Abstract

The radiative cooling of objects during daytime under direct sunlight has recently been shown to be significantly enhanced by utilizing nanophotonic coatings. Multilayer thin film stacks, 2D photonic crystals, etc. as coating structures improved the thermal emission rate of a device in the infrared atmospheric transparency window reducing considerably devices’ temperature. Due to the increased heating in photovoltaic (PV) devices – that has significant adverse consequences on both their efficiency and life-time – and inspired by the recent advances in daytime radiative cooling, we developed a coupled thermal-electrical modeling to examine the physical mechanisms on how a radiative cooler affects the overall efficiency of commercial photovoltaic modules and how the radiative cooling impact is compared with the impact of other photonic strategies for reducing heat generation within PVs, such as ultraviolet and sub-bandgap reflection. Employing our modeling, which takes into account all the major intrinsic processes affected by the temperature variation in a PV device, we additionally identified the validity regimes of the currently existing PV-cooling models which treat the PV coolers as simple thermal emitters. Finally, we assessed some realistic photonic coolers from the literature, compatible with photovoltaics, to implement the radiative cooling requirements and the requirements related to the reduction of heat generation, and demonstrated their associated impact on the temperature reduction and PV efficiency. Consistent with previous works, we showed that combining radiative cooling with sub-bandgap reflection proves to be more promising for increasing PVs’ efficiency. Providing the physical mechanisms and requirements for reducing PV operating temperature, our study provides guidelines for utilizing suitable photonic structures for enhancing the efficiency and the lifetime of PV devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  2. R. Couderc, M. Amara, and M. Lemiti, “In-Depth Analysis of Heat Generation in Silicon Solar Cells,” IEEE J. Photovoltaics 6(5), 1123–1131 (2016).
    [Crossref]
  3. O. Dupré, R. Vaillon, and M. A. Green, “A full thermal model for photovoltaic devices,” Sol. Energy 140, 73–82 (2016).
    [Crossref]
  4. S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia 33, 311–321 (2013).
    [Crossref]
  5. M. W. Davis, A. H. Fanney, and B. P. Dougherty, “Prediction of Building Integrated Photovoltaic Cell Temperatures,” J. Sol. Energy Eng. 123(3), 200–210 (2001).
    [Crossref]
  6. E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
    [Crossref]
  7. D. Otth, R. R.-29th I. of E. S. Technical, and undefined 1983, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” jpl.nasa.gov (n.d.).
  8. H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90(1), 309–315 (2012).
    [Crossref]
  9. K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Eng. J. 4(4), 869–877 (2013).
    [Crossref]
  10. A. Akbarzadeh and T. Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16(1), 81–87 (1996).
    [Crossref]
  11. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  12. L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
    [Crossref]
  13. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
    [Crossref]
  14. Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
    [Crossref]
  15. W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
    [Crossref]
  16. B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
    [Crossref]
  17. A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
    [Crossref]
  18. T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
    [Crossref]
  19. M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
    [Crossref]
  20. R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163–9 (2018).
    [Crossref]
  21. T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
    [Crossref]
  22. D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.
  23. K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2009), pp. 000544–000549.
  24. E. D. Palik, Handbook of Optical Constants of Solids. II (Academic University, 1998).
  25. U. Wurfel, A. Cuevas, and P. Wurfel, “Charge Carrier Separation in Solar Cells,” IEEE J. Photovoltaics 5(1), 461–469 (2015).
    [Crossref]
  26. “Solar Spectral Irradiance: Air Mass 1.5,” https://rredc.nrel.gov/solar/spectra/am1.5/ .
  27. F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.
  28. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31(5), 711–716 (1984).
    [Crossref]
  29. M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Devices 31(5), 671–678 (1984).
    [Crossref]
  30. K. G. Svantesson and N. G. Nilsson, “The temperature dependence of the Auger recombination coefficient of undoped silicon,” J. Phys. C: Solid State Phys. 12(23), 5111–5120 (1979).
    [Crossref]
  31. A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
    [Crossref]
  32. H. Steinkemper, M. Hermle, and S. W. Glunz, “Comprehensive simulation study of industrially relevant silicon solar cell architectures for an optimal material parameter choice,” Prog. Photovoltaics Res. Appl. 24(10), 1319–1331 (2016).
    [Crossref]
  33. K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).
    [Crossref]
  34. P. P. Altermatt, “Models for numerical device simulations of crystalline silicon solar cells - A review,” J. Comput. Electron. 10(3), 314–330 (2011).
    [Crossref]
  35. O. Breitenstein, “Understanding the current-voltage characteristics of industrial crystalline silicon solar cells by considering inhomogeneous current distributions,” Opto-Electronics Rev. 21(3), 259–282 (2013).
    [Crossref]
  36. S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
    [Crossref]
  37. T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120 (2015).
    [Crossref]
  38. P. Singh, S. N. Singh, M. Lal, and M. Husain, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell,” Sol. Energy Mater. Sol. Cells 92(12), 1611–1616 (2008).
    [Crossref]
  39. O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
    [Crossref]
  40. H. Steinkemper, I. Geisemeyer, M. C. Schubert, W. Warta, and S. W. Glunz, “Temperature-Dependent Modeling of Silicon Solar Cells-Eg, ni, Recombination, and VOC,” IEEE J. Photovoltaics 7(2), 450–457 (2017).
    [Crossref]
  41. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref]
  42. “IR Transmission Spectra | Gemini Observatory,” http://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/ir-transmission-spectra .
  43. P. Wurfel, “The chemical potential of radiation,” J. Phys. C: Solid State Phys. 15(18), 3967–3985 (1982).
    [Crossref]
  44. “The SunPower Maxeon ® Solar Cell Conventional Panel SunPower ® X-Series 12% More Power in Year 25 SunPower ® E-Series and X-Series Conventional Panel”.
  45. “Eagle 72M G2 – JinkoSolar US,” https://jinkosolar.us/product/eagle-72m-g2/ .
  46. D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
    [Crossref]
  47. M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, V. de F, and C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
    [Crossref]
  48. W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
    [Crossref]
  49. D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics Res. Appl. 21(1), 12–29 (2013).
    [Crossref]
  50. Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404 (2019).
    [Crossref]

