Abstract

The human visual system adapts to changes in white tone of the illumination to maintain approximately the same object color appearance. Chromatic adaptation transforms (CAT) were developed to predict corresponding colors, which are colors that look the same under a wide range of illuminants. However, existing CATs fail to accurately predict corresponding colors, particularly under colored illumination, because of an inaccurate estimation of the degree of adaptation. In this study, the impact of the adapting field size on the degree of adaptation was investigated. A memory color matching experiment was conducted, in a real scene, with the background adapting field varying in the field of view, luminance and chromaticity to provide data for the development of a more comprehensive CAT. Results show that a larger field of view leads to a more complete adaptation, despite a much lower background luminance.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Luo, “A review of chromatic adaptation,” Rev. Prog. Color. Relat. Top. 30(1), 77–92 (2008).
    [Crossref]
  2. Commission Internationale de l’Eclairage, “CIE 160:2004 A Review of Chromatic Adaptation Transforms,” (2004).
  3. M. D. Fairchild, Color Appearance Models, Second edi (John Wiley & Sons, 2005).
  4. N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” IS&T/SID Tenth Color Imaging Conf.23–27 (2002).
  5. J. von Kries, “Chromatic adaptation,” Festschrift der Albrecht-Ludwigs-Universität145–158 (1902).
  6. H. Helson, D. B. Judd, and M. H. Warren, “Object-Color Changes From Daylight to Incandescent Filament Illumination,” J. Opt. Soc. Am. 42(6), 435 (1952).
    [Crossref]
  7. Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
    [Crossref]
  8. Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform.pdf,” Color Res. Appl. 15(4), 210–221 (1990).
    [Crossref]
  9. C. J. Bartleson, “Predicting corresponding colors with changes in adaptation,” Color Res. Appl. 4(3), 143–155 (1979).
    [Crossref]
  10. C. J. Bartleson, “Changes in color appearance with variations in chromatic adaptation,” Color Res. Appl. 4(3), 119–138 (1979).
    [Crossref]
  11. H. Li, M. Ronnier Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
    [Crossref]
  12. C. J. Li, M. R. Luo, and R. W. G. Hunt, “A Revision of the CIECAM97s Model,” Color Res. Appl. 25(4), 260–266 (2000).
    [Crossref]
  13. R. W. G. Hunt, C. J. Li, L. Y. Juan, and M. R. Luo, “Further improvements to CIECAM97s,” Color Res. Appl. 27(3), 164–170 (2002).
    [Crossref]
  14. C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
    [Crossref]
  15. C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
    [Crossref]
  16. C. Li, E. Perales, M. R. Luo, and F. Martínez-verdú, “The Problem with CAT02 and Its Correction,” (July), 1–10 (2007).
  17. M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38(3), 188–195 (2013).
    [Crossref]
  18. M. R. Luo and R. W. G. Hunt, “A chromatic adaptation transform and a colour inconstancy index,” Color Res. Appl. 23(3), 154–158 (1998).
    [Crossref]
  19. Commission Internationale de l’Eclairage, “Colour appearance model for colour management systems: CIECAM02,” CIE Publ. 159 (2004).
  20. R. M. Luo, C. Li, R. W. G. Hunt, B. Rigg, and K. J. Smith, “CMC 2002 colour inconstancy index: CMCCON02,” Color. Technol. 119(5), 280–285 (2003).
    [Crossref]
  21. K. A. G. Smet and S. Ma, “Some concerns regarding the CAT16 chromatic adaptation transform,” Color Res. Appl. 45(1), 172–177 (2020).
    [Crossref]
  22. M. D. Fairchild, “Formulation and testing of an incomplete-chromatic-adaptation model,” Color Res. Appl. 16(4), 243–250 (1991).
    [Crossref]
  23. R. W. G. Hunt, “A Model of Colour Vision for Predicting Colour Appearance In Various Viewing Conditions,” Color Res. Appl. 12(6), 297–314 (1987).
    [Crossref]
  24. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part II: colored illuminants,” Opt. Express 25(7), 8350 (2017).
    [Crossref]
  25. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part I: neutral illuminants,” Opt. Express 25(7), 7732 (2017).
    [Crossref]
  26. W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
    [Crossref]
  27. F. Salata, I. Golasi, A. Peña-García, V. Ciancio, and Z. Yousefi, “A first approach to a new index on indoor lighting comfort based on corneal illuminance,” J. Daylighting 6(2), 124–130 (2019).
    [Crossref]
  28. K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
    [Crossref]
  29. A. G. S. Kevin, D. Geert, and H. Peter, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
    [Crossref]
  30. Q. Zhai and M. R. Luo, “Study of chromatic adaptation via neutral white matches on different viewing media,” Opt. Express 26(6), 7724 (2018).
    [Crossref]
  31. J. A. S. Kinney, “FACTORS AFFECTING INDUCED COLOR,” Vision Res. 2(12), 503–525 (1962).
    [Crossref]
  32. A. Valberg, “Color induction: Dependence on luminance, purity, and dominant or complementary wavelength of inducing stimuli,” J. Opt. Soc. Am. 64(11), 1531 (1974).
    [Crossref]
  33. K. T. Blackwell and G. Buchsbaum, “The effect of spatial and chromatic parameters on chromatic induction,” Color Res. Appl. 13(3), 166–173 (1988).
    [Crossref]
  34. E. Miyahara, V. C. Smith, and J. Pokorny, “The consequences of opponent rectification: The effect of surround size and luminance on color appearance,” Vision Res. 41(7), 859–871 (2001).
    [Crossref]
  35. I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vision Res. 46(19), 3067–3078 (2006).
    [Crossref]
  36. M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants.pdf,” Vision Res. 32(11), 2077–2085 (1992).
    [Crossref]
  37. International Commission on Illumination, CIE 015:2018 Colorimetry (2018).
  38. Commission Internationale de l’Eclairage, Colorimetry–Part 5: CIE 1976 L* U* v* Colour Space and u’, v’uniform Chromaticity Scale Diagram (2011).
  39. O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation,” Vision Res. 40(14), 1813–1826 (2000).
    [Crossref]
  40. M. D. Fairchild and L. Reniff, “Time-course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
    [Crossref]
  41. F. W. Billmeyer and P. J. Alessi, “Assessment of Color-Measuring Instruments,” Color Res. Appl. 6(4), 195–202 (1981).
    [Crossref]
  42. J. Baudin, J. M. Angueyra, R. Sinha, and F. Rieke, “S-cone photoreceptors in the primate retina are functionally distinct from L and M cones,” eLife 8, 1–22 (2019).
    [Crossref]
  43. A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31(2), 189–208 (1991).
    [Crossref]
  44. A. Stockman and L. T. Sharpe, “Human short-wavelength-sensitive cone light adaptation,” J. Vis. 7(3), 4 (2007).
    [Crossref]
  45. H. E. Smithson and J. D. Mollon, “Is the S-opponent chromatic sub-system sluggish?” Vision Res. 44(25), 2919–2929 (2004).
    [Crossref]
  46. T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
    [Crossref]
  47. J. Golz, “Colour Constancy: Influence of Viewing Behaviour on Grey Settings,” Perception 39(5), 606–619 (2010).
    [Crossref]

