Abstract

A novel terahertz nanofilm sensor consisting of toroidal dipole bound states in the continuum (TD-BIC) inspired Fano resonance metasurface is proposed and investigated, which exhibits both the TD character and BIC feature. When the mirror symmetry of the unit cell was broken, the TD resonance was excited and demonstrated by anti-aligned magnetic dipoles and calculated scattering powers and the BIC mode was verified with the quality factor satisfying the inverse square law. Combined with the amplitude difference referencing technique, the TD-BIC inspired Fano resonance was utilized for nanofilm sensing at THz frequencies for the first time. Simulation results show that the amplitude difference can be easily observed by comparing the resonance frequency shift under difference thicknesses of germanium overlayer. Moreover, by coating with a 40 nm-thick analyte overlayer, the sensitivity of amplitude difference can achieve 0.32/RIU, which is a significant value and more suitable for sensing nanofilm analytes than the traditional frequency shift method. These advantages make our proposed structure have potential applications in sensing nanofilm analytes.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. B. Zel’Dovich, “Electromagnetic Interaction with Parity Violation,” J. Exp. Theor. Phys. 6(6), 1184 (1958).
  2. A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular Anapole Moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).
    [Crossref]
  3. V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).
    [Crossref]
  4. A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling,” Phys. Rev. E 72(3), 036603 (2005).
    [Crossref]
  5. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
    [Crossref]
  6. K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9(9), 324 (2007).
    [Crossref]
  7. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
    [Crossref]
  8. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
    [Crossref]
  9. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref]
  10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [Crossref]
  11. Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Terahertz toroidal metamaterial with tunable properties,” Opt. Express 27(4), 5792–5797 (2019).
    [Crossref]
  12. S. Han, M. Gupta, L. Cong, Y. K. Srivastava, and R. Singh, “Toroidal and magnetic Fano resonances in planar THz metamaterials,” J. Appl. Phys. 122(11), 113105 (2017).
    [Crossref]
  13. X. Chen and W. Fan, “Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance,” Opt. Lett. 42(10), 2034–2037 (2017).
    [Crossref]
  14. S. Lepeshov and Y. Kivshar, “Near-Field Coupling Effects in Mie-Resonant Photonic Structures and All-Dielectric Metasurfaces,” ACS Photonics 5(7), 2888–2894 (2018).
    [Crossref]
  15. X. Chen and W. Fan, “Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing,” Opt. Lett. 44(23), 5876–5879 (2019).
    [Crossref]
  16. G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating meta-atom interactions,” Sci. Rep. 7(1), 8128 (2017).
    [Crossref]
  17. K. Fan, I. V. Shadrivov, and W. J. Padilla, “Dynamic bound states in the continuum,” Optica 6(2), 169–173 (2019).
    [Crossref]
  18. C. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
    [Crossref]
  19. H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32(6), 3231–3242 (1985).
    [Crossref]
  20. A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú, “Anomalies in light scattering,” Adv. Opt. Photonics 11(4), 892–951 (2019).
    [Crossref]
  21. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
    [Crossref]
  22. L. Cong and R. Singh, “Symmetry-Protected Dual Bound States in the Continuum in Metamaterials,” Adv. Opt. Mater. 7(13), 1900383 (2019).
    [Crossref]
  23. X. Chen and W. Fan, “Tunable Bound States in the Continuum in All-Dielectric Terahertz Metasurfaces,” Nanomaterials 10(4), 623 (2020).
    [Crossref]
  24. D. R. Abujetas, N. van Hoof, S. ter Huurne, J. Gómez Rivas, and J. A. Sánchez-Gil, “Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces,” Optica 6(8), 996–1001 (2019).
    [Crossref]
  25. S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
    [Crossref]
  26. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
    [Crossref]
  27. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
    [Crossref]
  28. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  29. W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
    [Crossref]
  30. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  31. X. Chen, W. Fan, and C. Song, “Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing,” Carbon 133, 416–422 (2018).
    [Crossref]
  32. Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
    [Crossref]
  33. M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
    [Crossref]
  34. I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–5 (2017).
    [Crossref]
  35. H.-R. Park, X. Chen, N.-C. Nguyen, J. Peraire, and S.-H. Oh, “Nanogap-enhanced terahertz sensing of 1 nm thick (λ/106) dielectric films,” ACS Photonics 2(3), 417–424 (2015).
    [Crossref]
  36. I. Al-Naib, “Evaluation of amplitude difference referencing technique with terahertz metasurfaces for sub-micron analytes sensing,” J. King Saud Univ., Sci. 31(4), 1384–1387 (2019).
    [Crossref]
  37. Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, and R. Singh, “Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces,” Appl. Phys. Lett. 115(15), 151105 (2019).
    [Crossref]
  38. F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics,” Opt. Express 22(10), 12475–12485 (2014).
    [Crossref]
  39. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  40. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
    [Crossref]
  41. M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
    [Crossref]
  42. S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
    [Crossref]
  43. V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
    [Crossref]
  44. V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, “Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials,” Sci. Rep. 3(1), 2967 (2013).
    [Crossref]
  45. T. C. Tan, E. Plum, and R. Singh, “Lattice-Enhanced Fano Resonances from Bound States in the Continuum Metasurfaces,” Adv. Opt. Mater. 8(6), 1901572 (2020).
    [Crossref]
  46. X. He, F. Liu, F. Lin, and W. Shi, “Investigation of terahertz all-dielectric metamaterials,” Opt. Express 27(10), 13831–13844 (2019).
    [Crossref]
  47. N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
    [Crossref]