2019 (1)

2018 (6)

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, V. de F, and C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163–9 (2018).
[Crossref]

2017 (4)

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

H. Steinkemper, I. Geisemeyer, M. C. Schubert, W. Warta, and S. W. Glunz, “Temperature-Dependent Modeling of Silicon Solar Cells-Eg, ni, Recombination, and VOC,” IEEE J. Photovoltaics 7(2), 450–457 (2017).
[Crossref]

2016 (3)

R. Couderc, M. Amara, and M. Lemiti, “In-Depth Analysis of Heat Generation in Silicon Solar Cells,” IEEE J. Photovoltaics 6(5), 1123–1131 (2016).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “A full thermal model for photovoltaic devices,” Sol. Energy 140, 73–82 (2016).
[Crossref]

H. Steinkemper, M. Hermle, and S. W. Glunz, “Comprehensive simulation study of industrially relevant silicon solar cell architectures for an optimal material parameter choice,” Prog. Photovoltaics Res. Appl. 24(10), 1319–1331 (2016).
[Crossref]

2015 (4)

T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120 (2015).
[Crossref]

U. Wurfel, A. Cuevas, and P. Wurfel, “Charge Carrier Separation in Solar Cells,” IEEE J. Photovoltaics 5(1), 461–469 (2015).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

2014 (2)

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

2013 (6)

S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia 33, 311–321 (2013).
[Crossref]

K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Eng. J. 4(4), 869–877 (2013).
[Crossref]

O. Breitenstein, “Understanding the current-voltage characteristics of industrial crystalline silicon solar cells by considering inhomogeneous current distributions,” Opto-Electronics Rev. 21(3), 259–282 (2013).
[Crossref]

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics Res. Appl. 21(1), 12–29 (2013).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

2012 (1)

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90(1), 309–315 (2012).
[Crossref]

2011 (1)

P. P. Altermatt, “Models for numerical device simulations of crystalline silicon solar cells - A review,” J. Comput. Electron. 10(3), 314–330 (2011).
[Crossref]

2010 (2)

S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
[Crossref]

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
[Crossref]

2009 (1)

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
[Crossref]

2008 (2)

P. Singh, S. N. Singh, M. Lal, and M. Husain, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell,” Sol. Energy Mater. Sol. Cells 92(12), 1611–1616 (2008).
[Crossref]

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

2001 (1)

M. W. Davis, A. H. Fanney, and B. P. Dougherty, “Prediction of Building Integrated Photovoltaic Cell Temperatures,” J. Sol. Energy Eng. 123(3), 200–210 (2001).
[Crossref]

