rep. 9(1), 1368 (2019).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Gei, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

A. Y. P. iggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206 (2018).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).

[Crossref]

T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing,” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Computat. 6(2), 182–197 (2002).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

[Crossref]

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljacic, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6(5), 1168–1174 (2019).

[Crossref]

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljacic, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6(5), 1168–1174 (2019).

[Crossref]

A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renewable Sustainable Energy Rev. 33, 102–109 (2014).

[Crossref]

J. Baxter, A. C. Lesina, J. M. Guay, A. Weck, P. Berini, and L. Ramunno, “Plasmonic colours predicted by deep learning,” Sci. Rep. 9(1), 8074 (2019).

[Crossref]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective Optimization-Aided Metamaterials-by-Design With Application to Highly Directive Nanodevices,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 147–158 (2017).

[Crossref]

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).

[Crossref]

A. Roberts, D. Cormode, C. Reynolds, and T. Newhouse-Illige, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).

[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. 5(1), 27 (2019).

[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Double-deep Q-learning to increase the efficiency of metasurface holograms,” Sci. Rep. 9(1), 10899–8 (2019).

[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874–5883 (2019).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602 (2013).

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

A. Roberts, D. Cormode, C. Reynolds, and T. Newhouse-Illige, “Response of graphene to femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).

[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).

[Crossref]

A. Ahmad, M. Hassan, M. Abdullah, H. Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renewable Sustainable Energy Rev. 33, 102–109 (2014).

[Crossref]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks,” Microsyst. Nanoeng. 5(1), 27 (2019).

[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Double-deep Q-learning to increase the efficiency of metasurface holograms,” Sci. Rep. 9(1), 10899–8 (2019).

[Crossref]

I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from dielectric nanostructures using reinforcement learning,” Opt. Express 27(4), 5874–5883 (2019).

[Crossref]

A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, “Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization,” ACS Cent. Sci. 5(2), 319–326 (2019).

[Crossref]

D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D. Xu, “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat. Commun. 10(1), 4775 (2019).

[Crossref]

E. Hendry, P. J. Hale, J. Moger, A. Savchenko, and S. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).

[Crossref]

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D. Xu, “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat. Commun. 10(1), 4775 (2019).

[Crossref]

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Netw. 61, 85–117 (2015).

[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13(8), 8872–8878 (2019)..

[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).

[Crossref]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, “Graphene-based transparent strain sensor,” Carbon 51, 236–242 (2013).

[Crossref]

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).

[Crossref]

Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).

[Crossref]

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljacic, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6(5), 1168–1174 (2019).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206 (2018).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, “Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization,” ACS Cent. Sci. 5(2), 319–326 (2019).

[Crossref]

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602 (2013).

A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, “Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization,” ACS Cent. Sci. 5(2), 319–326 (2019).

[Crossref]

K. Were, D. T. Bui, Ø.B. Dick, and B. R. Singh, “A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape,” Ecol. Indic. 52, 394–403 (2015).

[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).

[Crossref]

Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljacic, “Migrating knowledge between physical scenarios based on artificial neural networks,” ACS Photonics 6(5), 1168–1174 (2019).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206 (2018).

[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).

[Crossref]

Y. Xing, D. Spina, A. Li, T. Dhaene, and W. Bogaerts, “Stochastic collocation for device-level variability analysis in integrated photonics,” Photonics Res. 4(2), 93–100 (2016).

[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Gei, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).

[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

[Crossref]

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

A. Swetapadma and A. Yadav, “A novel decision tree regression-based fault distance estimation scheme for transmission lines,” IEEE Trans. Power Delivery 32(1), 234–245 (2017).

[Crossref]

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Photonic Power Splitters,” Sci. Rep. 9(1), 1368 (2019).

[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206 (2018).

[Crossref]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

T. J. Echtermeyer, P. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari, “Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors,” Nano Lett. 14(7), 3733–3742 (2014).

[Crossref]

A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, “Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization,” ACS Cent. Sci. 5(2), 319–326 (2019).

[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).

[Crossref]

K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8(3), 339–366 (2019).

[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12(11), 659–670 (2018).

[Crossref]

A. Y. P. iggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).

[Crossref]

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Photonic Power Splitters,” Sci. Rep. 9(1), 1368 (2019).