2020 (2)

X. Chen and W. Fan, “Tunable Bound States in the Continuum in All-Dielectric Terahertz Metasurfaces,” Nanomaterials 10(4), 623 (2020).
[Crossref]

T. C. Tan, E. Plum, and R. Singh, “Lattice-Enhanced Fano Resonances from Bound States in the Continuum Metasurfaces,” Adv. Opt. Mater. 8(6), 1901572 (2020).
[Crossref]

2019 (10)

X. He, F. Liu, F. Lin, and W. Shi, “Investigation of terahertz all-dielectric metamaterials,” Opt. Express 27(10), 13831–13844 (2019).
[Crossref]

L. Cong and R. Singh, “Symmetry-Protected Dual Bound States in the Continuum in Metamaterials,” Adv. Opt. Mater. 7(13), 1900383 (2019).
[Crossref]

D. R. Abujetas, N. van Hoof, S. ter Huurne, J. Gómez Rivas, and J. A. Sánchez-Gil, “Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces,” Optica 6(8), 996–1001 (2019).
[Crossref]

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú, “Anomalies in light scattering,” Adv. Opt. Photonics 11(4), 892–951 (2019).
[Crossref]

I. Al-Naib, “Evaluation of amplitude difference referencing technique with terahertz metasurfaces for sub-micron analytes sensing,” J. King Saud Univ., Sci. 31(4), 1384–1387 (2019).
[Crossref]

Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, and R. Singh, “Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces,” Appl. Phys. Lett. 115(15), 151105 (2019).
[Crossref]

Z. Song, Y. Deng, Y. Zhou, and Z. Liu, “Terahertz toroidal metamaterial with tunable properties,” Opt. Express 27(4), 5792–5797 (2019).
[Crossref]

X. Chen and W. Fan, “Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing,” Opt. Lett. 44(23), 5876–5879 (2019).
[Crossref]

K. Fan, I. V. Shadrivov, and W. J. Padilla, “Dynamic bound states in the continuum,” Optica 6(2), 169–173 (2019).
[Crossref]

2018 (4)

S. Lepeshov and Y. Kivshar, “Near-Field Coupling Effects in Mie-Resonant Photonic Structures and All-Dielectric Metasurfaces,” ACS Photonics 5(7), 2888–2894 (2018).
[Crossref]

X. Chen, W. Fan, and C. Song, “Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing,” Carbon 133, 416–422 (2018).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

