Abstract

We analyze the high-order harmonics generation using 1 kHz and 100 kHz lasers by ablating different rotating targets. We demonstrate the high average flux of short-wavelength radiation using the latter laser, while comparing the plasma formation conditions at different pulse repetition rates. The analysis of harmonic stability in the case of the 100 kHz experiments showed the two-fold decay of the 27th harmonic generating in silver plasma after 3.5×106 shots. The advantages of shorter pulse–induced ablation for the improvement of harmonic generation stability are demonstrated. Two-color pump of plasma, resonance enhancement of single harmonic, and quasi-phase matching studies are presented for 1 kHz laser applications. The formation of modulated multi-jet plasma on the plane and curved surfaces during ablation by 100 kHz pulses is demonstrated. In the case of the 25th harmonic of 1030 nm radiation (E=30 eV) generated during experiments in carbon plasma, at 100 kHz and 40 W average power of driving pulses, 0.4 mW of average power for single harmonic in the 40 nm spectral range was achieved.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
    [Crossref]
  2. Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
    [Crossref]
  3. Z. Abdelrahman, M. A. Khohlova, D. J. Walke, T. Witting, A. Zair, V. V. Strelkov, J. P. Marangos, and J. W. G. Tisch, “Chirp-control of resonant high-order harmonic generation in indium ablation plumes driven by intense few-cycle laser pulses,” Opt. Express 26(12), 15745–15758 (2018).
    [Crossref]
  4. L. B. Elouga Bom, Y. Pertot, V. R. Bhardwaj, and T. Ozaki, “Multi-µJ coherent extreme ultraviolet source generated from carbon using the plasma harmonic method,” Opt. Express 19(4), 3077–3085 (2011).
    [Crossref]
  5. M. Wöstmann, L. Splitthoff, and H. Zacharias, “Control of quasi-phase-matching of high-harmonics in a spatially structured plasma,” Opt. Express 26(11), 14524–14537 (2018).
    [Crossref]
  6. C. Hutchison, R. A. Ganeev, T. Witting, F. Frank, W. A. Okell, J. W. G. Tisch, and J. P. Marangos, “Stable generation of high-order harmonics of femtosecond laser radiation from laser produced plasma plumes at 1 kHz pulse repetition rate,” Opt. Lett. 37(11), 2064–2066 (2012).
    [Crossref]
  7. R. A. Ganeev, G. S. Boltaev, V. V. Kim, M. Venkatesh, and C. Guo, “Comparison studies of high-order harmonic generation in argon gas and different laser-produced plasmas,” OSA Continuum 2(8), 2381–2390 (2019).
    [Crossref]
  8. Y. Pertot, L. B. Elouga Bom, V. R. Bhardwaj, and T. Ozaki, “Pencil lead plasma for generating multimicrojoule high-order harmonics with a broad spectrum,” Appl. Phys. Lett. 98(10), 101104 (2011).
    [Crossref]
  9. R. A. Ganeev, M. Suzuki, M. Baba, and H. Kuroda, “High-order harmonic generation from laser plasma produced by pulses of different duration,” Phys. Rev. A 76(2), 023805 (2007).
    [Crossref]
  10. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
    [Crossref]
  11. F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci. 252(6), 2131–2138 (2006).
    [Crossref]
  12. R. A. Ganeev, L. B. Elouga Bom, J.-C. Kieffer, and T. Ozaki, “Demonstration of the 101st harmonic generated from a laser-produced manganese plasma,” Phys. Rev. A 76(2), 023831 (2007).
    [Crossref]
  13. I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
    [Crossref]
  14. R. A. Ganeev, V. V. Strelkov, C. Hutchison, A. Zaïr, D. Kilbane, M. A. Khokhlova, and J. P. Marangos, “Experimental and theoretical studies of two-color pump resonance-induced enhancement of odd and even harmonics from a tin plasma,” Phys. Rev. A 85(2), 023832 (2012).
    [Crossref]
  15. J. Bechtel, “Heating of solid targets with laser pulses,” J. Appl. Phys. 46(4), 1585–1593 (1975).
    [Crossref]
  16. R. A. Ganeev, V. Tosa, K. Kovács, M. Suzuki, S. Yoneya, and H. Kuroda, “Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma,” Phys. Rev. A 91(4), 043823 (2015).
    [Crossref]
  17. V. V. Strelkov and R. A. Ganeev, “Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment,” Opt. Express 25(18), 21068–21083 (2017).
    [Crossref]
  18. P. V. Redkin, R. A. Ganeev, and C. Guo, “Analytical treatment of quasi-phase matching of high-order harmonics in multijet laser plasmas: influence of free electrons between jets, intrinsic phase, and Gouy phase,” J. Phys. B: At., Mol. Opt. Phys. 52(7), 075601 (2019).
    [Crossref]
  19. L. B. Elouga Bom, S. Haessler, O. Gobert, M. Perdrix, F. Lepetit, J.-F. Hergott, B. Carré, T. Ozaki, and P. Salières, “Attosecond emission from chromium plasma,” Opt. Express 19(4), 3677–3685 (2011).
    [Crossref]
  20. R. A. Ganeev, “Involvement of small carbon clusters in the enhancement of high-order harmonic generation of ultrashort pulses in the plasmas produced during ablation of carbon-contained nanoparticles,” Opt. Spectrosc. 123(3), 351–364 (2017).
    [Crossref]
  21. R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339(1-2), 103–109 (2005).
    [Crossref]

