Abstract

In this study, the optical properties of a meta-GMR consisting of a metasurface stacked on a planar dielectric slab waveguide were theoretically investigated. Two different metasurfaces, namely chiral split-ring resonator dimer arrays with/without a rod-shaped antenna, were investigated and compared. Conventional GMR filters utilize gratings to couple the free-space electromagnetic field to the waveguide. The highly dispersive nature of grating leads to low angular tolerance. Here, the grating is replaced by metasurfaces. The metasurface unit cell can be regarded as a polarizable dipole that couples the free-space electromagnetic field to the waveguide and decouples the waveguide mode to the radiation modes. Based on the localized nature of the resonant metasurfaces, the metasurface/GMR hybrid mode exhibits a superior angular tolerance as compared with a conventional GMR filter. This study can open a new avenue to tailor the optical properties of GMR-based devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref]
  2. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am., 68(9), 1206−1210 (1978)
    [Crossref]
  3. V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Sov. J. Quantum Electron. 10(2), 186–189 (1980).
    [Crossref]
  4. S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
    [Crossref]
  5. S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B176, 1197−1203 (2013)
    [Crossref]
  6. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [Crossref]
  7. A. L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett. 32(15), 2269–2271 (2007).
    [Crossref]
  8. C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-Based Guided-Mode Resonance Filter on a Microoptical Bench,” Electron. Lett. 40(21), 1335–1336 (2004).
    [Crossref]
  9. P. G. Hermannsson, C. Vannahme, C. L. C. Smith, and A. Kristensen, “Absolute analytical prediction of photonic crystal guided mode resonance wavelengths,” Appl. Phys. Lett. 105(7), 071103 (2014).
    [Crossref]
  10. D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
    [Crossref]
  11. L. P. Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface,” arXiv:1807.11592 (2018) [ https://arxiv.org/pdf/1807.11592.pdf ]
  12. J. R. Guerci, T. Driscoll, R. Hannigan, S. Ebadi, C. Tegreene, and D. R. Smith, “Next generation affordable smart antennas,” Microwave Journal 57, 24–40 (2014).
  13. M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63(4), 1881–1886 (2015).
    [Crossref]
  14. M. C. Johnson, P. Bowen, N. Kundtz, and A. Biley, “Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna,” Appl. Opt. 53(25), 5791–5799 (2014).
    [Crossref]
  15. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
    [Crossref]
  16. O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
    [Crossref]
  17. J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
    [Crossref]
  18. D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
    [Crossref]
  19. O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface aperture for dynamic focusing in the Fresnel zone,” IEEE Access 5, 15055–15065 (2017).
    [Crossref]
  20. A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active Control over the Interplay between the Dark and Hidden Sides of Plasmonics Using Metallodielectric Au−Ge2Sb2Te5 Unit Cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
    [Crossref]
  21. S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
    [Crossref]
  22. Y. L. Tsai, J. Y. Chang, M. L. Wu, Z. R. Tu, C. C. Lee, C. M. Wang, and C. L. Hsu, “Enhancing the resonance quality factor in membrane-type resonant grating-waveguide,” Opt. Lett. 35(24), 4199–4201 (2010).
    [Crossref]
  23. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref]
  24. N. I. Zheludev, “Obtaining optical properties on demand,” Science 348(6238), 973–974 (2015).
    [Crossref]
  25. A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden Sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
    [Crossref]
  26. Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
    [Crossref]

2017 (6)

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface aperture for dynamic focusing in the Fresnel zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active Control over the Interplay between the Dark and Hidden Sides of Plasmonics Using Metallodielectric Au−Ge2Sb2Te5 Unit Cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden Sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

2016 (2)

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref]

2015 (2)

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63(4), 1881–1886 (2015).
[Crossref]

N. I. Zheludev, “Obtaining optical properties on demand,” Science 348(6238), 973–974 (2015).
[Crossref]

2014 (4)

M. C. Johnson, P. Bowen, N. Kundtz, and A. Biley, “Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna,” Appl. Opt. 53(25), 5791–5799 (2014).
[Crossref]

P. G. Hermannsson, C. Vannahme, C. L. C. Smith, and A. Kristensen, “Absolute analytical prediction of photonic crystal guided mode resonance wavelengths,” Appl. Phys. Lett. 105(7), 071103 (2014).
[Crossref]

J. R. Guerci, T. Driscoll, R. Hannigan, S. Ebadi, C. Tegreene, and D. R. Smith, “Next generation affordable smart antennas,” Microwave Journal 57, 24–40 (2014).

