C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121(24), 243902 (2018).

[Crossref]

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121(24), 243902 (2018).

[Crossref]

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5(7), 803–813 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4(9), 1117–1125 (2017).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative models,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70 (JMLR.org, 2017), pp. 537–546.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13(4), 600–612 (2004).

[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).

[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).

[Crossref]

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc., A 375(2099), 20160233 (2017).

[Crossref]

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).

[Crossref]

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).

[Crossref]

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

S. Li, F. Cropp, K. Kabra, T. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121(11), 114801 (2018).

[Crossref]

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).

[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).

[Crossref]

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative models,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70 (JMLR.org, 2017), pp. 537–546.

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds. (Springer, 2014), pp. 184–199.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).

[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).

[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).

[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).

[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).

[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121(24), 243902 (2018).

[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

C. Hu, Z. Tong, Z. Liu, Z. Huang, J. Wang, and S. Han, “Optimization of light fields in ghost imaging using dictionary learning,” Opt. Express 27(20), 28734–28749 (2019).

[Crossref]

R. Zhu, H. Yu, R. Lu, Z. Tan, and S. Han, “Spatial multiplexing reconstruction for fourier-transform ghost imaging via sparsity constraints,” Opt. Express 26(3), 2181–2190 (2018).

[Crossref]

Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. Han, “Spectral camera based on ghost imaging via sparsity constraints,” Sci. Rep. 6(1), 25718 (2016).

[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).

[Crossref]

H. Yu, E. Li, W. Gong, and S. Han, “Structured image reconstruction for three-dimensional ghost imaging lidar,” Opt. Express 23(11), 14541–14551 (2015).

[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).

[Crossref]

N. D. Hardy and J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A 87(2), 023820 (2013).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds. (Springer, 2014), pp. 184–199.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).

[Crossref]

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).

[Crossref]

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).

[Crossref]

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

C. Işil, F. S. Oktem, and A. Koç, “Deep learning-based hybrid approach for phase retrieval,” in Computational Optical Sensing and Imaging (Optical Society of America, 2019), pp. CTh2C–5.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative models,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70 (JMLR.org, 2017), pp. 537–546.

T. M. Quan, T. Nguyen-Duc, and W.-K. Jeong, “Compressed sensing mri reconstruction using a generative adversarial network with a cyclic loss,” IEEE Trans. Med. Imaging 37(6), 1488–1497 (2018).

[Crossref]

S. Li, F. Cropp, K. Kabra, T. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121(11), 114801 (2018).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).

[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).

[Crossref]

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).

[Crossref]

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” Stat 1050, 1 (2014).

C. Işil, F. S. Oktem, and A. Koç, “Deep learning-based hybrid approach for phase retrieval,” in Computational Optical Sensing and Imaging (Optical Society of America, 2019), pp. CTh2C–5.

S. Li, F. Cropp, K. Kabra, T. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121(11), 114801 (2018).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5(7), 803–813 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4(9), 1117–1125 (2017).

[Crossref]

Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. Han, “Spectral camera based on ghost imaging via sparsity constraints,” Sci. Rep. 6(1), 25718 (2016).

[Crossref]

H. Yu, E. Li, W. Gong, and S. Han, “Structured image reconstruction for three-dimensional ghost imaging lidar,” Opt. Express 23(11), 14541–14551 (2015).

[Crossref]

F. Wang, H. Wang, H. Wang, G. Li, and G. Situ, “Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging,” Opt. Express 27(18), 25560–25572 (2019).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

D.-J. Zhang, H.-G. Li, Q.-L. Zhao, S. Wang, H.-B. Wang, J. Xiong, and K. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).

[Crossref]

S. Li, F. Cropp, K. Kabra, T. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121(11), 114801 (2018).

[Crossref]

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5(7), 803–813 (2018).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121(24), 243902 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4(9), 1117–1125 (2017).

[Crossref]

Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5(10), 1181–1190 (2018).

[Crossref]

T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah, “Deep learning approach for fourier ptychography microscopy,” Opt. Express 26(20), 26470–26484 (2018).

[Crossref]

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8(1), 5012 (2018).

[Crossref]

C. Hu, Z. Tong, Z. Liu, Z. Huang, J. Wang, and S. Han, “Optimization of light fields in ghost imaging using dictionary learning,” Opt. Express 27(20), 28734–28749 (2019).

[Crossref]

Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. Han, “Spectral camera based on ghost imaging via sparsity constraints,” Sci. Rep. 6(1), 25718 (2016).