2017 (9)

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–5 (2017).
[Crossref]

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

S. Han, M. Gupta, L. Cong, Y. K. Srivastava, and R. Singh, “Toroidal and magnetic Fano resonances in planar THz metamaterials,” J. Appl. Phys. 122(11), 113105 (2017).
[Crossref]

X. Chen and W. Fan, “Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance,” Opt. Lett. 42(10), 2034–2037 (2017).
[Crossref]

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating meta-atom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

2016 (4)

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

C. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

2015 (1)

H.-R. Park, X. Chen, N.-C. Nguyen, J. Peraire, and S.-H. Oh, “Nanogap-enhanced terahertz sensing of 1 nm thick (λ/106) dielectric films,” ACS Photonics 2(3), 417–424 (2015).
[Crossref]

2014 (5)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics,” Opt. Express 22(10), 12475–12485 (2014).
[Crossref]

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

2013 (1)

V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, “Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials,” Sci. Rep. 3(1), 2967 (2013).
[Crossref]

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2010 (1)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

2007 (1)

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9(9), 324 (2007).
[Crossref]

2005 (2)

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling,” Phys. Rev. E 72(3), 036603 (2005).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

1998 (1)

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular Anapole Moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).
[Crossref]

1990 (1)

V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).
[Crossref]

1985 (1)

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32(6), 3231–3242 (1985).
[Crossref]

1958 (1)

I. B. Zel’Dovich, “Electromagnetic Interaction with Parity Violation,” J. Exp. Theor. Phys. 6(6), 1184 (1958).

Abujetas, D. R.

Achanta, V. G.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Ako, R. T.

Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, and R. Singh, “Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces,” Appl. Phys. Lett. 115(15), 151105 (2019).
[Crossref]

Al-Naib, I.

I. Al-Naib, “Evaluation of amplitude difference referencing technique with terahertz metasurfaces for sub-micron analytes sensing,” J. King Saud Univ., Sci. 31(4), 1384–1387 (2019).
[Crossref]

I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–5 (2017).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Altug, H.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Alú, A.

A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú, “Anomalies in light scattering,” Adv. Opt. Photonics 11(4), 892–951 (2019).
[Crossref]

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref]

Baranov, D.

A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú, “Anomalies in light scattering,” Adv. Opt. Photonics 11(4), 892–951 (2019).
[Crossref]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Bhaskaran, M.

Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, and R. Singh, “Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces,” Appl. Phys. Lett. 115(15), 151105 (2019).
[Crossref]

Boardman, A. D.

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9(9), 324 (2007).
[Crossref]

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling,” Phys. Rev. E 72(3), 036603 (2005).
[Crossref]

Bogdanov, A.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Bonn, M.

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Ceulemans, A.

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular Anapole Moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).
[Crossref]

Chen, X.

X. Chen and W. Fan, “Tunable Bound States in the Continuum in All-Dielectric Terahertz Metasurfaces,” Nanomaterials 10(4), 623 (2020).
[Crossref]

X. Chen and W. Fan, “Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing,” Opt. Lett. 44(23), 5876–5879 (2019).
[Crossref]

X. Chen, W. Fan, and C. Song, “Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing,” Carbon 133, 416–422 (2018).
[Crossref]

X. Chen and W. Fan, “Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance,” Opt. Lett. 42(10), 2034–2037 (2017).
[Crossref]

H.-R. Park, X. Chen, N.-C. Nguyen, J. Peraire, and S.-H. Oh, “Nanogap-enhanced terahertz sensing of 1 nm thick (λ/106) dielectric films,” ACS Photonics 2(3), 417–424 (2015).
[Crossref]

Chibotaru, L. F.

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular Anapole Moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).
[Crossref]

Choi, D.-Y.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Cong, L.