1996 (1)

A. Akbarzadeh and T. Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16(1), 81–87 (1996).
[Crossref]

1993 (1)

K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).
[Crossref]

1984 (2)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31(5), 711–716 (1984).
[Crossref]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Devices 31(5), 671–678 (1984).
[Crossref]

1982 (1)

P. Wurfel, “The chemical potential of radiation,” J. Phys. C: Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

1979 (1)

K. G. Svantesson and N. G. Nilsson, “The temperature dependence of the Auger recombination coefficient of undoped silicon,” J. Phys. C: Solid State Phys. 12(23), 5111–5120 (1979).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Abd-Elhady, M. S.

K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Eng. J. 4(4), 869–877 (2013).
[Crossref]

Ai, L.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Akbarzadeh, A.

A. Akbarzadeh and T. Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16(1), 81–87 (1996).
[Crossref]

Alonso Alvarez, D.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Altermatt, P. P.

P. P. Altermatt, “Models for numerical device simulations of crystalline silicon solar cells - A review,” J. Comput. Electron. 10(3), 314–330 (2011).
[Crossref]

Amara, M.

R. Couderc, M. Amara, and M. Lemiti, “In-Depth Analysis of Heat Generation in Silicon Solar Cells,” IEEE J. Photovoltaics 6(5), 1123–1131 (2016).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

Ao, X.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Bende, E. E.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Bergstrom, N.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Bermel, P.

Blankemeyer, S.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Bothe, K.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Bourne, B.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Breitenstein, O.

O. Breitenstein, “Understanding the current-voltage characteristics of industrial crystalline silicon solar cells by considering inhomogeneous current distributions,” Opto-Electronics Rev. 21(3), 259–282 (2013).
[Crossref]

Brendel, R.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Brooks, B. G.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31(5), 711–716 (1984).
[Crossref]

Cal, R. B.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163–9 (2018).
[Crossref]

Calaf, M.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163–9 (2018).
[Crossref]

Cascant, M.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Castano, F. J.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Cesar, I.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Chemisana, D.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Chen, K.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Chen, L.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Chen, Z.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Cody, G. D.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31(5), 711–716 (1984).
[Crossref]

Cotsell, J. N.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2009), pp. 000544–000549.

Couderc, R.

R. Couderc, M. Amara, and M. Lemiti, “In-Depth Analysis of Heat Generation in Silicon Solar Cells,” IEEE J. Photovoltaics 6(5), 1123–1131 (2016).
[Crossref]

Cousins, P. J.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Cuevas, A.

U. Wurfel, A. Cuevas, and P. Wurfel, “Charge Carrier Separation in Solar Cells,” IEEE J. Photovoltaics 5(1), 461–469 (2015).
[Crossref]

Cumpston, J. S.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2009), pp. 000544–000549.

Dai, N.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Daquin, R.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Davis, M. W.

M. W. Davis, A. H. Fanney, and B. P. Dougherty, “Prediction of Building Integrated Photovoltaic Cell Temperatures,” J. Sol. Energy Eng. 123(3), 200–210 (2001).
[Crossref]

de F, V.

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, V. de F, and C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

de Oliveira, M. C. C.

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, V. de F, and C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Deceglie, M. G.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Defensor, M.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Dennis, T.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Diniz Cardoso, A. S. A.

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, V. de F, and C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Dougherty, B. P.

M. W. Davis, A. H. Fanney, and B. P. Dougherty, “Prediction of Building Integrated Photovoltaic Cell Temperatures,” J. Sol. Energy Eng. 123(3), 200–210 (2001).
[Crossref]

Dubey, S.

S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia 33, 311–321 (2013).
[Crossref]

Dupré, O.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163–9 (2018).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “A full thermal model for photovoltaic devices,” Sol. Energy 140, 73–82 (2016).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

Ekins-Daukes, N.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

El-Sherif, H.

K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Eng. J. 4(4), 869–877 (2013).
[Crossref]

Fan, S.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Fanney, A. H.

M. W. Davis, A. H. Fanney, and B. P. Dougherty, “Prediction of Building Integrated Photovoltaic Cell Temperatures,” J. Sol. Energy Eng. 123(3), 200–210 (2001).
[Crossref]

Feng, C. B.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Ferre Llin, L.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Ferry, V. E.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Geisemeyer, I.