2020 (1)

K. A. G. Smet and S. Ma, “Some concerns regarding the CAT16 chromatic adaptation transform,” Color Res. Appl. 45(1), 172–177 (2020).
[Crossref]

2019 (2)

F. Salata, I. Golasi, A. Peña-García, V. Ciancio, and Z. Yousefi, “A first approach to a new index on indoor lighting comfort based on corneal illuminance,” J. Daylighting 6(2), 124–130 (2019).
[Crossref]

J. Baudin, J. M. Angueyra, R. Sinha, and F. Rieke, “S-cone photoreceptors in the primate retina are functionally distinct from L and M cones,” eLife 8, 1–22 (2019).
[Crossref]

2018 (3)

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Q. Zhai and M. R. Luo, “Study of chromatic adaptation via neutral white matches on different viewing media,” Opt. Express 26(6), 7724 (2018).
[Crossref]

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

2017 (3)

2015 (1)

2014 (1)

2013 (1)

M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38(3), 188–195 (2013).
[Crossref]

2010 (1)

J. Golz, “Colour Constancy: Influence of Viewing Behaviour on Grey Settings,” Perception 39(5), 606–619 (2010).
[Crossref]

2008 (1)

M. R. Luo, “A review of chromatic adaptation,” Rev. Prog. Color. Relat. Top. 30(1), 77–92 (2008).
[Crossref]

2007 (2)

A. Stockman and L. T. Sharpe, “Human short-wavelength-sensitive cone light adaptation,” J. Vis. 7(3), 4 (2007).
[Crossref]

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[Crossref]

2006 (1)

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vision Res. 46(19), 3067–3078 (2006).
[Crossref]

2004 (1)

H. E. Smithson and J. D. Mollon, “Is the S-opponent chromatic sub-system sluggish?” Vision Res. 44(25), 2919–2929 (2004).
[Crossref]

2003 (1)

R. M. Luo, C. Li, R. W. G. Hunt, B. Rigg, and K. J. Smith, “CMC 2002 colour inconstancy index: CMCCON02,” Color. Technol. 119(5), 280–285 (2003).
[Crossref]

2002 (3)

H. Li, M. Ronnier Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

R. W. G. Hunt, C. J. Li, L. Y. Juan, and M. R. Luo, “Further improvements to CIECAM97s,” Color Res. Appl. 27(3), 164–170 (2002).
[Crossref]