2019 (2)

R. A. Ganeev, G. S. Boltaev, V. V. Kim, M. Venkatesh, and C. Guo, “Comparison studies of high-order harmonic generation in argon gas and different laser-produced plasmas,” OSA Continuum 2(8), 2381–2390 (2019).
[Crossref]

P. V. Redkin, R. A. Ganeev, and C. Guo, “Analytical treatment of quasi-phase matching of high-order harmonics in multijet laser plasmas: influence of free electrons between jets, intrinsic phase, and Gouy phase,” J. Phys. B: At., Mol. Opt. Phys. 52(7), 075601 (2019).
[Crossref]

2018 (2)

2017 (2)

R. A. Ganeev, “Involvement of small carbon clusters in the enhancement of high-order harmonic generation of ultrashort pulses in the plasmas produced during ablation of carbon-contained nanoparticles,” Opt. Spectrosc. 123(3), 351–364 (2017).
[Crossref]

V. V. Strelkov and R. A. Ganeev, “Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment,” Opt. Express 25(18), 21068–21083 (2017).
[Crossref]

2015 (1)

R. A. Ganeev, V. Tosa, K. Kovács, M. Suzuki, S. Yoneya, and H. Kuroda, “Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma,” Phys. Rev. A 91(4), 043823 (2015).
[Crossref]

2012 (2)

R. A. Ganeev, V. V. Strelkov, C. Hutchison, A. Zaïr, D. Kilbane, M. A. Khokhlova, and J. P. Marangos, “Experimental and theoretical studies of two-color pump resonance-induced enhancement of odd and even harmonics from a tin plasma,” Phys. Rev. A 85(2), 023832 (2012).
[Crossref]

C. Hutchison, R. A. Ganeev, T. Witting, F. Frank, W. A. Okell, J. W. G. Tisch, and J. P. Marangos, “Stable generation of high-order harmonics of femtosecond laser radiation from laser produced plasma plumes at 1 kHz pulse repetition rate,” Opt. Lett. 37(11), 2064–2066 (2012).
[Crossref]

2011 (3)

2008 (1)

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

2007 (2)

R. A. Ganeev, L. B. Elouga Bom, J.-C. Kieffer, and T. Ozaki, “Demonstration of the 101st harmonic generated from a laser-produced manganese plasma,” Phys. Rev. A 76(2), 023831 (2007).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, and H. Kuroda, “High-order harmonic generation from laser plasma produced by pulses of different duration,” Phys. Rev. A 76(2), 023805 (2007).
[Crossref]

2006 (1)

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci. 252(6), 2131–2138 (2006).
[Crossref]

2005 (1)

R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339(1-2), 103–109 (2005).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

1993 (1)

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref]

1992 (1)

Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
[Crossref]

1975 (1)

J. Bechtel, “Heating of solid targets with laser pulses,” J. Appl. Phys. 46(4), 1585–1593 (1975).
[Crossref]

Abdelrahman, Z.