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
[Crossref]

2013 (1)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
[Crossref]

2012 (1)

2010 (1)

2007 (1)

2004 (2)

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-Based Guided-Mode Resonance Filter on a Microoptical Bench,” Electron. Lett. 40(21), 1335–1336 (2004).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

1993 (1)

1980 (1)

V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Sov. J. Quantum Electron. 10(2), 186–189 (1980).
[Crossref]

Ahmadivand, A.

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active Control over the Interplay between the Dark and Hidden Sides of Plasmonics Using Metallodielectric Au−Ge2Sb2Te5 Unit Cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden Sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

Arnitz, D.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Biley, A.

Bowen, P.

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

M. C. Johnson, P. Bowen, N. Kundtz, and A. Biley, “Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna,” Appl. Opt. 53(25), 5791–5799 (2014).
[Crossref]

Bowen, P. T.

L. P. Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface,” arXiv:1807.11592 (2018) [ https://arxiv.org/pdf/1807.11592.pdf ]

Boyarsky, M.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Boyko, O.

Brady, D.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
[Crossref]

Brunton, S. L.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63(4), 1881–1886 (2015).
[Crossref]

Chang, F. C.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
[Crossref]

Chang, J. Y.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

Y. L. Tsai, J. Y. Chang, M. L. Wu, Z. R. Tu, C. C. Lee, C. M. Wang, and C. L. Hsu, “Enhancing the resonance quality factor in membrane-type resonant grating-waveguide,” Opt. Lett. 35(24), 4199–4201 (2010).
[Crossref]

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-Based Guided-Mode Resonance Filter on a Microoptical Bench,” Electron. Lett. 40(21), 1335–1336 (2004).
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B176, 1197−1203 (2013)
[Crossref]

Chen, W. Y.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B176, 1197−1203 (2013)
[Crossref]

Chen, Z. H.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
[Crossref]

Ding, T. J.

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B176, 1197−1203 (2013)
[Crossref]

Driscoll, T.

J. R. Guerci, T. Driscoll, R. Hannigan, S. Ebadi, C. Tegreene, and D. R. Smith, “Next generation affordable smart antennas,” Microwave Journal 57, 24–40 (2014).

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
[Crossref]

Ebadi, S.

J. R. Guerci, T. Driscoll, R. Hannigan, S. Ebadi, C. Tegreene, and D. R. Smith, “Next generation affordable smart antennas,” Microwave Journal 57, 24–40 (2014).

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Fehrembach, A. L.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Gerislioglu, B.

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active Control over the Interplay between the Dark and Hidden Sides of Plasmonics Using Metallodielectric Au−Ge2Sb2Te5 Unit Cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden Sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Gollub, J.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Gollub, J. N.

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface aperture for dynamic focusing in the Fresnel zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref]

Gowda, V. R.

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

Guerci, J. R.

J. R. Guerci, T. Driscoll, R. Hannigan, S. Ebadi, C. Tegreene, and D. R. Smith, “Next generation affordable smart antennas,” Microwave Journal 57, 24–40 (2014).

Hannigan, R.

J. R. Guerci, T. Driscoll, R. Hannigan, S. Ebadi, C. Tegreene, and D. R. Smith, “Next generation affordable smart antennas,” Microwave Journal 57, 24–40 (2014).

Hermannsson, P. G.

P. G. Hermannsson, C. Vannahme, C. L. C. Smith, and A. Kristensen, “Absolute analytical prediction of photonic crystal guided mode resonance wavelengths,” Appl. Phys. Lett. 105(7), 071103 (2014).
[Crossref]

Hsu, C. L.

Y. L. Tsai, J. Y. Chang, M. L. Wu, Z. R. Tu, C. C. Lee, C. M. Wang, and C. L. Hsu, “Enhancing the resonance quality factor in membrane-type resonant grating-waveguide,” Opt. Lett. 35(24), 4199–4201 (2010).
[Crossref]

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-Based Guided-Mode Resonance Filter on a Microoptical Bench,” Electron. Lett. 40(21), 1335–1336 (2004).
[Crossref]

Hunt, J.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
[Crossref]

Imani, M.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Imani, M. F.

L. P. Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface,” arXiv:1807.11592 (2018) [ https://arxiv.org/pdf/1807.11592.pdf ]

Johnson, M. C.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63(4), 1881–1886 (2015).
[Crossref]

M. C. Johnson, P. Bowen, N. Kundtz, and A. Biley, “Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna,” Appl. Opt. 53(25), 5791–5799 (2014).
[Crossref]

Knop, K.

K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am., 68(9), 1206−1210 (1978)
[Crossref]

Kristensen, A.

P. G. Hermannsson, C. Vannahme, C. L. C. Smith, and A. Kristensen, “Absolute analytical prediction of photonic crystal guided mode resonance wavelengths,” Appl. Phys. Lett. 105(7), 071103 (2014).
[Crossref]

Kundtz, N.