[Crossref]

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds. (Springer, 2014), pp. 184–199.

R. Zhu, H. Yu, R. Lu, Z. Tan, and S. Han, “Spatial multiplexing reconstruction for fourier-transform ghost imaging via sparsity constraints,” Opt. Express 26(3), 2181–2190 (2018).

[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).

[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).

[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).

[Crossref]

S. Li, F. Cropp, K. Kabra, T. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121(11), 114801 (2018).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

T. M. Quan, T. Nguyen-Duc, and W.-K. Jeong, “Compressed sensing mri reconstruction using a generative adversarial network with a cyclic loss,” IEEE Trans. Med. Imaging 37(6), 1488–1497 (2018).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

C. Işil, F. S. Oktem, and A. Koç, “Deep learning-based hybrid approach for phase retrieval,” in Computational Optical Sensing and Imaging (Optical Society of America, 2019), pp. CTh2C–5.

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).

[Crossref]

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philos. Trans. R. Soc., A 375(2099), 20160233 (2017).

[Crossref]

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).

[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).

[Crossref]

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).

[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).

[Crossref]

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative models,” in Proceedings of the 34th International Conference on Machine Learning - Volume 70 (JMLR.org, 2017), pp. 537–546.

T. M. Quan, T. Nguyen-Duc, and W.-K. Jeong, “Compressed sensing mri reconstruction using a generative adversarial network with a cyclic loss,” IEEE Trans. Med. Imaging 37(6), 1488–1497 (2018).

[Crossref]

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).

[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).

[Crossref]

S. Li, F. Cropp, K. Kabra, T. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121(11), 114801 (2018).

[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).

[Crossref]

S. Roweis https://cs.nyu.edu/~roweis/data.html .

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

S. Suresh, N. Sundararajan, and P. Saratchandran, “Risk-sensitive loss functions for sparse multi-category classification problems,” Inf. Sci. 178(12), 2621–2638 (2008).

[Crossref]

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

N. D. Hardy and J. H. Shapiro, “Computational ghost imaging versus imaging laser radar for three-dimensional imaging,” Phys. Rev. A 87(2), 023820 (2013).

[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13(4), 600–612 (2004).

[Crossref]

Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. Han, “Spectral camera based on ghost imaging via sparsity constraints,” Sci. Rep. 6(1), 25718 (2016).

[Crossref]

L. Sun, J. Shi, X. Wu, Y. Sun, and G. Zeng, “Photon-limited imaging through scattering medium based on deep learning,” Opt. Express 27(23), 33120–33134 (2019).

[Crossref]

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8(1), 5012 (2018).

[Crossref]

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).

[Crossref]

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13(4), 600–612 (2004).

[Crossref]

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5(7), 803–813 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4(9), 1117–1125 (2017).

[Crossref]

F. Wang, H. Wang, H. Wang, G. Li, and G. Situ, “Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging,” Opt. Express 27(18), 25560–25572 (2019).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).

[Crossref]

L. Sun, J. Shi, X. Wu, Y. Sun, and G. Zeng, “Photon-limited imaging through scattering medium based on deep learning,” Opt. Express 27(23), 33120–33134 (2019).

[Crossref]

Y. Sun, Z. Xia, and U. S. Kamilov, “Efficient and accurate inversion of multiple scattering with deep learning,” Opt. Express 26(11), 14678–14688 (2018).

[Crossref]

S. Suresh, N. Sundararajan, and P. Saratchandran, “Risk-sensitive loss functions for sparse multi-category classification problems,” Inf. Sci. 178(12), 2621–2638 (2008).

[Crossref]

S. Suresh, N. Sundararajan, and P. Saratchandran, “Risk-sensitive loss functions for sparse multi-category classification problems,” Inf. Sci. 178(12), 2621–2638 (2008).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. Han, “Spectral camera based on ghost imaging via sparsity constraints,” Sci. Rep. 6(1), 25718 (2016).

[Crossref]

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds. (Springer, 2014), pp. 184–199.

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5(10), 1181–1190 (2018).

[Crossref]

T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah, “Deep learning approach for fourier ptychography microscopy,” Opt. Express 26(20), 26470–26484 (2018).

[Crossref]

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

R. I. Khakimov, B. Henson, D. Shin, S. Hodgman, R. Dall, K. Baldwin, and A. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

F. Wang, H. Wang, H. Wang, G. Li, and G. Situ, “Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging,” Opt. Express 27(18), 25560–25572 (2019).