Akiyama, Y.

Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
[Crossref]

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Baba, M.

R. A. Ganeev, M. Suzuki, M. Baba, and H. Kuroda, “High-order harmonic generation from laser plasma produced by pulses of different duration,” Phys. Rev. A 76(2), 023805 (2007).
[Crossref]

R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339(1-2), 103–109 (2005).
[Crossref]

Bechtel, J.

J. Bechtel, “Heating of solid targets with laser pulses,” J. Appl. Phys. 46(4), 1585–1593 (1975).
[Crossref]

Bhardwaj, V. R.

Y. Pertot, L. B. Elouga Bom, V. R. Bhardwaj, and T. Ozaki, “Pencil lead plasma for generating multimicrojoule high-order harmonics with a broad spectrum,” Appl. Phys. Lett. 98(10), 101104 (2011).
[Crossref]

L. B. Elouga Bom, Y. Pertot, V. R. Bhardwaj, and T. Ozaki, “Multi-µJ coherent extreme ultraviolet source generated from carbon using the plasma harmonic method,” Opt. Express 19(4), 3077–3085 (2011).
[Crossref]

Boltaev, G. S.

Brygo, F.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci. 252(6), 2131–2138 (2006).
[Crossref]

Carré, B.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Corkum, P. B.

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref]

Dutouquet, C.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci. 252(6), 2131–2138 (2006).
[Crossref]

Elouga Bom, L. B.

L. B. Elouga Bom, S. Haessler, O. Gobert, M. Perdrix, F. Lepetit, J.-F. Hergott, B. Carré, T. Ozaki, and P. Salières, “Attosecond emission from chromium plasma,” Opt. Express 19(4), 3677–3685 (2011).
[Crossref]

L. B. Elouga Bom, Y. Pertot, V. R. Bhardwaj, and T. Ozaki, “Multi-µJ coherent extreme ultraviolet source generated from carbon using the plasma harmonic method,” Opt. Express 19(4), 3077–3085 (2011).
[Crossref]

Y. Pertot, L. B. Elouga Bom, V. R. Bhardwaj, and T. Ozaki, “Pencil lead plasma for generating multimicrojoule high-order harmonics with a broad spectrum,” Appl. Phys. Lett. 98(10), 101104 (2011).
[Crossref]

R. A. Ganeev, L. B. Elouga Bom, J.-C. Kieffer, and T. Ozaki, “Demonstration of the 101st harmonic generated from a laser-produced manganese plasma,” Phys. Rev. A 76(2), 023831 (2007).
[Crossref]

Frank, F.

Ganeev, R. A.

R. A. Ganeev, G. S. Boltaev, V. V. Kim, M. Venkatesh, and C. Guo, “Comparison studies of high-order harmonic generation in argon gas and different laser-produced plasmas,” OSA Continuum 2(8), 2381–2390 (2019).
[Crossref]

P. V. Redkin, R. A. Ganeev, and C. Guo, “Analytical treatment of quasi-phase matching of high-order harmonics in multijet laser plasmas: influence of free electrons between jets, intrinsic phase, and Gouy phase,” J. Phys. B: At., Mol. Opt. Phys. 52(7), 075601 (2019).
[Crossref]

V. V. Strelkov and R. A. Ganeev, “Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment,” Opt. Express 25(18), 21068–21083 (2017).
[Crossref]

R. A. Ganeev, “Involvement of small carbon clusters in the enhancement of high-order harmonic generation of ultrashort pulses in the plasmas produced during ablation of carbon-contained nanoparticles,” Opt. Spectrosc. 123(3), 351–364 (2017).
[Crossref]

R. A. Ganeev, V. Tosa, K. Kovács, M. Suzuki, S. Yoneya, and H. Kuroda, “Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma,” Phys. Rev. A 91(4), 043823 (2015).
[Crossref]

C. Hutchison, R. A. Ganeev, T. Witting, F. Frank, W. A. Okell, J. W. G. Tisch, and J. P. Marangos, “Stable generation of high-order harmonics of femtosecond laser radiation from laser produced plasma plumes at 1 kHz pulse repetition rate,” Opt. Lett. 37(11), 2064–2066 (2012).
[Crossref]

