Abstract

We have developed a portable gas imaging camera for identifying methane leaks in real-time. The camera uses active illumination from distributed feedback InGaAs laser diodes tuned to the 1653 nm methane absorption band. An InGaAs focal plane sensor array images the active illumination. The lasers are driven off resonance every alternate frame so that computer vision can extract the gas data. A colour image is captured simultaneously and the data is superimposed to guide the operator. Image stabilisation has been employed to allow detection with a moving camera, successfully imaging leaks from mains pressure gas supplies at a range of up to 3 m and flow rates as low as 0.05 L min−1.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” in Thermosense XXXII vol. 7661R. B. Dinwiddie and M. Safai, eds. (SPIE, 2010), p. 76610K.
  2. M. Gålfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Change 6(4), 426–430 (2016).
    [Crossref]
  3. C. F. Simpson and T. A. Gough, “Direct quantitative analysis using flame ionisation detection. The construction and performance of the FIDOH detector,” J. Chromatogr. Sci. 19(6), 275–282 (1981).
    [Crossref]
  4. T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
    [Crossref]
  5. B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
    [Crossref]
  6. B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.
  7. T. J. Kulp, P. Powers, R. Kennedy, and U.-B. Goers, “Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks,” Appl. Opt. 37(18), 3912–3922 (1998).
    [Crossref]
  8. G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
    [Crossref]
  9. D. Stothard, M. Dunn, and C. Rae, “Hyperspectral imaging of gases with a continuous-wave pump-enhanced optical parametric oscillator,” Opt. Express 12(5), 947–955 (2004).
    [Crossref]
  10. G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. A. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25(4), 2998–3005 (2017).
    [Crossref]
  11. G. Matz, P. Rusch, H.-H. Gerhard, J.-H. Gerhard, and R. H. Volker Schlabs, “New scanning infrared gas imaging system (SIGIS 2) for emergency response forces,” in Chemical and Biological Standoff Detection III, vol. 5995J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2005), p. 59950J.
  12. N. S. Prasad and A. R. Geiger, “Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection,” Opt. Eng. 35(4), 1105–1111 (1996).
    [Crossref]
  13. K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
    [Crossref]
  14. J. Bartholomew, P. Lyman, C. Weimer, and W. Tandy, “Wide area methane emissions mapping with airborne IPDA lidar,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406U. N. Singh, ed. (SPIE, 2017), p. 1040607.

2017 (1)

2016 (1)

M. Gålfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Change 6(4), 426–430 (2016).
[Crossref]

2006 (1)

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

2005 (1)

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
[Crossref]

2004 (1)

2000 (1)

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[Crossref]

1999 (1)

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

1998 (1)

1996 (1)

N. S. Prasad and A. R. Geiger, “Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection,” Opt. Eng. 35(4), 1105–1111 (1996).
[Crossref]

1981 (1)

C. F. Simpson and T. A. Gough, “Direct quantitative analysis using flame ionisation detection. The construction and performance of the FIDOH detector,” J. Chromatogr. Sci. 19(6), 275–282 (1981).
[Crossref]

Baliga, S.

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” in Thermosense XXXII vol. 7661R. B. Dinwiddie and M. Safai, eds. (SPIE, 2010), p. 76610K.

Bartholomew, J.

J. Bartholomew, P. Lyman, C. Weimer, and W. Tandy, “Wide area methane emissions mapping with airborne IPDA lidar,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406U. N. Singh, ed. (SPIE, 2017), p. 1040607.

Bastviken, D.

M. Gålfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Change 6(4), 426–430 (2016).
[Crossref]

Bernascolle, P.

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” in Thermosense XXXII vol. 7661R. B. Dinwiddie and M. Safai, eds. (SPIE, 2010), p. 76610K.

Bishton, S.

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

Boies, M. T.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Chang, S.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Cosofret, B. R.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Coxe, R.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Crill, P.

M. Gålfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Change 6(4), 426–430 (2016).
[Crossref]

Dunn, M.

Edgar, M. P.

Gålfalk, M.

M. Gålfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Change 6(4), 426–430 (2016).
[Crossref]

Geiger, A. R.

N. S. Prasad and A. R. Geiger, “Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection,” Opt. Eng. 35(4), 1105–1111 (1996).
[Crossref]

Gerhard, H.-H.