L. Cong and R. Singh, “Symmetry-Protected Dual Bound States in the Continuum in Metamaterials,” Adv. Opt. Mater. 7(13), 1900383 (2019).
[Crossref]

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

S. Han, M. Gupta, L. Cong, Y. K. Srivastava, and R. Singh, “Toroidal and magnetic Fano resonances in planar THz metamaterials,” J. Appl. Phys. 122(11), 113105 (2017).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

D’Angelo, F.

Dayal, G.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Deng, Y.

Deninger, A.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Dietz, R.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Dubovik, V. M.

V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).
[Crossref]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref]

Fan, K.

Fan, W.

X. Chen and W. Fan, “Tunable Bound States in the Continuum in All-Dielectric Terahertz Metasurfaces,” Nanomaterials 10(4), 623 (2020).
[Crossref]

X. Chen and W. Fan, “Ultrahigh-Q toroidal dipole resonance in all-dielectric metamaterials for terahertz sensing,” Opt. Lett. 44(23), 5876–5879 (2019).
[Crossref]

X. Chen, W. Fan, and C. Song, “Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing,” Carbon 133, 416–422 (2018).
[Crossref]

X. Chen and W. Fan, “Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance,” Opt. Lett. 42(10), 2034–2037 (2017).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Fedotov, V.

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, “Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials,” Sci. Rep. 3(1), 2967 (2013).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9(9), 324 (2007).
[Crossref]

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling,” Phys. Rev. E 72(3), 036603 (2005).
[Crossref]

Fowler, P. W.

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular Anapole Moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).
[Crossref]

Friedrich, H.

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32(6), 3231–3242 (1985).
[Crossref]

Gao, F.

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

Göbel, T.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Gómez Rivas, J.

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref]

Gupta, M.

Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, and R. Singh, “Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces,” Appl. Phys. Lett. 115(15), 151105 (2019).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

S. Han, M. Gupta, L. Cong, Y. K. Srivastava, and R. Singh, “Toroidal and magnetic Fano resonances in planar THz metamaterials,” J. Appl. Phys. 122(11), 113105 (2017).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Han, S.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

S. Han, M. Gupta, L. Cong, Y. K. Srivastava, and R. Singh, “Toroidal and magnetic Fano resonances in planar THz metamaterials,” J. Appl. Phys. 122(11), 113105 (2017).
[Crossref]

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

He, X.

Hsu, C.

C. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Jain, R.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Joannopoulos, J. D.

C. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Kaelberer, T.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref]

Kivshar, Y.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

S. Lepeshov and Y. Kivshar, “Near-Field Coupling Effects in Mie-Resonant Photonic Structures and All-Dielectric Metasurfaces,” ACS Photonics 5(7), 2888–2894 (2018).
[Crossref]

Kivshar, Y. S.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref]

Koshelev, K.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Krasnok, A.

A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú, “Anomalies in light scattering,” Adv. Opt. Photonics 11(4), 892–951 (2019).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Kumar, A.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Leitis, A.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Lepeshov, S.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

S. Lepeshov and Y. Kivshar, “Near-Field Coupling Effects in Mie-Resonant Photonic Structures and All-Dielectric Metasurfaces,” ACS Photonics 5(7), 2888–2894 (2018).
[Crossref]

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref]

Li, H.

A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú, “Anomalies in light scattering,” Adv. Opt. Photonics 11(4), 892–951 (2019).
[Crossref]

Lim, W. X.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Lin, F.

Liu, F.

Liu, M.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Liu, Z.

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Manjappa, M.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Marinov, K.

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9(9), 324 (2007).
[Crossref]

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling,” Phys. Rev. E 72(3), 036603 (2005).
[Crossref]

Mics, Z.

Miri, M.-A.

A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú, “Anomalies in light scattering,” Adv. Opt. Photonics 11(4), 892–951 (2019).
[Crossref]

Monticone, F.

A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú, “Anomalies in light scattering,” Adv. Opt. Photonics 11(4), 892–951 (2019).
[Crossref]

Neshev, D. N.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Nguyen, N.-C.