H. Steinkemper, I. Geisemeyer, M. C. Schubert, W. Warta, and S. W. Glunz, “Temperature-Dependent Modeling of Silicon Solar Cells-Eg, ni, Recombination, and VOC,” IEEE J. Photovoltaics 7(2), 450–457 (2017).
[Crossref]

Glunz, S. W.

H. Steinkemper, I. Geisemeyer, M. C. Schubert, W. Warta, and S. W. Glunz, “Temperature-Dependent Modeling of Silicon Solar Cells-Eg, ni, Recombination, and VOC,” IEEE J. Photovoltaics 7(2), 450–457 (2017).
[Crossref]

H. Steinkemper, M. Hermle, and S. W. Glunz, “Comprehensive simulation study of industrially relevant silicon solar cell architectures for an optimal material parameter choice,” Prog. Photovoltaics Res. Appl. 24(10), 1319–1331 (2016).
[Crossref]

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

Green, M. A.

O. Dupré, R. Vaillon, and M. A. Green, “A full thermal model for photovoltaic devices,” Sol. Energy 140, 73–82 (2016).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Devices 31(5), 671–678 (1984).
[Crossref]

Guarracino, I.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Hawlader, M. N. A.

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90(1), 309–315 (2012).
[Crossref]

Hermle, M.

H. Steinkemper, M. Hermle, and S. W. Glunz, “Comprehensive simulation study of industrially relevant silicon solar cell architectures for an optimal material parameter choice,” Prog. Photovoltaics Res. Appl. 24(10), 1319–1331 (2016).
[Crossref]

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

Hu, M.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Husain, M.

P. Singh, S. N. Singh, M. Lal, and M. Husain, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell,” Sol. Energy Mater. Sol. Cells 92(12), 1611–1616 (2008).
[Crossref]

Ilaw, R.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Jordan, D. C.

D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics Res. Appl. 21(1), 12–29 (2013).
[Crossref]

Kandil, H. A.

K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Eng. J. 4(4), 869–877 (2013).
[Crossref]

Ketola, B. M.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2009), pp. 000544–000549.

Komatsu, Y.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Köntges, M.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Kurtz, S. R.

D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics Res. Appl. 21(1), 12–29 (2013).
[Crossref]

Lal, M.

P. Singh, S. N. Singh, M. Lal, and M. Husain, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell,” Sol. Energy Mater. Sol. Cells 92(12), 1611–1616 (2008).
[Crossref]

Lamers, M. W. P. E.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Lee, P. S.

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90(1), 309–315 (2012).
[Crossref]

Lemiti, M.

R. Couderc, M. Amara, and M. Lemiti, “In-Depth Analysis of Heat Generation in Silicon Solar Cells,” IEEE J. Photovoltaics 6(5), 1123–1131 (2016).
[Crossref]

Leygo, A.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Li, J.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Li, R.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Li, W.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Lins, C.

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, V. de F, and C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Liu, C.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Liu, Y.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Lu, Y.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Ma, R.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Ma, Z. Q.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Markides, C. N.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Masad, A.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

McIntosh, K. R.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2009), pp. 000544–000549.

Mellor, A.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Mewe, A. A.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Meyers, B.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Misiakos, K.

K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).
[Crossref]

Moharram, K. A.

K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Eng. J. 4(4), 869–877 (2013).
[Crossref]

Morecroft, D.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Munday, J. N.

Nilsson, N. G.

K. G. Svantesson and N. G. Nilsson, “The temperature dependence of the Auger recombination coefficient of undoped silicon,” J. Phys. C: Solid State Phys. 12(23), 5111–5120 (1979).
[Crossref]

Norris, A. W.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2009), pp. 000544–000549.

Offer, M.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Otth, D.

D. Otth, R. R.-29th I. of E. S. Technical, and undefined 1983, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” jpl.nasa.gov (n.d.).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids. II (Academic University, 1998).

Palyvos, J. A.

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
[Crossref]

Paul, D. J.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Pei, G.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Podraza, N. J.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Powell, N. E.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2009), pp. 000544–000549.

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Raman, A.

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Raman, A. P.

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Repins, I.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Richter, A.

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

Riverola, A.

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

Romijn, I. G.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Rose, D.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Roy Chowdhury, S.

S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
[Crossref]

Safi, T. S.

Saga, T.

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
[Crossref]

Saha, H.

S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
[Crossref]

Sarvaiya, J. N.