G. Matz, P. Rusch, H.-H. Gerhard, J.-H. Gerhard, and R. H. Volker Schlabs, “New scanning infrared gas imaging system (SIGIS 2) for emergency response forces,” in Chemical and Biological Standoff Detection III, vol. 5995J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2005), p. 59950J.

Gerhard, J.-H.

G. Matz, P. Rusch, H.-H. Gerhard, J.-H. Gerhard, and R. H. Volker Schlabs, “New scanning infrared gas imaging system (SIGIS 2) for emergency response forces,” in Chemical and Biological Standoff Detection III, vol. 5995J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2005), p. 59950J.

Gibson, G.

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
[Crossref]

Gibson, G. M.

Gittins, C. M.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Goers, U.-B.

Gough, T. A.

C. F. Simpson and T. A. Gough, “Direct quantitative analysis using flame ionisation detection. The construction and performance of the FIDOH detector,” J. Chromatogr. Sci. 19(6), 275–282 (1981).
[Crossref]

Green, B. D.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Hempler, N.

Hinds, M. F.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Hodgkinson, J.

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
[Crossref]

Ikuta, K.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Iseki, T.

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[Crossref]

Kawada, N.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Kennedy, R.

Kimura, K.

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[Crossref]

Kulp, T. J.

Lyman, P.

J. Bartholomew, P. Lyman, C. Weimer, and W. Tandy, “Wide area methane emissions mapping with airborne IPDA lidar,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406U. N. Singh, ed. (SPIE, 2017), p. 1040607.

Maeda, M.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Maker, G. T.

Malcolm, G. P. A.

Marinelli, W. J.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Matz, G.

G. Matz, P. Rusch, H.-H. Gerhard, J.-H. Gerhard, and R. H. Volker Schlabs, “New scanning infrared gas imaging system (SIGIS 2) for emergency response forces,” in Chemical and Biological Standoff Detection III, vol. 5995J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2005), p. 59950J.

Murray, S.

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
[Crossref]

Nakagawa, J.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Nakamura, T.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Naranjo, E.

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” in Thermosense XXXII vol. 7661R. B. Dinwiddie and M. Safai, eds. (SPIE, 2010), p. 76610K.

Oki, Y.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Olofsson, G.

M. Gålfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Change 6(4), 426–430 (2016).
[Crossref]

Padgett, M.

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
[Crossref]

Padgett, M. J.

Phillips, D. B.

Powers, P.

Prasad, N. S.

N. S. Prasad and A. R. Geiger, “Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection,” Opt. Eng. 35(4), 1105–1111 (1996).
[Crossref]

Pride, R.

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
[Crossref]

Rae, C.

Rossi, D. C.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

Rusch, P.

G. Matz, P. Rusch, H.-H. Gerhard, J.-H. Gerhard, and R. H. Volker Schlabs, “New scanning infrared gas imaging system (SIGIS 2) for emergency response forces,” in Chemical and Biological Standoff Detection III, vol. 5995J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2005), p. 59950J.

Simpson, C. F.

C. F. Simpson and T. A. Gough, “Direct quantitative analysis using flame ionisation detection. The construction and performance of the FIDOH detector,” J. Chromatogr. Sci. 19(6), 275–282 (1981).
[Crossref]

Stothard, D.

Strzoda, R.

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
[Crossref]

Sun, B.

Tai, H.

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[Crossref]

Tandy, W.

J. Bartholomew, P. Lyman, C. Weimer, and W. Tandy, “Wide area methane emissions mapping with airborne IPDA lidar,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406U. N. Singh, ed. (SPIE, 2017), p. 1040607.

Tsumura, Y.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Uchiumi, M.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Ustun, T.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

van Well, B.

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
[Crossref]

Vasa, N.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Volker Schlabs, R. H.

G. Matz, P. Rusch, H.-H. Gerhard, J.-H. Gerhard, and R. H. Volker Schlabs, “New scanning infrared gas imaging system (SIGIS 2) for emergency response forces,” in Chemical and Biological Standoff Detection III, vol. 5995J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2005), p. 59950J.

Weimer, C.

J. Bartholomew, P. Lyman, C. Weimer, and W. Tandy, “Wide area methane emissions mapping with airborne IPDA lidar,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406U. N. Singh, ed. (SPIE, 2017), p. 1040607.