R. A. Ganeev, V. V. Strelkov, C. Hutchison, A. Zaïr, D. Kilbane, M. A. Khokhlova, and J. P. Marangos, “Experimental and theoretical studies of two-color pump resonance-induced enhancement of odd and even harmonics from a tin plasma,” Phys. Rev. A 85(2), 023832 (2012).
[Crossref]

R. A. Ganeev, L. B. Elouga Bom, J.-C. Kieffer, and T. Ozaki, “Demonstration of the 101st harmonic generated from a laser-produced manganese plasma,” Phys. Rev. A 76(2), 023831 (2007).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, and H. Kuroda, “High-order harmonic generation from laser plasma produced by pulses of different duration,” Phys. Rev. A 76(2), 023805 (2007).
[Crossref]

R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339(1-2), 103–109 (2005).
[Crossref]

Gobert, O.

Guo, C.

P. V. Redkin, R. A. Ganeev, and C. Guo, “Analytical treatment of quasi-phase matching of high-order harmonics in multijet laser plasmas: influence of free electrons between jets, intrinsic phase, and Gouy phase,” J. Phys. B: At., Mol. Opt. Phys. 52(7), 075601 (2019).
[Crossref]

R. A. Ganeev, G. S. Boltaev, V. V. Kim, M. Venkatesh, and C. Guo, “Comparison studies of high-order harmonic generation in argon gas and different laser-produced plasmas,” OSA Continuum 2(8), 2381–2390 (2019).
[Crossref]

Haessler, S.

Hergott, J.-F.

Hutchison, C.

C. Hutchison, R. A. Ganeev, T. Witting, F. Frank, W. A. Okell, J. W. G. Tisch, and J. P. Marangos, “Stable generation of high-order harmonics of femtosecond laser radiation from laser produced plasma plumes at 1 kHz pulse repetition rate,” Opt. Lett. 37(11), 2064–2066 (2012).
[Crossref]

R. A. Ganeev, V. V. Strelkov, C. Hutchison, A. Zaïr, D. Kilbane, M. A. Khokhlova, and J. P. Marangos, “Experimental and theoretical studies of two-color pump resonance-induced enhancement of odd and even harmonics from a tin plasma,” Phys. Rev. A 85(2), 023832 (2012).
[Crossref]

Jakubczak, K.

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

Khohlova, M. A.

Khokhlova, M. A.

R. A. Ganeev, V. V. Strelkov, C. Hutchison, A. Zaïr, D. Kilbane, M. A. Khokhlova, and J. P. Marangos, “Experimental and theoretical studies of two-color pump resonance-induced enhancement of odd and even harmonics from a tin plasma,” Phys. Rev. A 85(2), 023832 (2012).
[Crossref]

Kieffer, J.-C.

R. A. Ganeev, L. B. Elouga Bom, J.-C. Kieffer, and T. Ozaki, “Demonstration of the 101st harmonic generated from a laser-produced manganese plasma,” Phys. Rev. A 76(2), 023831 (2007).
[Crossref]

Kilbane, D.

R. A. Ganeev, V. V. Strelkov, C. Hutchison, A. Zaïr, D. Kilbane, M. A. Khokhlova, and J. P. Marangos, “Experimental and theoretical studies of two-color pump resonance-induced enhancement of odd and even harmonics from a tin plasma,” Phys. Rev. A 85(2), 023832 (2012).
[Crossref]

Kim, I. J.

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

Kim, T. K.

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

Kim, V. V.

Kovács, K.

R. A. Ganeev, V. Tosa, K. Kovács, M. Suzuki, S. Yoneya, and H. Kuroda, “Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma,” Phys. Rev. A 91(4), 043823 (2015).
[Crossref]

Kuroda, H.

R. A. Ganeev, V. Tosa, K. Kovács, M. Suzuki, S. Yoneya, and H. Kuroda, “Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma,” Phys. Rev. A 91(4), 043823 (2015).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, and H. Kuroda, “High-order harmonic generation from laser plasma produced by pulses of different duration,” Phys. Rev. A 76(2), 023805 (2007).
[Crossref]

R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339(1-2), 103–109 (2005).
[Crossref]

Le Guern, F.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci. 252(6), 2131–2138 (2006).
[Crossref]

Lee, G. H.

