Abstract

We demonstrate that the phase-matched dispersive wave (DW) emission within the resonance band of a 25-cm-long gas-filled hollow-core photonic crystal fiber (HC-PCF) can be strongly enhanced by the photoionization effect of the pump pulse. In the experiments, we observe that as the pulse energy increases, the pump pulse gradually shifts to shorter wavelengths due to soliton-plasma interactions. When the central wavelength of the blueshifting soliton is close to the resonance band of the HC-PCF, high-efficiency energy transfer from the pump light to the DW in the visible region can be obtained. During this DW emission process, we observe that the spectral center of the DW gradually shifts to longer wavelengths leading to a slightly increased DW bandwidth, which can be well explained as the consequence of phase-matched coupling between the pump pulse and the DW. In particular, at an input pulse energy of 6 µJ, the spectral ratio of the DW at the fiber output is measured to be as high as ∼53%, corresponding to an overall conversion efficiency of ∼19%. These experimental results, well accompanied by theoretical simulations and analysis, offer a practical and effective method of generating high-efficiency tunable visible light sources and provide a few useful insights into the fields of soliton-plasma interaction and resonance-induced DW emission.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
    [Crossref]
  2. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  3. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  4. T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
    [Crossref]
  5. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
    [Crossref]
  6. A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
    [Crossref]
  7. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
    [Crossref]
  8. F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. S. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
    [Crossref]
  9. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
    [Crossref]
  10. M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
    [Crossref]
  11. Z. Y. Huang, Y. F. Chen, F. Yu, D. Wang, R. R. Zhao, Y. Zhao, S. F. Gao, Y. Y. Wang, P. Wang, M. Pang, and Y. X. Leng, “Continuously wavelength-tunable blueshifting soliton generated in gas-filled photonic crystal fibers,” Opt. Lett. 44(7), 1805–1808 (2019).
    [Crossref]
  12. Z. Y. Huang, Y. F. Chen, F. Yu, D. K. Wu, D. Wang, R. R. Zhao, Y. Zhao, S. F. Gao, Y. Y. Wang, P. Wang, and Y. X. Leng, “Highly-tunable, visible ultrashort pulses generation by soliton-plasma interactions in gas-filled single-ring photonic crystal fibers,” Opt. Express 27(21), 30798–30809 (2019).
    [Crossref]
  13. Z. Y. Huang, Y. F. Chen, F. Yu, D. K. Wu, Y. Zhao, D. Wang, and Y. X. Leng, “Ionization-induced adiabatic soliton compression in gas-filled hollow-core photonic crystal fibers,” Opt. Lett. 44(22), 5562–5565 (2019).
    [Crossref]
  14. M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
    [Crossref]
  15. M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” J. Opt. Soc. Am. B 36(1), 69–80 (2019).
    [Crossref]
  16. F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
    [Crossref]
  17. R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
    [Crossref]
  18. F. C. Meng, B. W. Liu, S. J. Wang, J. K. Liu, Y. F. Li, C. Y. Wang, A. M. Zheltikov, and M. L. Hu, “Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber,” Opt. Express 25(26), 32972–32984 (2017).
    [Crossref]
  19. F. C. Meng, S. F. Gao, Y. Y. Wang, P. Wang, J. K. Liu, S. J. Wang, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America), paper STu3 K.4 (2017).
  20. A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
    [Crossref]
  21. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
    [Crossref]
  22. D. V. Skryabin, “Coupled core-surface solitons in photonic crystal fibers,” Opt. Express 12(20), 4841–4846 (2004).
    [Crossref]
  23. M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
    [Crossref]
  24. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
    [Crossref]
  25. Z. Y. Huang, D. Wang, Y. F. Chen, R. R. Zhao, Y. Zhao, S. Nam, C. Lim, Y. J. Peng, J. Du, and Y. X. Leng, “Wavelength-tunable few-cycle pulses in visible region generated through soliton-plasma interactions,” Opt. Express 26(26), 34977–34993 (2018).
    [Crossref]
  26. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).
  27. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).
  28. D. Novoa, M. Cassataro, J. C. Travers, and P. St. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
    [Crossref]
  29. F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
    [Crossref]
  30. A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
    [Crossref]