Yoshikane, N.

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Appl. Opt. (1)

J. Chromatogr. Sci. (1)

C. F. Simpson and T. A. Gough, “Direct quantitative analysis using flame ionisation detection. The construction and performance of the FIDOH detector,” J. Chromatogr. Sci. 19(6), 275–282 (1981).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, “An open-path, hand-held laser system for the detection of methane gas,” J. Opt. A: Pure Appl. Opt. 7(6), S420–S424 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, and N. Kawada, “Differential absorption lidar at 1.67 μm for remote sensing of methane leakage,” Jpn. J. Appl. Phys. 38(Part 1, No. 1A), 110–114 (1999).
[Crossref]

Meas. Sci. Technol. (1)

T. Iseki, H. Tai, and K. Kimura, “A portable remote methane sensor using a tunable diode laser,” Meas. Sci. Technol. 11(6), 594–602 (2000).
[Crossref]

Nat. Clim. Change (1)

M. Gålfalk, G. Olofsson, P. Crill, and D. Bastviken, “Making methane visible,” Nat. Clim. Change 6(4), 426–430 (2016).
[Crossref]

New J. Phys. (1)

G. Gibson, B. van Well, J. Hodgkinson, R. Pride, R. Strzoda, S. Murray, S. Bishton, and M. Padgett, “Imaging of methane gas using a scanning, open-path laser system,” New J. Phys. 8(2), 26 (2006).
[Crossref]

Opt. Eng. (1)

N. S. Prasad and A. R. Geiger, “Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection,” Opt. Eng. 35(4), 1105–1111 (1996).
[Crossref]

Opt. Express (2)

Other (4)

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” in Thermosense XXXII vol. 7661R. B. Dinwiddie and M. Safai, eds. (SPIE, 2010), p. 76610K.

J. Bartholomew, P. Lyman, C. Weimer, and W. Tandy, “Wide area methane emissions mapping with airborne IPDA lidar,” in Lidar Remote Sensing for Environmental Monitoring 2017, vol. 10406U. N. Singh, ed. (SPIE, 2017), p. 1040607.

B. R. Cosofret, W. J. Marinelli, T. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. Coxe, S. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” in Chemical and Biological Standoff Detection II, vol. 5584J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2004), pp. 93–99.

G. Matz, P. Rusch, H.-H. Gerhard, J.-H. Gerhard, and R. H. Volker Schlabs, “New scanning infrared gas imaging system (SIGIS 2) for emergency response forces,” in Chemical and Biological Standoff Detection III, vol. 5995J. O. Jensen and J.-M. Thériault, eds. (SPIE, 2005), p. 59950J.

Supplementary Material (1)

NameDescription
» Visualization 1       A methane gas leak imaged in real time with a handheld, portable camera. The gas is imaged using short-wave infra-red tunable laser diodes and focal-plane array detector. Computer vision extracts the gas signal and overlays it onto a full color image

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Photo of the gas imaging camera. a) Lens of the SWIR FPA detector with attached filter. b) Lens for the colour webcam. c) lens tubes containing the two active illumination modules with visible engineered diffusers.
Fig. 2.
Fig. 2. Schematic diagram showing the hardware design of the gas imaging camera
Fig. 3.
Fig. 3. Left: The result of an image subtraction of on and off resonance SWIR images with post filtering. Scaled for visibility. Darker areas correspond to greater path length through methane. Right: The result of the SWIR image subtraction applied over a full colour image of the scene. Greener areas correspond to greater path length through methane.
Fig. 4.
Fig. 4. Images extracted from 10 Hz test videos at a range of 2 m and 3 m, and at flow rates of 0.05 L min−1, 0.15 L min−1 and 0.25 L min−1
Fig. 5.
Fig. 5. Image of the light profile created with one of the laser diodes passing through an engineered optical diffuser, beside the normalised average intensity in the rows and columns. Under normal operation two lasers are used in conjunction to cover the whole field of view of the camera, overlapping in the centre.
Fig. 6.
Fig. 6. Images extracted from 10 Hz test videos of a leaking pipe at 20 mbar pressure at a range of 2 m. The yellow number super-imposed on the frame is the number of the frame in the supplementary video (see Visualization 1).

Metrics