[Crossref]

F. Wang, H. Wang, H. Wang, G. Li, and G. Situ, “Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging,” Opt. Express 27(18), 25560–25572 (2019).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

D.-J. Zhang, H.-G. Li, Q.-L. Zhao, S. Wang, H.-B. Wang, J. Xiong, and K. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).

[Crossref]

D.-J. Zhang, H.-G. Li, Q.-L. Zhao, S. Wang, H.-B. Wang, J. Xiong, and K. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).

[Crossref]

D.-J. Zhang, H.-G. Li, Q.-L. Zhao, S. Wang, H.-B. Wang, J. Xiong, and K. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13(4), 600–612 (2004).

[Crossref]

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, (IEEE, 2017), pp. 4681–4690.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” Stat 1050, 1 (2014).

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

S. Li, F. Cropp, K. Kabra, T. Lane, G. Wetzstein, P. Musumeci, and D. Ratner, “Electron ghost imaging,” Phys. Rev. Lett. 121(11), 114801 (2018).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. Han, “Spectral camera based on ghost imaging via sparsity constraints,” Sci. Rep. 6(1), 25718 (2016).

[Crossref]

A.-X. Zhang, Y.-H. He, L.-A. Wu, L.-M. Chen, and B.-B. Wang, “Tabletop x-ray ghost imaging with ultra-low radiation,” Optica 5(4), 374–377 (2018).

[Crossref]

W.-K. Yu, M.-F. Li, X.-R. Yao, X.-F. Liu, L.-A. Wu, and G.-J. Zhai, “Adaptive compressive ghost imaging based on wavelet trees and sparse representation,” Opt. Express 22(6), 7133–7144 (2014).

[Crossref]

L. Sun, J. Shi, X. Wu, Y. Sun, and G. Zeng, “Photon-limited imaging through scattering medium based on deep learning,” Opt. Express 27(23), 33120–33134 (2019).

[Crossref]

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8(1), 5012 (2018).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).

[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).

[Crossref]

D.-J. Zhang, H.-G. Li, Q.-L. Zhao, S. Wang, H.-B. Wang, J. Xiong, and K. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).

[Crossref]

Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5(10), 1181–1190 (2018).

[Crossref]

T. Nguyen, Y. Xue, Y. Li, L. Tian, and G. Nehmetallah, “Deep learning approach for fourier ptychography microscopy,” Opt. Express 26(20), 26470–26484 (2018).

[Crossref]

R. Zhu, H. Yu, R. Lu, Z. Tan, and S. Han, “Spatial multiplexing reconstruction for fourier-transform ghost imaging via sparsity constraints,” Opt. Express 26(3), 2181–2190 (2018).

[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).

[Crossref]

H. Yu, E. Li, W. Gong, and S. Han, “Structured image reconstruction for three-dimensional ghost imaging lidar,” Opt. Express 23(11), 14541–14551 (2015).

[Crossref]

R. Schneider, T. Mehringer, G. Mercurio, L. Wenthaus, A. Classen, G. Brenner, O. Gorobtsov, A. Benz, D. Bhatti, L. Bocklage, B. Fishcher, S. Lazarev, Y. Obukhov, K. Scblage, P. Skopintsev, J. Wagner, F. Waldmann, S. Willing, I. Zakyzhnyy, W. Wurth, R. A. Vartanyants Ivan, and Röhlsberger von Zanthier Joachim, “Quantum imaging with incoherently scattered light from a free-electron laser,” Nat. Phys. 14(2), 126–129 (2018).

[Crossref]

L. Sun, J. Shi, X. Wu, Y. Sun, and G. Zeng, “Photon-limited imaging through scattering medium based on deep learning,” Opt. Express 27(23), 33120–33134 (2019).

[Crossref]

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8(1), 5012 (2018).

[Crossref]

P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84(6), 061804 (2011).

[Crossref]

D.-J. Zhang, H.-G. Li, Q.-L. Zhao, S. Wang, H.-B. Wang, J. Xiong, and K. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).

[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

D.-J. Zhang, H.-G. Li, Q.-L. Zhao, S. Wang, H.-B. Wang, J. Xiong, and K. Wang, “Wavelength-multiplexing ghost imaging,” Phys. Rev. A 92(1), 013823 (2015).

[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard x rays,” Phys. Rev. Lett. 117(11), 113901 (2016).

[Crossref]