2020 (1)

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

2019 (5)

2018 (3)

2017 (6)

M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref]

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

F. C. Meng, B. W. Liu, S. J. Wang, J. K. Liu, Y. F. Li, C. Y. Wang, A. M. Zheltikov, and M. L. Hu, “Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber,” Opt. Express 25(26), 32972–32984 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. S. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

2015 (4)

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. St. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

2014 (1)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

2011 (5)

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

2004 (1)

1993 (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Adamu, A. I.

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Akhmediev, N.

Amezcua-Correa, R.

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Bache, M.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” J. Opt. Soc. Am. B 36(1), 69–80 (2019).
[Crossref]

Balciunas, T.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

Baltuska, A.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

Bang, O.

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Belli, F.

Benabid, F.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

Bierlich, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Cassataro, M.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. St. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

Chang, W.

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

Chemnitz, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Chen, Y. F.

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Du, J.

Dutin, C. F.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Ermolov, A.

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

Frosz, M. H.

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

Gao, S. F.

Gérome, F.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

Grigorova, T.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Günendi, M. C.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref]

Habib, M. S.

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” J. Opt. Soc. Am. B 36(1), 69–80 (2019).
[Crossref]

Hartung, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Hasan, M. I.

Hoffmann, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Hölzer, P.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

Hu, M. L.

F. C. Meng, B. W. Liu, S. J. Wang, J. K. Liu, Y. F. Li, C. Y. Wang, A. M. Zheltikov, and M. L. Hu, “Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber,” Opt. Express 25(26), 32972–32984 (2017).
[Crossref]

F. C. Meng, S. F. Gao, Y. Y. Wang, P. Wang, J. K. Liu, S. J. Wang, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America), paper STu3 K.4 (2017).

Huang, Z. Y.

Jepsen, P. U.

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

Joly, N. Y.

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Kartashov, D.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Keding, R.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

Kobelke, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Köttig, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. S. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref]

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Lægsgaard, J.

Leng, Y. X.

Li, Y. F.

F. C. Meng, B. W. Liu, S. J. Wang, J. K. Liu, Y. F. Li, C. Y. Wang, A. M. Zheltikov, and M. L. Hu, “Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber,” Opt. Express 25(26), 32972–32984 (2017).
[Crossref]

F. C. Meng, S. F. Gao, Y. Y. Wang, P. Wang, J. K. Liu, S. J. Wang, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America), paper STu3 K.4 (2017).

Lim, C.

Liu, B. W.

F. C. Meng, B. W. Liu, S. J. Wang, J. K. Liu, Y. F. Li, C. Y. Wang, A. M. Zheltikov, and M. L. Hu, “Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber,” Opt. Express 25(26), 32972–32984 (2017).
[Crossref]

F. C. Meng, S. F. Gao, Y. Y. Wang, P. Wang, J. K. Liu, S. J. Wang, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America), paper STu3 K.4 (2017).

Liu, J. K.

F. C. Meng, B. W. Liu, S. J. Wang, J. K. Liu, Y. F. Li, C. Y. Wang, A. M. Zheltikov, and M. L. Hu, “Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber,” Opt. Express 25(26), 32972–32984 (2017).
[Crossref]

F. C. Meng, S. F. Gao, Y. Y. Wang, P. Wang, J. K. Liu, S. J. Wang, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America), paper STu3 K.4 (2017).

Lopez, J. E. A.

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Mak, K. F.

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

Markos, C.

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” J. Opt. Soc. Am. B 36(1), 69–80 (2019).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Martens Biersach, C.

Meng, F. C.

F. C. Meng, B. W. Liu, S. J. Wang, J. K. Liu, Y. F. Li, C. Y. Wang, A. M. Zheltikov, and M. L. Hu, “Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber,” Opt. Express 25(26), 32972–32984 (2017).
[Crossref]

F. C. Meng, S. F. Gao, Y. Y. Wang, P. Wang, J. K. Liu, S. J. Wang, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America), paper STu3 K.4 (2017).