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

Lee, Y. S.

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

Lepetit, F.

Marangos, J. P.

Matsunawa, Y.

Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
[Crossref]

Midorikawa, K.

Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
[Crossref]

Mocek, T.

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Nagata, Y.

Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
[Crossref]

Nam, C. H.

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Obara, M.

Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
[Crossref]

Okell, W. A.

Oltra, R.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci. 252(6), 2131–2138 (2006).
[Crossref]

Ozaki, T.

L. B. Elouga Bom, S. Haessler, O. Gobert, M. Perdrix, F. Lepetit, J.-F. Hergott, B. Carré, T. Ozaki, and P. Salières, “Attosecond emission from chromium plasma,” Opt. Express 19(4), 3677–3685 (2011).
[Crossref]

L. B. Elouga Bom, Y. Pertot, V. R. Bhardwaj, and T. Ozaki, “Multi-µJ coherent extreme ultraviolet source generated from carbon using the plasma harmonic method,” Opt. Express 19(4), 3077–3085 (2011).
[Crossref]

Y. Pertot, L. B. Elouga Bom, V. R. Bhardwaj, and T. Ozaki, “Pencil lead plasma for generating multimicrojoule high-order harmonics with a broad spectrum,” Appl. Phys. Lett. 98(10), 101104 (2011).
[Crossref]

R. A. Ganeev, L. B. Elouga Bom, J.-C. Kieffer, and T. Ozaki, “Demonstration of the 101st harmonic generated from a laser-produced manganese plasma,” Phys. Rev. A 76(2), 023831 (2007).
[Crossref]

Park, S. B.

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

Perdrix, M.

Pertot, Y.

L. B. Elouga Bom, Y. Pertot, V. R. Bhardwaj, and T. Ozaki, “Multi-µJ coherent extreme ultraviolet source generated from carbon using the plasma harmonic method,” Opt. Express 19(4), 3077–3085 (2011).
[Crossref]

Y. Pertot, L. B. Elouga Bom, V. R. Bhardwaj, and T. Ozaki, “Pencil lead plasma for generating multimicrojoule high-order harmonics with a broad spectrum,” Appl. Phys. Lett. 98(10), 101104 (2011).
[Crossref]

Redkin, P. V.

P. V. Redkin, R. A. Ganeev, and C. Guo, “Analytical treatment of quasi-phase matching of high-order harmonics in multijet laser plasmas: influence of free electrons between jets, intrinsic phase, and Gouy phase,” J. Phys. B: At., Mol. Opt. Phys. 52(7), 075601 (2019).
[Crossref]

Salières, P.

Semerok, A.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci. 252(6), 2131–2138 (2006).
[Crossref]

Splitthoff, L.

Strelkov, V. V.

Suzuki, M.

R. A. Ganeev, V. Tosa, K. Kovács, M. Suzuki, S. Yoneya, and H. Kuroda, “Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma,” Phys. Rev. A 91(4), 043823 (2015).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, and H. Kuroda, “High-order harmonic generation from laser plasma produced by pulses of different duration,” Phys. Rev. A 76(2), 023805 (2007).
[Crossref]

R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339(1-2), 103–109 (2005).
[Crossref]

Tashiro, H.

Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
[Crossref]

Tisch, J. W. G.

Tosa, V.

R. A. Ganeev, V. Tosa, K. Kovács, M. Suzuki, S. Yoneya, and H. Kuroda, “Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma,” Phys. Rev. A 91(4), 043823 (2015).
[Crossref]

Toyoda, K.

Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Venkatesh, M.

Walke, D. J.

Weulersse, J. M.

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci. 252(6), 2131–2138 (2006).
[Crossref]

Witting, T.

Wöstmann, M.

Yoneya, S.

R. A. Ganeev, V. Tosa, K. Kovács, M. Suzuki, S. Yoneya, and H. Kuroda, “Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma,” Phys. Rev. A 91(4), 043823 (2015).
[Crossref]

Zacharias, H.

Zair, A.

Zaïr, A.