M. C. Johnson, P. Bowen, N. Kundtz, and A. Biley, “Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna,” Appl. Opt. 53(25), 5791–5799 (2014).
[Crossref]

L. P. Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface,” arXiv:1807.11592 (2018) [ https://arxiv.org/pdf/1807.11592.pdf ]

Kundtz, N. B.

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63(4), 1881–1886 (2015).
[Crossref]

Kutz, J. N.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63(4), 1881–1886 (2015).
[Crossref]

Larouche, S.

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

Lee, C. C.

Y. L. Tsai, J. Y. Chang, M. L. Wu, Z. R. Tu, C. C. Lee, C. M. Wang, and C. L. Hsu, “Enhancing the resonance quality factor in membrane-type resonant grating-waveguide,” Opt. Lett. 35(24), 4199–4201 (2010).
[Crossref]

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-Based Guided-Mode Resonance Filter on a Microoptical Bench,” Electron. Lett. 40(21), 1335–1336 (2004).
[Crossref]

Lemarchand, F.

Lin, S. F.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B176, 1197−1203 (2013)
[Crossref]

Lipworth, G.

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
[Crossref]

Magnusson, R.

Mancera, L. P.

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

L. P. Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface,” arXiv:1807.11592 (2018) [ https://arxiv.org/pdf/1807.11592.pdf ]

Marks, D. L.

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface aperture for dynamic focusing in the Fresnel zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref]

Mrozack, A.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
[Crossref]

Odabasi, H.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Pala, N.

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden Sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active Control over the Interplay between the Dark and Hidden Sides of Plasmonics Using Metallodielectric Au−Ge2Sb2Te5 Unit Cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

Pedross-Engel, A.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
[Crossref]

Reynolds, M. S.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Rose, A.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Sentenac, A.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Sleasman, T.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Smith, C. L. C.

P. G. Hermannsson, C. Vannahme, C. L. C. Smith, and A. Kristensen, “Absolute analytical prediction of photonic crystal guided mode resonance wavelengths,” Appl. Phys. Lett. 105(7), 071103 (2014).
[Crossref]

Smith, D. R.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface aperture for dynamic focusing in the Fresnel zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref]

J. R. Guerci, T. Driscoll, R. Hannigan, S. Ebadi, C. Tegreene, and D. R. Smith, “Next generation affordable smart antennas,” Microwave Journal 57, 24–40 (2014).

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

L. P. Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface,” arXiv:1807.11592 (2018) [ https://arxiv.org/pdf/1807.11592.pdf ]

Sychugov, V. A.

V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Sov. J. Quantum Electron. 10(2), 186–189 (1980).
[Crossref]

Talneau, A.

Tegreene, C.

J. R. Guerci, T. Driscoll, R. Hannigan, S. Ebadi, C. Tegreene, and D. R. Smith, “Next generation affordable smart antennas,” Microwave Journal 57, 24–40 (2014).

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Tishchenko, A. V.

V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Sov. J. Quantum Electron. 10(2), 186–189 (1980).
[Crossref]

Trofatter, K.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Tsai, Y. L.

Tu, Z. R.

Urzhumov, Y.

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

Vannahme, C.

P. G. Hermannsson, C. Vannahme, C. L. C. Smith, and A. Kristensen, “Absolute analytical prediction of photonic crystal guided mode resonance wavelengths,” Appl. Phys. Lett. 105(7), 071103 (2014).
[Crossref]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Wang, C. M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

Y. L. Tsai, J. Y. Chang, M. L. Wu, Z. R. Tu, C. C. Lee, C. M. Wang, and C. L. Hsu, “Enhancing the resonance quality factor in membrane-type resonant grating-waveguide,” Opt. Lett. 35(24), 4199–4201 (2010).
[Crossref]

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-Based Guided-Mode Resonance Filter on a Microoptical Bench,” Electron. Lett. 40(21), 1335–1336 (2004).
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B176, 1197−1203 (2013)
[Crossref]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, S. S.

Wu, M. L.

Yang, J. C.

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-Based Guided-Mode Resonance Filter on a Microoptical Bench,” Electron. Lett. 40(21), 1335–1336 (2004).
[Crossref]

Yang, T. H.

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
[Crossref]

S. F. Lin, C. M. Wang, T. J. Ding, Y. L. Tsai, T. H. Yang, W. Y. Chen, and J. Y. Chang, “Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution,” Opt. Express 20(13), 14584–14595 (2012).
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B176, 1197−1203 (2013)
[Crossref]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Yurduseven, O.