S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia 33, 311–321 (2013).
[Crossref]

Schubert, M. C.

H. Steinkemper, I. Geisemeyer, M. C. Schubert, W. Warta, and S. W. Glunz, “Temperature-Dependent Modeling of Silicon Solar Cells-Eg, ni, Recombination, and VOC,” IEEE J. Photovoltaics 7(2), 450–457 (2017).
[Crossref]

Schulte-Huxel, H.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Seshadri, B.

S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia 33, 311–321 (2013).
[Crossref]

Shi, P. P.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Shi, Y.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Shields, M.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Silverman, T. J.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Singh, P.

P. Singh, S. N. Singh, M. Lal, and M. Husain, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell,” Sol. Energy Mater. Sol. Cells 92(12), 1611–1616 (2008).
[Crossref]

Singh, S. N.

P. Singh, S. N. Singh, M. Lal, and M. Husain, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell,” Sol. Energy Mater. Sol. Cells 92(12), 1611–1616 (2008).
[Crossref]

Skoplaki, E.

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
[Crossref]

Slauch, I. M.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Smith, D. D.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Song, W.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Steinkemper, H.

H. Steinkemper, I. Geisemeyer, M. C. Schubert, W. Warta, and S. W. Glunz, “Temperature-Dependent Modeling of Silicon Solar Cells-Eg, ni, Recombination, and VOC,” IEEE J. Photovoltaics 7(2), 450–457 (2017).
[Crossref]

H. Steinkemper, M. Hermle, and S. W. Glunz, “Comprehensive simulation study of industrially relevant silicon solar cell architectures for an optimal material parameter choice,” Prog. Photovoltaics Res. Appl. 24(10), 1319–1331 (2016).
[Crossref]

Subedi, I.

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

Svantesson, K. G.

K. G. Svantesson and N. G. Nilsson, “The temperature dependence of the Auger recombination coefficient of undoped silicon,” J. Phys. C: Solid State Phys. 12(23), 5111–5120 (1979).
[Crossref]

Tan, R.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Tang, X.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Teo, H. G.

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90(1), 309–315 (2012).
[Crossref]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31(5), 711–716 (1984).
[Crossref]

Tsamakis, D.

K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).
[Crossref]

Vaillon, R.

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163–9 (2018).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “A full thermal model for photovoltaic devices,” Sol. Energy 140, 73–82 (2016).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

Viana, M. M.

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, V. de F, and C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Vogt, M. R.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Wadowski, T.

A. Akbarzadeh and T. Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16(1), 81–87 (1996).
[Crossref]

Wang, K. X.

Wang, W.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Wang, Z.

Warta, W.

H. Steinkemper, I. Geisemeyer, M. C. Schubert, W. Warta, and S. W. Glunz, “Temperature-Dependent Modeling of Silicon Solar Cells-Eg, ni, Recombination, and VOC,” IEEE J. Photovoltaics 7(2), 450–457 (2017).
[Crossref]

Weeber, A. W.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Westerberg, S.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

Witteck, R.

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

Wu, D.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Wurfel, P.

U. Wurfel, A. Cuevas, and P. Wurfel, “Charge Carrier Separation in Solar Cells,” IEEE J. Photovoltaics 5(1), 461–469 (2015).
[Crossref]

P. Wurfel, “The chemical potential of radiation,” J. Phys. C: Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

Wurfel, U.

U. Wurfel, A. Cuevas, and P. Wurfel, “Charge Carrier Separation in Solar Cells,” IEEE J. Photovoltaics 5(1), 461–469 (2015).
[Crossref]

Xu, Z.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Xuan, Q.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Yablonovitch, E.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31(5), 711–716 (1984).
[Crossref]

Yang, W. J.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Ye, H.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yu, L.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yu, Z.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Yuste, H.

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

Zhang, J.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Zhang, X.

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Zhao, B.

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

Zhao, W. G.

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Zhou, Z.