2001 (1)

E. Miyahara, V. C. Smith, and J. Pokorny, “The consequences of opponent rectification: The effect of surround size and luminance on color appearance,” Vision Res. 41(7), 859–871 (2001).
[Crossref]

2000 (2)

C. J. Li, M. R. Luo, and R. W. G. Hunt, “A Revision of the CIECAM97s Model,” Color Res. Appl. 25(4), 260–266 (2000).
[Crossref]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref]

1998 (1)

M. R. Luo and R. W. G. Hunt, “A chromatic adaptation transform and a colour inconstancy index,” Color Res. Appl. 23(3), 154–158 (1998).
[Crossref]

1995 (1)

1992 (1)

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants.pdf,” Vision Res. 32(11), 2077–2085 (1992).
[Crossref]

1991 (2)

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31(2), 189–208 (1991).
[Crossref]

M. D. Fairchild, “Formulation and testing of an incomplete-chromatic-adaptation model,” Color Res. Appl. 16(4), 243–250 (1991).
[Crossref]

1990 (1)

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform.pdf,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

1988 (1)

K. T. Blackwell and G. Buchsbaum, “The effect of spatial and chromatic parameters on chromatic induction,” Color Res. Appl. 13(3), 166–173 (1988).
[Crossref]

1987 (1)

R. W. G. Hunt, “A Model of Colour Vision for Predicting Colour Appearance In Various Viewing Conditions,” Color Res. Appl. 12(6), 297–314 (1987).
[Crossref]

1981 (1)

F. W. Billmeyer and P. J. Alessi, “Assessment of Color-Measuring Instruments,” Color Res. Appl. 6(4), 195–202 (1981).
[Crossref]

1979 (2)

C. J. Bartleson, “Predicting corresponding colors with changes in adaptation,” Color Res. Appl. 4(3), 143–155 (1979).
[Crossref]

C. J. Bartleson, “Changes in color appearance with variations in chromatic adaptation,” Color Res. Appl. 4(3), 119–138 (1979).
[Crossref]

1974 (1)

1962 (1)

J. A. S. Kinney, “FACTORS AFFECTING INDUCED COLOR,” Vision Res. 2(12), 503–525 (1962).
[Crossref]

1952 (1)

Alessi, P. J.

F. W. Billmeyer and P. J. Alessi, “Assessment of Color-Measuring Instruments,” Color Res. Appl. 6(4), 195–202 (1981).
[Crossref]

Angueyra, J. M.

J. Baudin, J. M. Angueyra, R. Sinha, and F. Rieke, “S-cone photoreceptors in the primate retina are functionally distinct from L and M cones,” eLife 8, 1–22 (2019).
[Crossref]

Bartleson, C. J.

C. J. Bartleson, “Changes in color appearance with variations in chromatic adaptation,” Color Res. Appl. 4(3), 119–138 (1979).
[Crossref]

C. J. Bartleson, “Predicting corresponding colors with changes in adaptation,” Color Res. Appl. 4(3), 143–155 (1979).
[Crossref]

Baudin, J.

J. Baudin, J. M. Angueyra, R. Sinha, and F. Rieke, “S-cone photoreceptors in the primate retina are functionally distinct from L and M cones,” eLife 8, 1–22 (2019).
[Crossref]

Billmeyer, F. W.

F. W. Billmeyer and P. J. Alessi, “Assessment of Color-Measuring Instruments,” Color Res. Appl. 6(4), 195–202 (1981).
[Crossref]

Blackwell, K. T.

K. T. Blackwell and G. Buchsbaum, “The effect of spatial and chromatic parameters on chromatic induction,” Color Res. Appl. 13(3), 166–173 (1988).
[Crossref]

Brill, M. H.

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38(3), 188–195 (2013).
[Crossref]

Buchsbaum, G.

K. T. Blackwell and G. Buchsbaum, “The effect of spatial and chromatic parameters on chromatic induction,” Color Res. Appl. 13(3), 166–173 (1988).
[Crossref]

Cai, W.

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Ciancio, V.

F. Salata, I. Golasi, A. Peña-García, V. Ciancio, and Z. Yousefi, “A first approach to a new index on indoor lighting comfort based on corneal illuminance,” J. Daylighting 6(2), 124–130 (2019).
[Crossref]

Cui, G.

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Dai, Q.

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Daugirdiene, A.

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vision Res. 46(19), 3067–3078 (2006).
[Crossref]

Deconinck, G.

DePriest, D. D.

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31(2), 189–208 (1991).
[Crossref]

Fairchild, M. D.