H.-R. Park, X. Chen, N.-C. Nguyen, J. Peraire, and S.-H. Oh, “Nanogap-enhanced terahertz sensing of 1 nm thick (λ/106) dielectric films,” ACS Photonics 2(3), 417–424 (2015).
[Crossref]

Oh, S.-H.

H.-R. Park, X. Chen, N.-C. Nguyen, J. Peraire, and S.-H. Oh, “Nanogap-enhanced terahertz sensing of 1 nm thick (λ/106) dielectric films,” ACS Photonics 2(3), 417–424 (2015).
[Crossref]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Padilla, W. J.

K. Fan, I. V. Shadrivov, and W. J. Padilla, “Dynamic bound states in the continuum,” Optica 6(2), 169–173 (2019).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Park, H.-R.

H.-R. Park, X. Chen, N.-C. Nguyen, J. Peraire, and S.-H. Oh, “Nanogap-enhanced terahertz sensing of 1 nm thick (λ/106) dielectric films,” ACS Photonics 2(3), 417–424 (2015).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Peraire, J.

H.-R. Park, X. Chen, N.-C. Nguyen, J. Peraire, and S.-H. Oh, “Nanogap-enhanced terahertz sensing of 1 nm thick (λ/106) dielectric films,” ACS Photonics 2(3), 417–424 (2015).
[Crossref]

Plum, E.

T. C. Tan, E. Plum, and R. Singh, “Lattice-Enhanced Fano Resonances from Bound States in the Continuum Metasurfaces,” Adv. Opt. Mater. 8(6), 1901572 (2020).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Prabhu, S. S.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Qiang, B.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Raybould, T. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Rettich, F.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Roehle, H.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, “Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials,” Sci. Rep. 3(1), 2967 (2013).
[Crossref]

Rybin, M. V.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Sánchez-Gil, J. A.

Savinov, V.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, “Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials,” Sci. Rep. 3(1), 2967 (2013).
[Crossref]

Schell, M.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Shadrivov, I. V.

Shi, W.

Singh, R.

T. C. Tan, E. Plum, and R. Singh, “Lattice-Enhanced Fano Resonances from Bound States in the Continuum Metasurfaces,” Adv. Opt. Mater. 8(6), 1901572 (2020).
[Crossref]

Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, and R. Singh, “Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces,” Appl. Phys. Lett. 115(15), 151105 (2019).
[Crossref]

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

L. Cong and R. Singh, “Symmetry-Protected Dual Bound States in the Continuum in Metamaterials,” Adv. Opt. Mater. 7(13), 1900383 (2019).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

S. Han, M. Gupta, L. Cong, Y. K. Srivastava, and R. Singh, “Toroidal and magnetic Fano resonances in planar THz metamaterials,” J. Appl. Phys. 122(11), 113105 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
[Crossref]

Soljacic, M.

C. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Song, C.

X. Chen, W. Fan, and C. Song, “Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing,” Carbon 133, 416–422 (2018).
[Crossref]

Song, Z.

Sriram, S.

Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, and R. Singh, “Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces,” Appl. Phys. Lett. 115(15), 151105 (2019).
[Crossref]

Srivastava, Y. K.

Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, and R. Singh, “Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces,” Appl. Phys. Lett. 115(15), 151105 (2019).
[Crossref]

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

S. Han, M. Gupta, L. Cong, Y. K. Srivastava, and R. Singh, “Toroidal and magnetic Fano resonances in planar THz metamaterials,” J. Appl. Phys. 122(11), 113105 (2017).
[Crossref]

Stone, A. D.

C. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Sun, G.

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating meta-atom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

Tan, T. C.

T. C. Tan, E. Plum, and R. Singh, “Lattice-Enhanced Fano Resonances from Bound States in the Continuum Metasurfaces,” Adv. Opt. Mater. 8(6), 1901572 (2020).
[Crossref]

ter Huurne, S.

Tittl, A.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Tsai, D. P.

V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, “Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials,” Sci. Rep. 3(1), 2967 (2013).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Tugushev, V. V.