Nam, S.

Nazarkin, A.

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

Novoa, D.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. St. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

Pang, M.

Paulus, G.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

Peng, Y. J.

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Petersen, C. R.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Russell, P. S. J.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. S. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

Russell, P. St. J.

D. Novoa, M. Cassataro, J. C. Travers, and P. St. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

Saleh, M. F.

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

Sauer, G.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Schmidt, M.

M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref]

Schmidt, M. A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Schülzgen, A.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Schwuchow, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Skryabin, D. V.

Smith, C. R.

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

Sollapur, R.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Spielmann, C.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Tani, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. S. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref]

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Travers, J. C.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref]

F. Köttig, F. Tani, C. Martens Biersach, J. C. Travers, and P. S. J. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4(10), 1272–1276 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2(4), 292–300 (2015).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. St. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref]

Voronin, A. A.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

Wang, C. Y.

F. C. Meng, B. W. Liu, S. J. Wang, J. K. Liu, Y. F. Li, C. Y. Wang, A. M. Zheltikov, and M. L. Hu, “Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber,” Opt. Express 25(26), 32972–32984 (2017).
[Crossref]

F. C. Meng, S. F. Gao, Y. Y. Wang, P. Wang, J. K. Liu, S. J. Wang, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America), paper STu3 K.4 (2017).

Wang, D.

Wang, P.

Wang, S. J.

F. C. Meng, B. W. Liu, S. J. Wang, J. K. Liu, Y. F. Li, C. Y. Wang, A. M. Zheltikov, and M. L. Hu, “Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber,” Opt. Express 25(26), 32972–32984 (2017).
[Crossref]

F. C. Meng, S. F. Gao, Y. Y. Wang, P. Wang, J. K. Liu, S. J. Wang, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America), paper STu3 K.4 (2017).

Wang, Y. Y.

Witting, T.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

Wu, D. K.

Yu, F.

Zeisberger, M.

M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref]

Zhao, R. R.

Zhao, Y.

Zheltikov, A.

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

Zheltikov, A. M.

Zhou, B.

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

Zürch, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

J. Lightwave Technol. (2)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

J. Opt. Soc. Am. B (2)

Light: Sci. Appl. (1)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Nat. Commun. (2)

T. Balciunas, C. F. Dutin, T. Witting, A. A. Voronin, A. Zheltikov, F. Gérome, G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref]

Nat. Photonics (1)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (2)

Photonics Res. (1)

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photonics Res. 6(2), 84–88 (2018).
[Crossref]

Phys. Rev. A (1)

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92(3), 033821 (2015).
[Crossref]

Phys. Rev. Lett. (4)

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond Nonlinear Fiber Optics in the Ionization Regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of Photoionization-Induced Blueshift of Ultrashort Solitons in Gas-Filled Hollow-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 107(20), 203902 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright Spatially Coherent Wavelength Tunable Deep-UV Laser Source Using an Ar-Filled Photonic Crystal Fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. St. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115(3), 033901 (2015).
[Crossref]

Rev. Mod. Phys. (1)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Sci. Rep. (3)

A. I. Adamu, M. S. Habib, C. R. Petersen, J. E. A. Lopez, B. Zhou, A. Schülzgen, M. Bache, R. Amezcua-Correa, O. Bang, and C. Markos, “Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber,” Sci. Rep. 9(1), 4446 (2019).
[Crossref]

A. I. Adamu, M. S. Habib, C. R. Smith, J. E. A. Lopez, P. U. Jepsen, R. Amezcua-Correa, O. Bang, and C. Markos, “Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses,” Sci. Rep. 10(1), 4912 (2020).
[Crossref]

M. Zeisberger and M. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7(1), 11761 (2017).
[Crossref]

Sov. Phys. JETP (2)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Other (1)