M. D. Fairchild and L. Reniff, “Time-course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
[Crossref]

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants.pdf,” Vision Res. 32(11), 2077–2085 (1992).
[Crossref]

M. D. Fairchild, “Formulation and testing of an incomplete-chromatic-adaptation model,” Color Res. Appl. 16(4), 243–250 (1991).
[Crossref]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” IS&T/SID Tenth Color Imaging Conf.23–27 (2002).

M. D. Fairchild, Color Appearance Models, Second edi (John Wiley & Sons, 2005).

Geert, D.

Gegenfurtner, K. R.

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[Crossref]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref]

Golasi, I.

F. Salata, I. Golasi, A. Peña-García, V. Ciancio, and Z. Yousefi, “A first approach to a new index on indoor lighting comfort based on corneal illuminance,” J. Daylighting 6(2), 124–130 (2019).
[Crossref]

Golz, J.

J. Golz, “Colour Constancy: Influence of Viewing Behaviour on Grey Settings,” Perception 39(5), 606–619 (2010).
[Crossref]

Hanselaer, P.

Hansen, T.

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[Crossref]

Hao, L.

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Hashimoto, K.

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform.pdf,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

Helson, H.

Huang, Y.

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Hunt, R. W. G.

R. M. Luo, C. Li, R. W. G. Hunt, B. Rigg, and K. J. Smith, “CMC 2002 colour inconstancy index: CMCCON02,” Color. Technol. 119(5), 280–285 (2003).
[Crossref]

H. Li, M. Ronnier Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

R. W. G. Hunt, C. J. Li, L. Y. Juan, and M. R. Luo, “Further improvements to CIECAM97s,” Color Res. Appl. 27(3), 164–170 (2002).
[Crossref]

C. J. Li, M. R. Luo, and R. W. G. Hunt, “A Revision of the CIECAM97s Model,” Color Res. Appl. 25(4), 260–266 (2000).
[Crossref]

M. R. Luo and R. W. G. Hunt, “A chromatic adaptation transform and a colour inconstancy index,” Color Res. Appl. 23(3), 154–158 (1998).
[Crossref]

R. W. G. Hunt, “A Model of Colour Vision for Predicting Colour Appearance In Various Viewing Conditions,” Color Res. Appl. 12(6), 297–314 (1987).
[Crossref]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” IS&T/SID Tenth Color Imaging Conf.23–27 (2002).

Ihara, M.

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

Juan, L. Y.

R. W. G. Hunt, C. J. Li, L. Y. Juan, and M. R. Luo, “Further improvements to CIECAM97s,” Color Res. Appl. 27(3), 164–170 (2002).
[Crossref]

Judd, D. B.

Kevin, A. G. S.

Kinney, J. A. S.

J. A. S. Kinney, “FACTORS AFFECTING INDUCED COLOR,” Vision Res. 2(12), 503–525 (1962).
[Crossref]

Kulikowski, J. J.

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vision Res. 46(19), 3067–3078 (2006).
[Crossref]

Lennie, P.

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants.pdf,” Vision Res. 32(11), 2077–2085 (1992).
[Crossref]

Li, C.

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

R. M. Luo, C. Li, R. W. G. Hunt, B. Rigg, and K. J. Smith, “CMC 2002 colour inconstancy index: CMCCON02,” Color. Technol. 119(5), 280–285 (2003).
[Crossref]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” IS&T/SID Tenth Color Imaging Conf.23–27 (2002).

C. Li, E. Perales, M. R. Luo, and F. Martínez-verdú, “The Problem with CAT02 and Its Correction,” (July), 1–10 (2007).

Li, C. J.

R. W. G. Hunt, C. J. Li, L. Y. Juan, and M. R. Luo, “Further improvements to CIECAM97s,” Color Res. Appl. 27(3), 164–170 (2002).
[Crossref]

C. J. Li, M. R. Luo, and R. W. G. Hunt, “A Revision of the CIECAM97s Model,” Color Res. Appl. 25(4), 260–266 (2000).
[Crossref]

Li, H.

H. Li, M. Ronnier Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

Li, Z.

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Lin, Y.

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Luo, M. R.

Q. Zhai and M. R. Luo, “Study of chromatic adaptation via neutral white matches on different viewing media,” Opt. Express 26(6), 7724 (2018).
[Crossref]

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part II: colored illuminants,” Opt. Express 25(7), 8350 (2017).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part I: neutral illuminants,” Opt. Express 25(7), 7732 (2017).
[Crossref]

M. R. Luo, “A review of chromatic adaptation,” Rev. Prog. Color. Relat. Top. 30(1), 77–92 (2008).
[Crossref]

R. W. G. Hunt, C. J. Li, L. Y. Juan, and M. R. Luo, “Further improvements to CIECAM97s,” Color Res. Appl. 27(3), 164–170 (2002).
[Crossref]

C. J. Li, M. R. Luo, and R. W. G. Hunt, “A Revision of the CIECAM97s Model,” Color Res. Appl. 25(4), 260–266 (2000).
[Crossref]

M. R. Luo and R. W. G. Hunt, “A chromatic adaptation transform and a colour inconstancy index,” Color Res. Appl. 23(3), 154–158 (1998).
[Crossref]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” IS&T/SID Tenth Color Imaging Conf.23–27 (2002).