Zhu, L.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

Zhu, X.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

ACS Photonics (1)

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Ain Shams Eng. J. (1)

K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Eng. J. 4(4), 869–877 (2013).
[Crossref]

Appl. Energy (1)

H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90(1), 309–315 (2012).
[Crossref]

Appl. Therm. Eng. (1)

A. Akbarzadeh and T. Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16(1), 81–87 (1996).
[Crossref]

Energy Procedia (1)

S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review,” Energy Procedia 33, 311–321 (2013).
[Crossref]

IEEE J. Photovoltaics (6)

R. Couderc, M. Amara, and M. Lemiti, “In-Depth Analysis of Heat Generation in Silicon Solar Cells,” IEEE J. Photovoltaics 6(5), 1123–1131 (2016).
[Crossref]

T. J. Silverman, M. G. Deceglie, I. Subedi, N. J. Podraza, I. M. Slauch, V. E. Ferry, and I. Repins, “Reducing Operating Temperature in Photovoltaic Modules,” IEEE J. Photovoltaics 8(2), 532–540 (2018).
[Crossref]

M. R. Vogt, H. Schulte-Huxel, M. Offer, S. Blankemeyer, R. Witteck, M. Köntges, K. Bothe, and R. Brendel, “Reduced Module Operating Temperature and Increased Yield of Modules with PERC Instead of Al-BSF Solar Cells,” IEEE J. Photovoltaics 7(1), 44–50 (2017).
[Crossref]

U. Wurfel, A. Cuevas, and P. Wurfel, “Charge Carrier Separation in Solar Cells,” IEEE J. Photovoltaics 5(1), 461–469 (2015).
[Crossref]

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics 3(4), 1184–1191 (2013).
[Crossref]

H. Steinkemper, I. Geisemeyer, M. C. Schubert, W. Warta, and S. W. Glunz, “Temperature-Dependent Modeling of Silicon Solar Cells-Eg, ni, Recombination, and VOC,” IEEE J. Photovoltaics 7(2), 450–457 (2017).
[Crossref]

IEEE Trans. Electron Devices (2)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31(5), 711–716 (1984).
[Crossref]

M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron Devices 31(5), 671–678 (1984).
[Crossref]

J. Appl. Phys. (2)

K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K,” J. Appl. Phys. 74(5), 3293–3297 (1993).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Comput. Electron. (1)

P. P. Altermatt, “Models for numerical device simulations of crystalline silicon solar cells - A review,” J. Comput. Electron. 10(3), 314–330 (2011).
[Crossref]

J. Phys. C: Solid State Phys. (2)

K. G. Svantesson and N. G. Nilsson, “The temperature dependence of the Auger recombination coefficient of undoped silicon,” J. Phys. C: Solid State Phys. 12(23), 5111–5120 (1979).
[Crossref]

P. Wurfel, “The chemical potential of radiation,” J. Phys. C: Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

J. Sol. Energy Eng. (1)

M. W. Davis, A. H. Fanney, and B. P. Dougherty, “Prediction of Building Integrated Photovoltaic Cell Temperatures,” J. Sol. Energy Eng. 123(3), 200–210 (2001).
[Crossref]

Mater. Des. (1)

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Mater. Des. 139, 104–111 (2018).
[Crossref]

Nano Lett. (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

NPG Asia Mater. (1)

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2(3), 96–102 (2010).
[Crossref]

Opt. Express (2)

Optica (1)

Opto-Electronics Rev. (1)

O. Breitenstein, “Understanding the current-voltage characteristics of industrial crystalline silicon solar cells by considering inhomogeneous current distributions,” Opto-Electronics Rev. 21(3), 259–282 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A. 112(40), 12282–12287 (2015).
[Crossref]

Prog. Photovoltaics Res. Appl. (2)

H. Steinkemper, M. Hermle, and S. W. Glunz, “Comprehensive simulation study of industrially relevant silicon solar cell architectures for an optimal material parameter choice,” Prog. Photovoltaics Res. Appl. 24(10), 1319–1331 (2016).
[Crossref]

D. C. Jordan and S. R. Kurtz, “Photovoltaic Degradation Rates-an Analytical Review,” Prog. Photovoltaics Res. Appl. 21(1), 12–29 (2013).
[Crossref]

Renewable Sustainable Energy Rev. (1)

M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, V. de F, and C. Lins, “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review,” Renewable Sustainable Energy Rev. 81, 2299–2317 (2018).
[Crossref]

Sci. Rep. (1)

R. Vaillon, O. Dupré, R. B. Cal, and M. Calaf, “Pathways for mitigating thermal losses in solar photovoltaics,” Sci. Rep. 8(1), 13163–9 (2018).
[Crossref]

Sol. Energy (3)

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “A full thermal model for photovoltaic devices,” Sol. Energy 140, 73–82 (2016).
[Crossref]