F. C. Meng, S. F. Gao, Y. Y. Wang, P. Wang, J. K. Liu, S. J. Wang, B. W. Liu, Y. F. Li, C. Y. Wang, and M. L. Hu, “Efficient dispersive waves generation from argon-filled anti-resonant nodeless fiber,” in CLEO: Science and Innovations (Optical Society of America), paper STu3 K.4 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the experimental set-up, including a stage for nonlinear pulse compression and a stage for DW generation. M1-M4, silver mirrors; C1-C2, concave mirrors; CMs, chirped mirrors; HWP, half-wave plate; WGP, wire grid polarizer. These two insets in panel (a) represent the spectra of the input and output pulses in the He-filled SR-PCF at the input pulse energy of 3.7 µJ. (b) SEM of the SR-PCF with 24-µm core diameter and ∼0.26-µm capillary wall thickness used in the second stage. (c) Measured (red solid line) and simulated (blue solid line) fiber losses of the fundamental mode HE11 of the SR-PCF. The simulated fiber loss was calculated by the BR model. (d) Simulated dispersion (purple solid line) of the SR-PCF filled with 10.9-bar He gas, calculated by the ZS model. In both (c) and (d), the light green bars indicate the first resonant spectral region of the SR-PCF.
Fig. 2.
Fig. 2. (a) Measured spectral evolutions at the output of a 25-cm-long SR-PCF with 24-µm core diameter and 10.9-bar He gas as a function of input pulse energy. (b) The normalized spectral intensities (on the linear scale) for different input pulse energies [marked as the black dotted lines in panel (a)]. In both (a) and (b), (i) and (ii) represent the blueshifting soliton and DW, respectively. (c) Soliton wavelength (blue circle line) and DW wavelength (red square line) as a function of input pulse energy. (d) Conversion efficiency (green circle line) and DW spectral ratio (orange square line) versus input pulse energy. The corresponding soliton orders are shown on the right axis of Fig. 2(a) and the upper axis of Figs. 2(c) and 2(d).
Fig. 3.
Fig. 3. (a) Simulated spectral evolutions at the output of a 25-cm-long SR-PCF as a function of input pulse energy, and the corresponding soliton order is shown on the right axis. (b) and (c) Simulated temporal and spectral evolutions for different positions in fiber at the input pulse energy of 6.5 µJ [marked as the black dotted line in panel (a)]. The white circle lines in panel (c) show the maximum plasma density. (d) The generated DW energy as a function of position in fiber. In simulations, the SR-PCF has a core diameter of 24 µm and a wall thickness of ∼0.26 µm, and it was filled with 10.9-bar He gas. The pulses were characterized by SHG-FROG and used as the input. The fiber loss was simulated by BR model and the dispersion was calculated by ZS model. In (a)-(c), (i) and (ii) correspond to the blueshifting soliton and DW.
Fig. 4.
Fig. 4. (a) The Kerr-induced contribution (orange solid line), the plasma-driven contribution (purple solid line), and the combined contributions (blue circle line) between them as a function of position in fiber. (b)-(d) Phase-matched conditions between the solitons and linear waves, the corresponding input pulse energies are 6.5 µJ, 5.5 µJ and 7.5 µJ, respectively.
Fig. 5.
Fig. 5. (a) The pulse-to-pulse energy fluctuation before the coated lens versus time over 30 minutes. (b) The overlay (gray solid lines) of the simulated spectra at the output of a 25-cm-long SR-PCF, where the input pulse energy varies from 6.75 µJ to 7.25 µJ, and the red solid line indicates the mean of the 21 recorded spectra.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ β ( ω ) =  β ( ω ) β S o l ( ω ) = 0,
β S o l ( ω ) = β 0 + β 1 ( ω ω S o l ) + β K e r r  +  β P l a s m a ,
Δ β ( ω ) =  β A ( ω , ω S o l ) β B  = 0,
  β A ( ω , ω S o l ) = β ( ω ) β 0 β 1 ( ω ω S o l ) ,
  β B = β K e r r  +  β P l a s m a .