C. Li, E. Perales, M. R. Luo, and F. Martínez-verdú, “The Problem with CAT02 and Its Correction,” (July), 1–10 (2007).

Luo, R. M.

R. M. Luo, C. Li, R. W. G. Hunt, B. Rigg, and K. J. Smith, “CMC 2002 colour inconstancy index: CMCCON02,” Color. Technol. 119(5), 280–285 (2003).
[Crossref]

Ma, S.

K. A. G. Smet and S. Ma, “Some concerns regarding the CAT16 chromatic adaptation transform,” Color Res. Appl. 45(1), 172–177 (2020).
[Crossref]

MacLeod, D. I. A.

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31(2), 189–208 (1991).
[Crossref]

Mahy, M.

M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38(3), 188–195 (2013).
[Crossref]

Martínez-verdú, F.

C. Li, E. Perales, M. R. Luo, and F. Martínez-verdú, “The Problem with CAT02 and Its Correction,” (July), 1–10 (2007).

Melgosa, M.

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Miyahara, E.

E. Miyahara, V. C. Smith, and J. Pokorny, “The consequences of opponent rectification: The effect of surround size and luminance on color appearance,” Vision Res. 41(7), 859–871 (2001).
[Crossref]

Mollon, J. D.

H. E. Smithson and J. D. Mollon, “Is the S-opponent chromatic sub-system sluggish?” Vision Res. 44(25), 2919–2929 (2004).
[Crossref]

Moroney, N.

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” IS&T/SID Tenth Color Imaging Conf.23–27 (2002).

Murray, I. J.

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vision Res. 46(19), 3067–3078 (2006).
[Crossref]

Nayatani, Y.

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform.pdf,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

Newman, T.

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” IS&T/SID Tenth Color Imaging Conf.23–27 (2002).

Peña-García, A.

F. Salata, I. Golasi, A. Peña-García, V. Ciancio, and Z. Yousefi, “A first approach to a new index on indoor lighting comfort based on corneal illuminance,” J. Daylighting 6(2), 124–130 (2019).
[Crossref]

Perales, E.

C. Li, E. Perales, M. R. Luo, and F. Martínez-verdú, “The Problem with CAT02 and Its Correction,” (July), 1–10 (2007).

Peter, H.

Pointer, M.

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Pokorny, J.

E. Miyahara, V. C. Smith, and J. Pokorny, “The consequences of opponent rectification: The effect of surround size and luminance on color appearance,” Vision Res. 41(7), 859–871 (2001).
[Crossref]

Reniff, L.

Rieke, F.

J. Baudin, J. M. Angueyra, R. Sinha, and F. Rieke, “S-cone photoreceptors in the primate retina are functionally distinct from L and M cones,” eLife 8, 1–22 (2019).
[Crossref]

Rigg, B.

R. M. Luo, C. Li, R. W. G. Hunt, B. Rigg, and K. J. Smith, “CMC 2002 colour inconstancy index: CMCCON02,” Color. Technol. 119(5), 280–285 (2003).
[Crossref]

H. Li, M. Ronnier Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

Rinner, O.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref]

Ronnier Luo, M.

H. Li, M. Ronnier Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

Salata, F.

F. Salata, I. Golasi, A. Peña-García, V. Ciancio, and Z. Yousefi, “A first approach to a new index on indoor lighting comfort based on corneal illuminance,” J. Daylighting 6(2), 124–130 (2019).
[Crossref]

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “Human short-wavelength-sensitive cone light adaptation,” J. Vis. 7(3), 4 (2007).
[Crossref]

Shi, W.

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Sinha, R.

J. Baudin, J. M. Angueyra, R. Sinha, and F. Rieke, “S-cone photoreceptors in the primate retina are functionally distinct from L and M cones,” eLife 8, 1–22 (2019).
[Crossref]

Smet, K. A. G.

Smith, K. J.

R. M. Luo, C. Li, R. W. G. Hunt, B. Rigg, and K. J. Smith, “CMC 2002 colour inconstancy index: CMCCON02,” Color. Technol. 119(5), 280–285 (2003).
[Crossref]

Smith, V. C.

E. Miyahara, V. C. Smith, and J. Pokorny, “The consequences of opponent rectification: The effect of surround size and luminance on color appearance,” Vision Res. 41(7), 859–871 (2001).
[Crossref]

Smithson, H. E.