W. J. Yang, Z. Q. Ma, X. Tang, C. B. Feng, W. G. Zhao, and P. P. Shi, “Internal quantum efficiency for solar cells,” Sol. Energy 82(2), 106–110 (2008).
[Crossref]

Sol. Energy Mater. Sol. Cells (5)

P. Singh, S. N. Singh, M. Lal, and M. Husain, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell,” Sol. Energy Mater. Sol. Cells 92(12), 1611–1616 (2008).
[Crossref]

O. Dupré, R. Vaillon, and M. A. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

B. Zhao, M. Hu, X. Ao, Q. Xuan, and G. Pei, “Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling,” Sol. Energy Mater. Sol. Cells 178, 266–272 (2018).
[Crossref]

A. Riverola, A. Mellor, D. Alonso Alvarez, L. Ferre Llin, I. Guarracino, C. N. Markides, D. J. Paul, D. Chemisana, and N. Ekins-Daukes, “Mid-infrared emissivity of crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 174, 607–615 (2018).
[Crossref]

S. Roy Chowdhury and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1441–1447 (2010).
[Crossref]

Sol. RRL (1)

Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, and W. Song, “A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules,” Sol. RRL 1(10), 1700084 (2017).
[Crossref]

Other (9)

D. Otth, R. R.-29th I. of E. S. Technical, and undefined 1983, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” jpl.nasa.gov (n.d.).

“Solar Spectral Irradiance: Air Mass 1.5,” https://rredc.nrel.gov/solar/spectra/am1.5/ .

F. J. Castano, D. Morecroft, M. Cascant, H. Yuste, M. W. P. E. Lamers, A. A. Mewe, I. G. Romijn, E. E. Bende, Y. Komatsu, A. W. Weeber, and I. Cesar, “Industrially feasible >19% efficiency IBC cells for pilot line processing,” in 2011 37th IEEE Photovoltaic Specialists Conference (IEEE, 2011), pp. 001038–001042.

D. D. Smith, P. J. Cousins, A. Masad, S. Westerberg, M. Defensor, R. Ilaw, T. Dennis, R. Daquin, N. Bergstrom, A. Leygo, X. Zhu, B. Meyers, B. Bourne, M. Shields, and D. Rose, “SunPower’s Maxeon Gen III solar cell: High efficiency and energy yield,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0908–0913.

K. R. McIntosh, J. N. Cotsell, J. S. Cumpston, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2009), pp. 000544–000549.

E. D. Palik, Handbook of Optical Constants of Solids. II (Academic University, 1998).

“IR Transmission Spectra | Gemini Observatory,” http://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/ir-transmission-spectra .

“The SunPower Maxeon ® Solar Cell Conventional Panel SunPower ® X-Series 12% More Power in Year 25 SunPower ® E-Series and X-Series Conventional Panel”.

