Abstract

The electromagnetic field concentration effect can greatly enhance light-matter interaction and is of practical interest in applications such as wireless power transfer and sensors. Zero-index media, unusual materials with near-zero relative permittivity (ɛ) and/or permeability (µ), play a key role in tailoring the properties of electromagnetic waves in unique ways. In this work, circuit-based isotropic µ-near-zero (MNZ) media were theoretically proposed and constructed based on two-dimensional transmission lines with lumped elements. Magnetic field concentration was experimentally demonstrated in this circuit-based system, which could be realized by using a small MNZ scatterer and the results agreed well with simulations. Moreover, the MNZ scatterer exhibited a robust enhancement of the magnetic field regardless of its position and number. By applying the magnetic field concentration effect of MNZ scatterers, we also study the flexible manipulation of the electromagnetic energy along different paths. These results not only provide a versatile platform to study abnormal scattering phenomena in metamaterials, but also offer a route to enhance the magnetic field in planar systems. Moreover, the manipulation of magnetic field under multiple MNZ scatterers may enable their use in new applications, such as in the robust energy transfer with properties of long-range and multiple receivers

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref]
  3. X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
    [Crossref]
  4. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  5. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]
  6. X. X. Niu, X. Y. Hu, S. S. Chu, and Q. H. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
    [Crossref]
  7. N. Kinsey, C. DeVault, A. Boltasseva, and V. M. Shalaev, “Near-zero-index materials for photonics,” Nat. Rev. Mater. 4(12), 742–760 (2019).
    [Crossref]
  8. Z. W. Guo, H. T. Jiang, and H. Chen, “Hyperbolic metamaterials: From dispersion manipulation to applications,” J. Appl. Phys. 127(7), 071101 (2020).
    [Crossref]
  9. N. M. Litchinitser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, “Metamaterials: Electromagnetic enhancement at zero-index transition,” Opt. Lett. 33(20), 2350–2352 (2008).
    [Crossref]
  10. S. Campione, D. D. Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
    [Crossref]
  11. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B. Yin, and X. Zhang, “Phase mismatch–free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
    [Crossref]
  12. A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
    [Crossref]
  13. T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
    [Crossref]
  14. M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12(2), 79–83 (2018).
    [Crossref]
  15. S. Jahani, H. Zhao, and Z. Jacob, “Switching Purcell effect with nonlinear epsilon-near-zero media,” Appl. Phys. Lett. 113(2), 021103 (2018).
    [Crossref]
  16. O. Reshef, I. D. Leon, M. Z. Alam, and R. W. Boyd, “Nonlinear optical effects in epsilon-near-zero media,” Nat. Rev. Mater. 4(8), 535–551 (2019).
    [Crossref]
  17. Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
    [Crossref]
  18. X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
    [Crossref]
  19. A. Davoyan and N. Engheta, “Nonreciprocal emission in magnetized epsilon-near-zero metamaterials,” ACS Photonics 6(3), 581–586 (2019).
    [Crossref]
  20. C. Rizza, A. D. Falco, M. Scalora, and A. Ciattoni, “One-dimensional chirality: Strong optical activity in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 115(5), 057401 (2015).
    [Crossref]
  21. S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
    [Crossref]
  22. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Gaglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–346 (2016).
    [Crossref]
  23. Y. Li, A. Nemilentsau, and C. Argyropoulos, “Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems,” Nanoscale 11(31), 14635–14647 (2019).
    [Crossref]
  24. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref]
  25. X. T. He, Y. N. Zhong, Y. Zhou, Z. C. Zhong, and J. W. Dong, “Dirac directional emission in anisotropic zero refractive index photonic crystals,” Sci. Rep. 5(1), 13085 (2015).
    [Crossref]
  26. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
    [Crossref]
  27. Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
    [Crossref]
  28. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref]
  29. A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ɛ-near-zero–filled narrow channels,” Phys. Rev. E 78(1), 016604 (2008).
    [Crossref]
  30. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref]
  31. R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
    [Crossref]
  32. J. M. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
    [Crossref]
  33. H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
    [Crossref]
  34. Z. W. Guo, H. T. Jiang, K. J. Zhu, Y. Sun, Y. H. Li, and H. Chen, “Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials,” Phys. Rev. Appl. 10(6), 064048 (2018).
    [Crossref]
  35. Z. W. Guo, H. T. Jiang, and H. Chen, “Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials,” JPhys Photonics 2(1), 011001 (2020).
    [Crossref]
  36. J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
    [Crossref]
  37. J. Ran, Y. W. Zhang, X. D. Chen, K. Fang, J. F. Zhao, and H. Chen, “Observation of the zero Doppler effect,” Sci. Rep. 6(1), 23973 (2016).
    [Crossref]
  38. M. Memarian and G. V. Eleftheriades, “Analysis of anisotropic epsilon-near-zero hetero-junction lens for concentration and beam splitting,” Opt. Lett. 40(6), 1010–1013 (2015).
    [Crossref]
  39. S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microwave Theory Tech. 61(12), 4110–4117 (2013).
    [Crossref]
  40. M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
    [Crossref]
  41. V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
    [Crossref]
  42. A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
    [Crossref]
  43. W. R. Zhu, L. M. Si, and M. Premaratne, “Light focusing using epsilon-near-zero metamaterials,” AIP Adv. 3(11), 112124 (2013).
    [Crossref]
  44. A. M. Mahmoud and N. Engheta, “Wave–matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
    [Crossref]
  45. M. Zhou, L. Shi, J. Zi, and Z. F. Yu, “Extraordinarily large optical cross section for localized single nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
    [Crossref]
  46. Z. Wang, Z. Y. Wang, and Z. F. Yu, “Photon management with index-near-zero materials,” Appl. Phys. Lett. 109(5), 051101 (2016).
    [Crossref]
  47. I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos. Trans. R. Soc., A 375(2090), 20160059 (2017).
    [Crossref]
  48. I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
    [Crossref]
  49. J. Luo, B. B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
    [Crossref]
  50. Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, “Substrate-integrated photonic doping for near-zero-index devices,” Nat. Commun. 10(1), 4132 (2019).
    [Crossref]
  51. C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
    [Crossref]
  52. T. Zentgraf, Y. M. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
    [Crossref]
  53. M. Zhou, L. Yang, L. Lu, L. Shi, J. Zi, and Z. F. Yu, “Electromagnetic scattering laws in Weyl systems,” Nat. Commun. 8(1), 1388 (2017).
    [Crossref]
  54. L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
    [Crossref]
  55. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
    [Crossref]
  56. J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
    [Crossref]
  57. J. W. Song, J. Luo, and Y. Lai, “Side scattering shadow and energy concentration effects of epsilon-near-zero media,” Opt. Lett. 43(8), 1738–1741 (2018).
    [Crossref]
  58. P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
    [Crossref]
  59. S. M. Zhong and S. L. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
    [Crossref]
  60. Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
    [Crossref]
  61. P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
    [Crossref]
  62. Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
    [Crossref]
  63. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically LC loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50(12), 2702–2712 (2002).
    [Crossref]
  64. Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
    [Crossref]
  65. Z. W. Guo, H. T. Jiang, Y. H. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).
    [Crossref]
  66. Y. Q. Wang, Z. W. Guo, Y. Q. Chen, X. Chen, H. T. Jiang, and H. Chen, “Circuit-based magnetic hyperbolic cavities,” Phys. Rev. Appl. 13(4), 044024 (2020).
    [Crossref]
  67. M. Song, P. Belov, and P. Kapitanova, “Wireless power transfer inspired by the modern trends in electromagnetics,” Appl. Phys. Rev. 4(2), 021102 (2017).
    [Crossref]
  68. Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
    [Crossref]
  69. P. Jarry and J. Beneat, Design and Realizations of Miniaturized Fractal Microwave and RF Filters (John Wiley & Sons, New York, 2009).
  70. A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
    [Crossref]