H. E. Smithson and J. D. Mollon, “Is the S-opponent chromatic sub-system sluggish?” Vision Res. 44(25), 2919–2929 (2004).
[Crossref]

Sobagaki, H.

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform.pdf,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

Stanikunas, R.

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vision Res. 46(19), 3067–3078 (2006).
[Crossref]

Stockman, A.

A. Stockman and L. T. Sharpe, “Human short-wavelength-sensitive cone light adaptation,” J. Vis. 7(3), 4 (2007).
[Crossref]

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31(2), 189–208 (1991).
[Crossref]

Takahama, K.

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform.pdf,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

Vaitkevicius, H.

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vision Res. 46(19), 3067–3078 (2006).
[Crossref]

Valberg, A.

von Kries, J.

J. von Kries, “Chromatic adaptation,” Festschrift der Albrecht-Ludwigs-Universität145–158 (1902).

Walter, S.

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[Crossref]

Wang, Z.

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Warren, M. H.

Wei, M.

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Xu, Y.

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Yano, T.

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

Yousefi, Z.

F. Salata, I. Golasi, A. Peña-García, V. Ciancio, and Z. Yousefi, “A first approach to a new index on indoor lighting comfort based on corneal illuminance,” J. Daylighting 6(2), 124–130 (2019).
[Crossref]

Yue, J.

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Zhai, Q.

Build. Environ. (1)

W. Cai, J. Yue, Q. Dai, L. Hao, Y. Lin, W. Shi, Y. Huang, and M. Wei, “The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design,” Build. Environ. 141, 288–297 (2018).
[Crossref]

Color Res. Appl. (16)

M. H. Brill and M. Mahy, “Visualization of mathematical inconsistencies in CIECAM02,” Color Res. Appl. 38(3), 188–195 (2013).
[Crossref]

M. R. Luo and R. W. G. Hunt, “A chromatic adaptation transform and a colour inconstancy index,” Color Res. Appl. 23(3), 154–158 (1998).
[Crossref]

K. T. Blackwell and G. Buchsbaum, “The effect of spatial and chromatic parameters on chromatic induction,” Color Res. Appl. 13(3), 166–173 (1988).
[Crossref]

F. W. Billmeyer and P. J. Alessi, “Assessment of Color-Measuring Instruments,” Color Res. Appl. 6(4), 195–202 (1981).
[Crossref]

Y. Nayatani, T. Yano, and M. Ihara, “Analyses of methods for predicting corresponding colors of LUTCHI data,” Color Res. Appl. 27(5), 335–348 (2002).
[Crossref]

Y. Nayatani, K. Takahama, H. Sobagaki, and K. Hashimoto, “Color-appearance model and chromatic-adaptation transform.pdf,” Color Res. Appl. 15(4), 210–221 (1990).
[Crossref]

C. J. Bartleson, “Predicting corresponding colors with changes in adaptation,” Color Res. Appl. 4(3), 143–155 (1979).
[Crossref]

C. J. Bartleson, “Changes in color appearance with variations in chromatic adaptation,” Color Res. Appl. 4(3), 119–138 (1979).
[Crossref]

H. Li, M. Ronnier Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

C. J. Li, M. R. Luo, and R. W. G. Hunt, “A Revision of the CIECAM97s Model,” Color Res. Appl. 25(4), 260–266 (2000).
[Crossref]

R. W. G. Hunt, C. J. Li, L. Y. Juan, and M. R. Luo, “Further improvements to CIECAM97s,” Color Res. Appl. 27(3), 164–170 (2002).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

C. Li, Y. Xu, Z. Wang, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comparing two-step and one-step chromatic adaptation transforms using the CAT16 model,” Color Res. Appl. 43(5), 633–642 (2018).
[Crossref]

K. A. G. Smet and S. Ma, “Some concerns regarding the CAT16 chromatic adaptation transform,” Color Res. Appl. 45(1), 172–177 (2020).
[Crossref]

M. D. Fairchild, “Formulation and testing of an incomplete-chromatic-adaptation model,” Color Res. Appl. 16(4), 243–250 (1991).
[Crossref]

R. W. G. Hunt, “A Model of Colour Vision for Predicting Colour Appearance In Various Viewing Conditions,” Color Res. Appl. 12(6), 297–314 (1987).
[Crossref]

Color. Technol. (1)

R. M. Luo, C. Li, R. W. G. Hunt, B. Rigg, and K. J. Smith, “CMC 2002 colour inconstancy index: CMCCON02,” Color. Technol. 119(5), 280–285 (2003).
[Crossref]

eLife (1)

J. Baudin, J. M. Angueyra, R. Sinha, and F. Rieke, “S-cone photoreceptors in the primate retina are functionally distinct from L and M cones,” eLife 8, 1–22 (2019).
[Crossref]