V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).
[Crossref]

Turchinovich, D.

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

van Hoof, N.

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Vieweg, N.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Wang, Q. J.

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Wang, S.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
[Crossref]

Wintgen, D.

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32(6), 3231–3242 (1985).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Xie, L.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

Xu, N.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Xu, W.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

Yang, H.

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Yesilkoy, F.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

Ying, Y.

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

Yuan, L.

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating meta-atom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

Zel’Dovich, I. B.

I. B. Zel’Dovich, “Electromagnetic Interaction with Parity Violation,” J. Exp. Theor. Phys. 6(6), 1184 (1958).

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

Zhang, W.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Zhang, X.

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating meta-atom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Zhang, Y.

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating meta-atom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

Zheludev, N.

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9(9), 324 (2007).
[Crossref]

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling,” Phys. Rev. E 72(3), 036603 (2005).
[Crossref]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, “Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials,” Sci. Rep. 3(1), 2967 (2013).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Zhen, B.

C. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Zhou, Y.

Zhu, Y.

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating meta-atom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

ACS Photonics (2)

S. Lepeshov and Y. Kivshar, “Near-Field Coupling Effects in Mie-Resonant Photonic Structures and All-Dielectric Metasurfaces,” ACS Photonics 5(7), 2888–2894 (2018).
[Crossref]

H.-R. Park, X. Chen, N.-C. Nguyen, J. Peraire, and S.-H. Oh, “Nanogap-enhanced terahertz sensing of 1 nm thick (λ/106) dielectric films,” ACS Photonics 2(3), 417–424 (2015).
[Crossref]

Adv. Mater. (2)

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, “All-Dielectric Active Terahertz Photonics Driven by Bound States in the Continuum,” Adv. Mater. 31(37), 1901921 (2019).
[Crossref]

Adv. Opt. Mater. (2)

L. Cong and R. Singh, “Symmetry-Protected Dual Bound States in the Continuum in Metamaterials,” Adv. Opt. Mater. 7(13), 1900383 (2019).
[Crossref]

T. C. Tan, E. Plum, and R. Singh, “Lattice-Enhanced Fano Resonances from Bound States in the Continuum Metasurfaces,” Adv. Opt. Mater. 8(6), 1901572 (2020).
[Crossref]

Adv. Opt. Photonics (1)

A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú, “Anomalies in light scattering,” Adv. Opt. Photonics 11(4), 892–951 (2019).
[Crossref]

Ann. Phys. (1)

S. Han, L. Cong, F. Gao, R. Singh, and H. Yang, “Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials,” Ann. Phys. 528(5), 352–357 (2016).
[Crossref]

Appl. Phys. Lett. (4)

Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, and R. Singh, “Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces,” Appl. Phys. Lett. 115(15), 151105 (2019).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett. 111(20), 201101 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Carbon (1)

X. Chen, W. Fan, and C. Song, “Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing,” Carbon 133, 416–422 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Al-Naib, “Biomedical sensing with conductively coupled terahertz metamaterial resonators,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–5 (2017).
[Crossref]

J. Appl. Phys. (1)

S. Han, M. Gupta, L. Cong, Y. K. Srivastava, and R. Singh, “Toroidal and magnetic Fano resonances in planar THz metamaterials,” J. Appl. Phys. 122(11), 113105 (2017).
[Crossref]

J. Exp. Theor. Phys. (1)

I. B. Zel’Dovich, “Electromagnetic Interaction with Parity Violation,” J. Exp. Theor. Phys. 6(6), 1184 (1958).

J. Infrared, Millimeter, Terahertz Waves (1)

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

J. King Saud Univ., Sci. (1)

I. Al-Naib, “Evaluation of amplitude difference referencing technique with terahertz metasurfaces for sub-micron analytes sensing,” J. King Saud Univ., Sci. 31(4), 1384–1387 (2019).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nanomaterials (1)

X. Chen and W. Fan, “Tunable Bound States in the Continuum in All-Dielectric Terahertz Metasurfaces,” Nanomaterials 10(4), 623 (2020).
[Crossref]