[Crossref]

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5(1), 11195 (2015).

[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

T. Zhang, J. Wang, Y. Dan, Y. Lanqiu, J. Dai, X. Han, and K. Xu, “Efficient training and design of photonic neural network through neuroevolution,” Opt. Express 27(26), 37150–37163 (2019).

[Crossref]

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, J. Li, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).

[Crossref]

H. Li, C. Ji, Y. Ren, J. Hu, M. Qin, and L. Wang, “Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method,” Carbon 141, 481–487 (2019).

[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

[Crossref]

L. Gao, X. Li, D. Liu, L. Wang, and Z Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. (2019).

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).

[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).

[Crossref]

J. He, C. He, C. Zheng, Q. Wang, and J. Ye, “Plasmonic nanoparticle simulations and inverse design using machine learning,” Nanoscale 11(37), 17444–17459 (2019).

[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).

[Crossref]

X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).

[Crossref]

J. Baxter, A. C. Lesina, J. M. Guay, A. Weck, P. Berini, and L. Ramunno, “Plasmonic colours predicted by deep learning,” Sci. Rep. 9(1), 8074 (2019).

[Crossref]

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach Learn 63(1), 3–42 (2006).

[Crossref]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” arXiv:1901.10819 (2019).

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).

[Crossref]

K. Were, D. T. Bui, Ø.B. Dick, and B. R. Singh, “A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape,” Ecol. Indic. 52, 394–403 (2015).

[Crossref]

S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H. Werner, “Review of numerical optimization techniques for meta-device design [Invited],” Opt. Mater. Express 9(4), 1842–1863 (2019).

[Crossref]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective Optimization-Aided Metamaterials-by-Design With Application to Highly Directive Nanodevices,” IEEE J. Multiscale Multiphys. Comput. Tech. 2, 147–158 (2017).

[Crossref]

A. Liaw and M. Wiener, “Classification and regression by randomForest,” R news 2, 18–22 (2002).

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602 (2013).

T. W. Hughes, M. Minkov, I. A. Williamson, and S. Fan, “Adjoint method and inverse design for nonlinear nanophotonic devices,” ACS Photonics 5(12), 4781–4787 (2018).

[Crossref]

D. Gostimirovic and N. Y. Winnie, “An open-source artificial neural network model for polarization-insensitive silicon-on-insulator subwavelength grating couplers,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–5 (2019).

[Crossref]

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).

[Crossref]

X. Han, T. Wang, X. Li, S. Xiao, and Y. Zhu, “Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate,” Opt. Express 23(25), 31945–31955 (2015).

[Crossref]

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).

[Crossref]

Y. Xing, D. Spina, A. Li, T. Dhaene, and W. Bogaerts, “Stochastic collocation for device-level variability analysis in integrated photonics,” Photonics Res. 4(2), 93–100 (2016).

[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).

[Crossref]

D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, and D. Xu, “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat. Commun. 10(1), 4775 (2019).

[Crossref]

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, J. Li, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).

[Crossref]

T. Zhang, J. Wang, Y. Dan, Y. Lanqiu, J. Dai, X. Han, and K. Xu, “Efficient training and design of photonic neural network through neuroevolution,” Opt. Express 27(26), 37150–37163 (2019).

[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D: Appl. Phys. 51(5), 055103 (2018).

[Crossref]

T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Lightwave Technol. 35(23), 5142–5149 (2017).

[Crossref]

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy,” arXiv:1901.10819 (2019).

A. Sakurai, K. Yada, T. Simomura, S. Ju, M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda, and J. Shiomi, “Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization,” ACS Cent. Sci. 5(2), 319–326 (2019).

[Crossref]

A. Swetapadma and A. Yadav, “A novel decision tree regression-based fault distance estimation scheme for transmission lines,” IEEE Trans. Power Delivery 32(1), 234–245 (2017).

[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).

[Crossref]

J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-form diffractive metagrating design based on generative adversarial networks,” ACS Nano 13(8), 8872–8878 (2019)..

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).

[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206 (2018).

[Crossref]

K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8(3), 339–366 (2019).

[Crossref]

J. He, C. He, C. Zheng, Q. Wang, and J. Ye, “Plasmonic nanoparticle simulations and inverse design using machine learning,” Nanoscale 11(37), 17444–17459 (2019).