J. Daylighting (1)

F. Salata, I. Golasi, A. Peña-García, V. Ciancio, and Z. Yousefi, “A first approach to a new index on indoor lighting comfort based on corneal illuminance,” J. Daylighting 6(2), 124–130 (2019).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Vis. (2)

A. Stockman and L. T. Sharpe, “Human short-wavelength-sensitive cone light adaptation,” J. Vis. 7(3), 4 (2007).
[Crossref]

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[Crossref]

Opt. Express (5)

Perception (1)

J. Golz, “Colour Constancy: Influence of Viewing Behaviour on Grey Settings,” Perception 39(5), 606–619 (2010).
[Crossref]

Rev. Prog. Color. Relat. Top. (1)

M. R. Luo, “A review of chromatic adaptation,” Rev. Prog. Color. Relat. Top. 30(1), 77–92 (2008).
[Crossref]

Vision Res. (7)

J. A. S. Kinney, “FACTORS AFFECTING INDUCED COLOR,” Vision Res. 2(12), 503–525 (1962).
[Crossref]

H. E. Smithson and J. D. Mollon, “Is the S-opponent chromatic sub-system sluggish?” Vision Res. 44(25), 2919–2929 (2004).
[Crossref]

A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31(2), 189–208 (1991).
[Crossref]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref]

E. Miyahara, V. C. Smith, and J. Pokorny, “The consequences of opponent rectification: The effect of surround size and luminance on color appearance,” Vision Res. 41(7), 859–871 (2001).
[Crossref]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vision Res. 46(19), 3067–3078 (2006).
[Crossref]

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants.pdf,” Vision Res. 32(11), 2077–2085 (1992).
[Crossref]

Other (8)

International Commission on Illumination, CIE 015:2018 Colorimetry (2018).

Commission Internationale de l’Eclairage, Colorimetry–Part 5: CIE 1976 L* U* v* Colour Space and u’, v’uniform Chromaticity Scale Diagram (2011).

Commission Internationale de l’Eclairage, “Colour appearance model for colour management systems: CIECAM02,” CIE Publ. 159 (2004).

Commission Internationale de l’Eclairage, “CIE 160:2004 A Review of Chromatic Adaptation Transforms,” (2004).

M. D. Fairchild, Color Appearance Models, Second edi (John Wiley & Sons, 2005).

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” IS&T/SID Tenth Color Imaging Conf.23–27 (2002).

J. von Kries, “Chromatic adaptation,” Festschrift der Albrecht-Ludwigs-Universität145–158 (1902).

C. Li, E. Perales, M. R. Luo, and F. Martínez-verdú, “The Problem with CAT02 and Its Correction,” (July), 1–10 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Pictures of the experiment setup (a). A view of the experiment set-up showing the data projector mounted in a frame (b). A picture of an observer performing achromatic matching.
Fig. 2.
Fig. 2. (a). Reflectance spectra of the stimulus (grey cube, dashed line) and the background (solid line) (b). The u’F,10v’F,10 chromaticity distribution of the thirteen adaptation backgrounds. (c). Spectra of the three channels of the projector, where the maximum radiance of each channel was normalized to 1.
Fig. 3.
Fig. 3. Background scenes (adapting fields), with centrally located stimulus. (a). Group 1: three adapting fields with equal 180 cd/m2 luminance and field sizes of 20° (top), 40° (middle), 80° (bottom). (b). Group 2: three adapting fields with equal 7 lx corneal illuminance and field sizes (and corresponding luminance values) of 20° (180 cd/m2, top), 40° (35 cd/m2, middle), 60° (20 cd/m2, bottom).
Fig. 4.
Fig. 4. Inter-variability ellipses under 13 illuminants. (a). Equal luminance group. Solid line, dash-point line and dash line represent 20°, 40°, 80° adapting field respectively. (b). Equal illuminance group. Solid line, dash-point line and dash line represent 20°, 40°, 60° adapting field respectively.
Fig. 5.
Fig. 5. Optimization process of D from illuminant A to the baseline.
Fig. 6.
Fig. 6. A comparison of Doptim, Ds and DCAT02 under the 13 illuminant chromaticities and 5 background field conditions. The left column represents the equal luminance group and the top, middle and bottom correspond to the 20°, 40°, 80° adapting fields, respectively. The right column represents the equal illuminance group and the top, middle and bottom correspond to the 20°, 40°, 60° adapting fields, respectively. The error bar of Doptim in each subfigure represents the corresponding inter-observer standard error.
Fig. 7.
Fig. 7. (a). The fchroma_M(u’F,10,v’F,10) surface against u’F,10, v’F,10 for DM2 (b). The fL(La) curve against La for DM0, DM1, and DM2 (c). The fF(fovH, fovV), fF_M1(fovH, fovV), fF_M2(fovH, fovV) curves plotted against the adapting field size for DM0, DM1, and DM2.