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface aperture for dynamic focusing in the Fresnel zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref]

Zhang, X.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

N. I. Zheludev, “Obtaining optical properties on demand,” Science 348(6238), 973–974 (2015).
[Crossref]

Zvolensky, T.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. G. Hermannsson, C. Vannahme, C. L. C. Smith, and A. Kristensen, “Absolute analytical prediction of photonic crystal guided mode resonance wavelengths,” Appl. Phys. Lett. 105(7), 071103 (2014).
[Crossref]

Electron. Lett. (1)

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-Based Guided-Mode Resonance Filter on a Microoptical Bench,” Electron. Lett. 40(21), 1335–1336 (2004).
[Crossref]

IEEE Access (1)

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface aperture for dynamic focusing in the Fresnel zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63(4), 1881–1886 (2015).
[Crossref]

J. Appl. Phys. (1)

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

J. Phys. Chem. C (2)

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active Control over the Interplay between the Dark and Hidden Sides of Plasmonics Using Metallodielectric Au−Ge2Sb2Te5 Unit Cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Active control over the interplay between the dark and hidden Sides of plasmonics using metallodielectric Au-Ge2Sb2Te5 unit cells,” J. Phys. Chem. C 121(36), 19966–19974 (2017).
[Crossref]

Microwave Journal (1)

J. R. Guerci, T. Driscoll, R. Hannigan, S. Ebadi, C. Tegreene, and D. R. Smith, “Next generation affordable smart antennas,” Microwave Journal 57, 24–40 (2014).

Nat. Photonics (1)

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable photonic devices,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Appl. (1)

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

Sci. Rep. (1)

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7(1), 42650 (2017).
[Crossref]

Science (3)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial Apertures for Computational Imaging,” Science 339(6117), 310–313 (2013).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

N. I. Zheludev, “Obtaining optical properties on demand,” Science 348(6238), 973–974 (2015).
[Crossref]

Sensors (1)

S. F. Lin, F. C. Chang, Z. H. Chen, C. M. Wang, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors 14(3), 5198–5206 (2014).
[Crossref]

Sov. J. Quantum Electron. (1)

V. A. Sychugov and A. V. Tishchenko, “Light emission from a corrugated dielectric waveguide,” Sov. J. Quantum Electron. 10(2), 186–189 (1980).
[Crossref]

Other (3)

K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am., 68(9), 1206−1210 (1978)
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators, B176, 1197−1203 (2013)
[Crossref]

L. P. Mancera, M. F. Imani, P. T. Bowen, N. Kundtz, and D. R. Smith, “Analytical Modeling of a Two-Dimensional Waveguide-Fed Metasurface,” arXiv:1807.11592 (2018) [ https://arxiv.org/pdf/1807.11592.pdf ]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the meta-GMR with a rod-shaped antenna, which is essentially a waveguide-fed metasurface consisting of chiral split-ring resonators (SRRs) and a rod-shaped antenna on a SiO2 planar waveguide.
Fig. 2.
Fig. 2. (a) Reflection spectrum of a weakly modulated GMR as a function of the waveguide thickness and wavelength. (b) Reflection spectrum of the proposed meta-GMR with a rod-shaped antenna as a function of the waveguide thickness and wavelength with the following parameters: LSRR = 0.7 µm, LR = 1.6 µm, LS = 0.25 µm, WSRR = 0.5 µm, WR = 0.125 µm, and WS = 0.2 µm.
Fig. 3.
Fig. 3. (a) Normalized reflection, transmission and absorption of the proposed meta-GMR structure consisting of two chiral SRRs and a rod-shaped antenna. For reference, the reflection of a single rod on a glass substrate is also shown. (b) Localized E-field maps and magnetic line of the metasurface/GMR hybrid mode at λ = 2.9 µm.
Fig. 4.
Fig. 4. (a) Angular tolerance analysis of the meta-GMR with a rod-shaped antenna. (b) Conceptual illustration of the metasurface/GMR hybrid mode in the photonic stop band.
Fig. 5.
Fig. 5. Conceptual diagram of the resonance process of the meta-GMR consisting of two chiral SRRs. The geometric parameters are identical to those of the structure shown in Fig. 1, except that the rod was absent in this case.
Fig. 6.
Fig. 6. Normalized reflection, transmission, and absorption of the proposed meta-GMR structure without a rod-shaped antenna (b) Localized E-field maps and magnetic line of the metasurface/GMR hybrid mode at λ = 2.9 µm.
Fig. 7.
Fig. 7. (a) Angular tolerance analysis of the meta-GMR without a rod-shaped antenna. (b) Center wavelength and transmittance of the meta-GMR without a rod-shaped antenna as a function of the incident angle from 0° to 15°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 h β tan ( 90 θ ) = 2 π n + φ 1  +  φ 2
k 0 n w sin θ = m 2 π Λ x
Δ λ = λ θ i λ 0 λ 0

Metrics