[Crossref]

H.-Y. Kim, K. Lee, N. McEvoy, C. Yim, and G. S. Duesberg, “Chemically modulated graphene diodes,” Nano Lett. 13(5), 2182–2188 (2013).

[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D: Appl. Phys. 51(5), 055103 (2018).

[Crossref]

T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Lightwave Technol. 35(23), 5142–5149 (2017).

[Crossref]

T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).

[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).

[Crossref]

T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing,” IEEE Comput. Intell. Mag. 13(3), 55–75 (2018).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups,” IEEE Signal Process. Mag. 29(6), 82–97 (2012).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

L. Gao, X. Li, D. Liu, L. Wang, and Z Yu, “A bidirectional deep neural network for accurate silicon color design,” Adv. Mater. (2019).

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).

[Crossref]

H. Cui, X. Sun, and Z. Yu, “Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint,” Opt. Lett. 42(16), 3093 (2017).

[Crossref]

Z. Huang, X. Liu, and J. Zang, “The inverse design of structural color using machine learning,” Nanoscale 11(45), 21748–21758 (2019).

[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).

[Crossref]

C. Zeng, J. Guo, and X. Liu, “High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Pérot microcavity,” Appl. Phys. Lett. 105(12), 121103 (2014).

[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).

[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).

[Crossref]

S.-X. Xia, X. Zhai, L.-L. Wang, and S.-C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).

[Crossref]

H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

[Crossref]

Z. Jin, S. Mei, S. Chen, Y. Li, C. Zhang, Y. He, X. Yu, C. Yu, J. K. W. Yang, B. Luk’yanchuk, S. Xiao, and C. Qiu, “Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm,” ACS Nano 13(1), 821–829 (2019).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, J. Li, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).

[Crossref]

T. Zhang, J. Wang, Y. Dan, Y. Lanqiu, J. Dai, X. Han, and K. Xu, “Efficient training and design of photonic neural network through neuroevolution,” Opt. Express 27(26), 37150–37163 (2019).

[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D: Appl. Phys. 51(5), 055103 (2018).

[Crossref]

T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Lightwave Technol. 35(23), 5142–5149 (2017).

[Crossref]

T. Zhang, X. Yin, L. Chen, and X. Li, “Ultra-compact polarization beam splitter utilizing a graphene-based asymmetrical directional coupler,” Opt. Lett. 41(2), 356–359 (2016).

[Crossref]

T. Zhang, L. Chen, B. Wang, and X. Li, “Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies,” Sci. Rep. 5(1), 11195 (2015).

[Crossref]

T. Zhang, L. Chen, and X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013).

[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

J. He, C. He, C. Zheng, Q. Wang, and J. Ye, “Plasmonic nanoparticle simulations and inverse design using machine learning,” Nanoscale 11(37), 17444–17459 (2019).

[Crossref]

K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale,” Nanophotonics 8(3), 339–366 (2019).

[Crossref]

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, J. Li, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).

[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D: Appl. Phys. 51(5), 055103 (2018).

[Crossref]

S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu, and H. Zhang, “A deep learning approach for objective-driven all-dielectric metasurface design,” ACS Photonics (2019).

T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, J. Li, Y. Zhou, and K. Xu, “Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks,” Photonics Res. 7(3), 368–380 (2019).

[Crossref]

T. Zhang, J. Zhou, J. Dai, Y. Dai, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor,” J. Phys. D: Appl. Phys. 51(5), 055103 (2018).

[Crossref]

T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, and K. Xu, “Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials,” J. Lightwave Technol. 35(23), 5142–5149 (2017).

[Crossref]

Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett. 18(10), 6570–6576 (2018).

[Crossref]

Y. Chen, J. Zhu, Y. Xie, N. Fengb, and Q. Liu, “Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network,” Nanoscale 11(19), 9749–9755 (2019).

[Crossref]

Y. Li, Y. Xu, M. Jiang, B. Li, T. Han, C. Chi, F. Lin, B. Shen, X. Zhu, L. Lai, and Z. Fang, “Self-Learning Perfect Optical Chirality via a Deep Neural Network,” Phys. Rev. Lett. 123(21), 213902 (2019).

[Crossref]

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316 (2016).