Tables (5)

Tables Icon

Table 1. Inter- and intra-observer variability, in terms of the mean color difference from the mean (MCDM) in the uF,10vF,10 chromaticity diagram, under each adapting condition. In the table, the data is formed as a ± b; for inter-observer variability, a is the mean and b is the standard deviation of the color differences from each observer to the mean; for intra-observer variability, a is the mean and b is the standard deviation of MCDM values over observers.

Tables Icon

Table 2. Doptim under 13 illuminants chromaticities for two groups of adapting fields: equal luminance group (20°, 40°, 80°) and equal illuminance group (20°, 40°, 60°). The baseline is illuminant EEW whose D value is fixed to one. The data are presented as a ± b where a is the Doptim of average matching chromaticity of 11 observers and b is the corresponding inter-observer standard error. The average D in the last row was calculated by the arithmetic mean of all the 12 test illuminants with illuminant EEW excluded.

Tables Icon

Table 3. The prediction error of von Kries CAT with Doptim, in terms of DEu’F,10v’F,10, under the 13 illuminant chromaticities for the two groups: equal luminance group (20°, 40°, 80°) and equal illuminance group (20°, 40°, 60°). The baseline, illuminant EEW, has DEu’F,10v’F,10 equal to zero. The average DEu’F,10v’F,10 was calculated as the arithmetic mean of all the 12 test illuminants with illuminant EEW excluded. The data was formed as a ± b where a is the prediction error of average matching chromaticity of 11 observers and b is the corresponding inter-observer standard error.

Tables Icon

Table 4. The summary of the optimized parameters in Eq. (16) for DM1.

Tables Icon

Table 5. A comparison of the performance (mean DEu’F,10v’F,10) of the von Kries CAT adopting Doptim, DCAT02, Ds, DM0, DM1, and DM2 for all background field conditions.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

( L c M c S c ) = ( α β λ ) ( L 0 M 0 S 0 )
α = L r w L w β = M r w M w λ = S r w S w
D = F F 1 + 2 L a 1 / 4 + L a 2 / 300
D = F [ 1 ( 1 3.6 ) exp ( L a 42 92 ) ]
( R c G c B c ) = [ D ( α β λ ) + 1 D ] ( R G B )
a X = P X + D ( 1 P X ) X w X = L , M , S
P X = 1 + Y X 1 / 3 + x E 1 + Y X 1 / 3 + 1 / x E
x E = 3 X n / X = L S X n
X B = ( D A , B Λ A B + ( 1 D A , B ) ) X A
Λ A B = X w B X w A
X B = ( D B , 0 Λ B 0 + ( 1 D B , 0 ) ) 1 ( D A , 0 Λ A 0 + ( 1 D A , 0 ) ) X A
D E _ I n t e r i , j = k = 1 N o b s ( D E ( p = 1 N s p u v i , j , k , p N s p , u v i , j ¯ ) ) N o b s
D E _ I n t r a i , j = k = 1 N o b s ( p = 1 N s p D E ( u v i , j , k , p , u v i , j , k ¯ ) N s p ) N o b s
f C h r o m a ( u F , 10 , v F , 10 ) = D s , max = 1 ( u F , 10 , v F , 10 )
f L ( L a ) = 1 ( 1 3.6 ) exp ( L a 42 92 )
f F ( f o v H , f o v V ) = a [ 1 exp ( b f o v H × f o v V ) ]
D M 0 ( u F , 10 , v F , 10 , L a , f o v H , f o v V ) = f F ( f o v H , f o v V ) × f L ( L a ) × f C h r o m a ( u F , 10 , v F , 10 )
f C h r o m a _ M ( u F , 10 , v F , 10 ) = exp ( [ r ( u F , 10 , v F , 10 ) μ 1 ] 2 2 σ 1 2 [ b ( u F , 10 , v F , 10 ) μ 2 ] 2 2 σ 2 2 + ρ [ r ( u F , 10 , v F , 10 ) μ 1 ] [ b ( u F , 10 , v F , 10 ) μ 2 ] σ 1 σ 2 )
f F _ M 1 ( f o v H , f o v V ) = 0.882 [ 1 exp ( 0.069 f o v H × f o v V ) ]
D M 1 ( u F , 10 , v F , 10 , L a , f o v H , f o v V ) = f F _ M 1 ( f o v H , f o v V ) × f L ( L a ) × f C h r o m a _ M ( u F , 10 , v F , 10 )
f F _ M 2 ( f o v H , f o v V ) = 0.867 [ 1 exp ( 0.060 f o v H × f o v V ) ]
D M 2 ( u F , 10 , v F , 10 , L a , f o v H , f o v V ) = f F _ M 2 ( f o v H , f o v V ) × f L ( L a ) × f C h r o m a _ M ( u F , 10 , v F , 10 )

Metrics