Nanoscale (1)

W. Xu, L. Xie, and Y. Ying, “Mechanisms and applications of terahertz metamaterial sensing: a review,” Nanoscale 9(37), 13864–13878 (2017).
[Crossref]

Nat. Commun. (1)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Nat. Mater. (1)

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Nat. Rev. Mater. (1)

C. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Nature (1)

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref]

New J. Phys. (1)

K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9(9), 324 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (2)

Phys. Rep. (1)

V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).
[Crossref]

Phys. Rev. A (1)

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32(6), 3231–3242 (1985).
[Crossref]

Phys. Rev. B (1)

V. Savinov, V. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
[Crossref]

Phys. Rev. E (1)

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling,” Phys. Rev. E 72(3), 036603 (2005).
[Crossref]

Phys. Rev. Lett. (3)

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular Anapole Moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Sci. Rep. (2)

V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, “Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials,” Sci. Rep. 3(1), 2967 (2013).
[Crossref]

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating meta-atom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

Science (4)

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360(6393), 1105–1109 (2018).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic view of the proposed THz metasurface sensor, where THz waves are normal incidence with E-field along x-direction and the analyte is ultrathin nanofilm. (b) Top view of the unit cell with structure parameters are P = 64 µm, L = 50 µm, w = 4 µm, g1 = 3 µm, g2 = 3 µm, d = 4 µm, and δ = 13 µm.
Fig. 2.
Fig. 2. (a) Transmission spectrum of the proposed structure. The distributions of (b) surface current (c) electric field and (d) magnetic field at the resonance frequency. (e) The calculated normalized powers scattered by different multipoles of the metasurface.
Fig. 3.
Fig. 3. (a) Transmission spectra of the proposed structure with different asymmetry parameters. (b)-(c) Surface current distributions with asymmetry parameter δ = 0 and 4 µm, respectively. (d) The Q-factor of quasi-BIC for ideal (red circle) and loss (black square) metasurface with different asymmetry parameters. Blue solid line shows theoretical fitting using the inverse square function with asymmetry parameters.
Fig. 4.
Fig. 4. (a) Schematic diagram of the incident angle spectral analysis with different incident angle θ, where the asymmetry parameter is zero. (b) The calculated Q-factor of the BIC inspired resonance with different incident angles, where the Q-factor tends to infinity indicating the BIC state in the ideal metasurface.
Fig. 5.
Fig. 5. (a) The Q-factor and resonant intensity of transmission spectra with different asymmetry parameters. (b) The variation of Q × I with different asymmetry parameters.
Fig. 6.
Fig. 6. (a) Transmission spectra of the metasurface without and with 7, 20, and 40 nm Ge overlayer. (b) Transmission amplitude difference with 7, 20, and 40 nm Ge overlayer. (c) Transmission spectra of the metasurface coated with 40 nm-thick analyte with different refractive indices. The inset shows the resonant frequency shift with different refractive indices of analyte overlayer. (d) Transmission amplitude difference with different refractive indices of analyte, where its thickness fixed as 40 nm. The inset in (d) shows the peak-to-peak transmission amplitude difference |ΔT| with different refractive indices of analyte.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T = | a 1 + i a 2 + b ω ω 0 + i γ | 2
I = 2 ω 4 3 c 3 | P | 2 + 2 ω 4 3 c 3 | M | 2 + 2 ω 6 3 c 5 | T | 2 + ω 6 5 c 5 Q e Q e + ω 6 20 c 5 Q m Q m ,
P = 1 i ω j d 3 r ,
M = 1 2 c ( r × j ) d 3 r ,
T = 1 10 c [ ( r j ) r 2 r 2 j ] d 3 r ,
Q e = 1 i ω [ r α j β + r β j α 2 3 ( r j ) ] d 3 r ,
Q m = 1 3 c [ ( r × j ) α r β + ( r × j ) β r β ] d 3 r .