“Eagle 72M G2 – JinkoSolar US,” https://jinkosolar.us/product/eagle-72m-g2/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the cooling approaches for the radiative thermal management of PVs and material stacking of the encapsulated crystalline silicon-based PV. The thickness and role of the different layers of the PV module are discussed in the main text. (b) Absorptivity of the bare cell (red line), encapsulated cell (green line), and of a 0.46 mm thick EVA wafer (purple line). Data are extracted from Refs. [15,23,24]. (c) Emissivity spectra in the thermal wavelengths (mid-IR) of a 3.2 mm thick glass (fused Quartz) layer (blue line), compared to the emissivity of the encapsulated cell in (b) (green line).
Fig. 2.
Fig. 2. Net cooling power vs. cooler’s temperature T assuming a fixed solar heating power, Psolar,heat = 620 W/m2, emulating that of a c-Si PV, for Tamb=300 K and for different combined conduction-convection nonradiative heat transfer coefficients, hc, for a flat fused quartz thermal emitter (solid lines) and an ideal thermal emitter, i.e., exhibiting maximum emissivity along the entire thermal wavelength range (4-33 µm) for all angles of incidence (dashed lines). The steady-state is at [Pnet,cool (T) = 0] (horizontal black line).
Fig. 3.
Fig. 3. (a) PV temperature, T, reduction and (b) efficiency, η, increase associated to different radiative approaches with respect to the combined conduction-convection nonradiative heat transfer coefficient hc (the reduction and increase are relative to the PV without any implemented cooling approach). Black lines correspond to the reflection of parasitic UV assuming an IQE = 1, magenta lines correspond to the reflection of the sub-bandgap radiation, green lines correspond to the implementation of an ideal mid-IR thermal emitter, i.e., exhibits maximum emissivity along the entire thermal wavelength range (4-33 µm) for all angles of incidence, red lines correspond to the reflection of both UV and sub-bandgap radiation, orange lines correspond to the reflection of sub-bandgap radiation and the additional implementation of the ideal thermal emitter. Purple lines correspond to the reflection of both UV and sub-bandgap radiation and the additional implementation of the ideal thermal emitter. Triangles show the effect of the last approach for different Tamb (i.e. 292 K instead of 300 K) and circles for different silicon thickness (W) (i.e. 500 µm instead of 250 µm). Cases at the left of the vertical line correspond to climates with very weak winds or assuming protective windshields. (c) Optimum reflectivity and emissivity spectrum (solid lines) for a crystalline-silicon PV in comparison with PV’s reflectivity and flat quartz’s emissivity (dashed lines).
Fig. 4.
Fig. 4. (a) Illustrations of a 1D photonic crystal consisting of alternate Al2O3, SiN, SiO2, TiO2 thin-film layers (top structure, in a black rectangle) and a 2D photonic crystal of non-vertical sidewalls in silica (bottom structure, in a red rectangle). (b) Reflectivity spectra of the 1D (black line) and 2D (red line) photonic crystals in comparison with the conventional case (flat fused quartz - green line) and (c) their emissivity spectra over the thermal wavelength range in mid-IR. Data are extracted from Refs. [12,15,24]. (d) Average emissivity between 8 and 13 µm (the atmospheric transparency window) plotted as a function of polar angle of incidence, for the 1D (black line) and 2D (red line) photonic crystal in comparison with the conventional (green line) and the ideal case, i.e., an overall ideal photonic cooler and not just an ideal thermal emitter (blue line).
Fig. 5.
Fig. 5. (a) Nonradiative and radiative recombination current density (Jrec) vs. applied voltage and the (b) current density vs. applied voltage of two PVs that incorporate a 1D photonic crystal (see top structure of Fig. 4(a) and a 2D photonic crystal (see bottom structure of Fig. 4(a) in comparison with the conventional PV (green line) and the ideal case assuming an overall ideal photonic cooler and not just an ideal thermal emitter (blue line). The squares in (a) denote the nonradiative (Auger) recombination current density at the maximum operating power point, Vmp, of the solar cell. (c) Electrical power output and the (d) operating temperature of the device vs. applied voltage for each case. Both (c) and (d) are calculated for the steady-state Pnet,cool(V, T) = 0.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

J ( V , T ) = J 0 ( T ) ( e q V k B T 1 ) + J A ( V , T ) J S C ,
J S C = q 0.28 1.107 a c e l l ( λ ) Φ A M 1.5 G ( λ ) d λ ,
J 0 ( T ) = q 0.28 1.107 a c e l l ( λ ) Φ B B ( T , λ ) d λ ,
J A ( V , T ) = q 2 A r ( T ) n i 3 ( T ) e ( 3 q V 2 k B T ) W ,
η = P e l e , max P i n c = J S C V O C F F P i n c = J m p V m p P i n c ,
P n e t , c o o l ( V , T ) = P r a d , c o o l e r ( T ) P a t m ( T a m b ) + P c o n d + c o n v ( T a m b , T ) P s o l a r , h e a t ( V , T ) ,
P s o l a r , h e a t ( V , T ) = P s u n P e l e , max ( V , T ) P r a d , c e l l ( V , T ) ,
Φ B B ( T , λ ) = ( 2 π c λ 4 ) 1 e h c λ k B T 1 ,
φ B B = ( 2 h c 2 λ 5 ) 1 e h c λ k B T 1 ,
P r a d , c o o l e r ( T ) = d Ω cos θ 0 φ B B ( T , λ ) ε ( λ , θ ) d λ ,
P a t m ( T a m b ) = d Ω cos θ 0 φ B B ( λ , T a m b ) a ( λ , θ ) ε a t m ( λ , θ ) d λ ,
P s u n = 0 a c e l l ( λ , θ s u n ) φ A M 1.5 G ( λ ) cos θ s u n d λ ,
P r a d , c e l l ( T ) = d Ω cos θ 0.28 1.107 φ ( λ , T , q V m p ) ε c e l l ( λ ) d λ ,
φ ( V , T , λ ) = φ B B ( T , λ ) e q V k B T ,

Metrics