R. A. Ganeev, V. V. Strelkov, C. Hutchison, A. Zaïr, D. Kilbane, M. A. Khokhlova, and J. P. Marangos, “Experimental and theoretical studies of two-color pump resonance-induced enhancement of odd and even harmonics from a tin plasma,” Phys. Rev. A 85(2), 023832 (2012).
[Crossref]

Appl. Phys. A (1)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Appl. Phys. Lett. (2)

Y. Pertot, L. B. Elouga Bom, V. R. Bhardwaj, and T. Ozaki, “Pencil lead plasma for generating multimicrojoule high-order harmonics with a broad spectrum,” Appl. Phys. Lett. 98(10), 101104 (2011).
[Crossref]

I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008).
[Crossref]

Appl. Surf. Sci. (1)

F. Brygo, C. Dutouquet, F. Le Guern, R. Oltra, A. Semerok, and J. M. Weulersse, “Laser fluence, repetition rate and pulse duration effects on paint ablation,” Appl. Surf. Sci. 252(6), 2131–2138 (2006).
[Crossref]

J. Appl. Phys. (1)

J. Bechtel, “Heating of solid targets with laser pulses,” J. Appl. Phys. 46(4), 1585–1593 (1975).
[Crossref]

J. Phys. B: At., Mol. Opt. Phys. (1)

P. V. Redkin, R. A. Ganeev, and C. Guo, “Analytical treatment of quasi-phase matching of high-order harmonics in multijet laser plasmas: influence of free electrons between jets, intrinsic phase, and Gouy phase,” J. Phys. B: At., Mol. Opt. Phys. 52(7), 075601 (2019).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Spectrosc. (1)

R. A. Ganeev, “Involvement of small carbon clusters in the enhancement of high-order harmonic generation of ultrashort pulses in the plasmas produced during ablation of carbon-contained nanoparticles,” Opt. Spectrosc. 123(3), 351–364 (2017).
[Crossref]

OSA Continuum (1)

Phys. Lett. A (1)

R. A. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, “High-order harmonic generation from silver plasma,” Phys. Lett. A 339(1-2), 103–109 (2005).
[Crossref]

Phys. Rev. A (4)

R. A. Ganeev, V. V. Strelkov, C. Hutchison, A. Zaïr, D. Kilbane, M. A. Khokhlova, and J. P. Marangos, “Experimental and theoretical studies of two-color pump resonance-induced enhancement of odd and even harmonics from a tin plasma,” Phys. Rev. A 85(2), 023832 (2012).
[Crossref]

R. A. Ganeev, V. Tosa, K. Kovács, M. Suzuki, S. Yoneya, and H. Kuroda, “Influence of ablated and tunneled electrons on quasi-phase-matched high-order-harmonic generation in laser-produced plasma,” Phys. Rev. A 91(4), 043823 (2015).
[Crossref]

R. A. Ganeev, L. B. Elouga Bom, J.-C. Kieffer, and T. Ozaki, “Demonstration of the 101st harmonic generated from a laser-produced manganese plasma,” Phys. Rev. A 76(2), 023831 (2007).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, and H. Kuroda, “High-order harmonic generation from laser plasma produced by pulses of different duration,” Phys. Rev. A 76(2), 023805 (2007).
[Crossref]

Phys. Rev. Lett. (2)

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref]

Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69(15), 2176–2179 (1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Experimental setup for HHG using rotating target. DB: femtosecond driving beam, SM: motor, RT: rotating target, HB: picosecond (or femtosecond) heating beam, LP: laser plasma, DB + HB: driving beam and harmonic beam.
Fig. 2.
Fig. 2. (a) Stability measurements of the 27th harmonic generating in the silver plasma produced on the target rotating at 5 rpm during 110 s from ablation using 1 kHz, 800 nm, 200 ps pulses (laser L1). The harmonic was abruptly decreased once the motor stopped after 110 s from ablation (shown by the arrow). Inset: HHG spectrum from Ag plasma. (b) Stability measurements of the 27th harmonic generating in Ar gas (red thin curve) and Ag plasma (blue thick curve) produced on the target rotating at 100 rpm during 35 s from the beginning of ablation using 100 kHz, 1030 nm, 250 fs pulses (laser L2). The harmonic was almost disappeared at the moment when the target was stopped (shown by the arrow). Inset: HHG spectrum from Ag plasma.
Fig. 3.
Fig. 3. (a) Decay of the 19th harmonic generated from the Al LPPs produced by 35 fs, 1 kHz pulses (blue thick curve) and 200 ps, 1 kHz pulses (red thin curve) after stopping the motor rotating aluminum rod (shown by arrow). (b) Spectral distribution of the harmonics generated by 800 nm, 35 fs driving pulses in the stable LPP produced on the rotating Al rod using femtosecond (thick blue curve) and picosecond (thin red curve) heating pulses.
Fig. 4.
Fig. 4. (a) Spectral distributions of the harmonics generated in the indium plasma using SCP (800 nm) and TCP (800 nm + 400 nm) in the case of 1 kHz laser. Blue dashed curve shows the odd and even harmonics obtained in the case of TCP and red solid curve shows the odd harmonics obtained in the case of SCP. The SHG conversion efficiency in TCP scheme was equal to 3%. (b) Spectral distributions of the harmonics generated in the aluminum plasma using SCP and TCP. Blue dashed curve shows the odd and even harmonics obtained in the case of TCP and red solid curve shows the odd harmonics obtained in the case of SCP.
Fig. 5.
Fig. 5. Raw images of harmonic spectra from LPP and gas using 1 kHz pulse repetition rate. (a) HHG in silver plasma using single color (upper panel) and two-color (bottom panel) pump schemes. (b) HHG in Ar gas using single color (upper panel) and two-color (bottom panel) pump schemes.
Fig. 6.
Fig. 6. TCP of silver plasma produced at 100 kHz pulse repetition rate. (a) HHG in the plasma produced on the rotating bulk silver rod. Upper panel corresponds to SCP and 30 rpm of target, while other panels correspond to TCP. Second panel corresponds to TCP using 0.1 mm thick BBO. Two other panels were obtained using 0.4 mm thick BBO at 30 and 15 rpm of bulk Ag rod. (b) Upper panel: HHG using TCP of the plasma produced at a fluence F=1 J cm-2 on the silver thin film rounded the stainless steel rod. Approximately similar spectrum was obtained with regard to the Ag bulk rod. Bottom panel shows the plasma spectrum without harmonic emission once stronger excitation of thin film (F=4 J cm-2) leads to significant phase mismatch between the driving (1030 nm and 515 nm) waves and harmonics.
Fig. 7.
Fig. 7. SCP and TCP of different plasmas using 100 kHz laser. (a) HHG in Au LPP. Upper panel shows the harmonic spectrum obtained during SCP of the plasma produced by 250 fs pulses on the surface of gold ring. Two other panels were obtained using TCP of Au LPP when 0.1 and 0.4 mm thick crystals were used for SHG. (b) HHG in the carbon plasma produced on the graphite rod. The 0.1 mm thick crystal was used for SHG and TCP of C LPP.
Fig. 8.
Fig. 8. Images of imperforated and perforated LPPs produced by 100 kHz, 250 fs pulses on the plane and curved surfaces of aluminum. (a) Images of spreading plasma during ablation of Al plane surface by cylindrically focused imperforated beam (left panel) and perforated beam at different delays from the beginning of ablation (other panels). (b) Images of spreading plasma during ablation of rotating Al rod by cylindrically focused perforated beam at different delays from the beginning of ablation.
Fig. 9.
Fig. 9. HHG using multi-jet plasmas produced by 1 kHz laser. (a) Experimental scheme. Left pattern: HP, heating pulse; CL, cylindrical lens; DP, driving pulse; IP, imperforated plasma; RT, rotating target. Right pattern: HP, heating pulse; MSM, multi-slit mask; CL, cylindrical lens; DP, driving pulse; PP, perforated plasma; RT, rotating target. (b) HHG spectra from modulated (blue dotted curve) and imperforated (red solid curve) indium LPP produced on the rotating target. Resonantly enhanced 13th harmonic was normalized for two cases. The enhancement factor up to 18× was achieved for the group of harmonics in the spectral range of 20-40 nm. (c) HHG spectra from modulated (blue thin curve) and imperforated (red thick curve) silver LPP produced by 1 kHz pulse repetition rate laser on the rotating target. The enhancement factor of up to 44× was achieved for the group of harmonics centered at the wavelength of 20 nm.

Metrics