2020 (3)

Z. W. Guo, H. T. Jiang, and H. Chen, “Hyperbolic metamaterials: From dispersion manipulation to applications,” J. Appl. Phys. 127(7), 071101 (2020).
[Crossref]

Z. W. Guo, H. T. Jiang, and H. Chen, “Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials,” JPhys Photonics 2(1), 011001 (2020).
[Crossref]

Y. Q. Wang, Z. W. Guo, Y. Q. Chen, X. Chen, H. T. Jiang, and H. Chen, “Circuit-based magnetic hyperbolic cavities,” Phys. Rev. Appl. 13(4), 044024 (2020).
[Crossref]

2019 (7)

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
[Crossref]

Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, “Substrate-integrated photonic doping for near-zero-index devices,” Nat. Commun. 10(1), 4132 (2019).
[Crossref]

O. Reshef, I. D. Leon, M. Z. Alam, and R. W. Boyd, “Nonlinear optical effects in epsilon-near-zero media,” Nat. Rev. Mater. 4(8), 535–551 (2019).
[Crossref]

A. Davoyan and N. Engheta, “Nonreciprocal emission in magnetized epsilon-near-zero metamaterials,” ACS Photonics 6(3), 581–586 (2019).
[Crossref]

Y. Li, A. Nemilentsau, and C. Argyropoulos, “Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems,” Nanoscale 11(31), 14635–14647 (2019).
[Crossref]

N. Kinsey, C. DeVault, A. Boltasseva, and V. M. Shalaev, “Near-zero-index materials for photonics,” Nat. Rev. Mater. 4(12), 742–760 (2019).
[Crossref]

2018 (11)

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, K. J. Zhu, Y. Sun, Y. H. Li, and H. Chen, “Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials,” Phys. Rev. Appl. 10(6), 064048 (2018).
[Crossref]

Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12(2), 79–83 (2018).
[Crossref]

S. Jahani, H. Zhao, and Z. Jacob, “Switching Purcell effect with nonlinear epsilon-near-zero media,” Appl. Phys. Lett. 113(2), 021103 (2018).
[Crossref]

X. X. Niu, X. Y. Hu, S. S. Chu, and Q. H. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

J. Luo, B. B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

J. W. Song, J. Luo, and Y. Lai, “Side scattering shadow and energy concentration effects of epsilon-near-zero media,” Opt. Lett. 43(8), 1738–1741 (2018).
[Crossref]

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. H. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).
[Crossref]

2017 (6)

M. Song, P. Belov, and P. Kapitanova, “Wireless power transfer inspired by the modern trends in electromagnetics,” Appl. Phys. Rev. 4(2), 021102 (2017).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
[Crossref]

M. Zhou, L. Yang, L. Lu, L. Shi, J. Zi, and Z. F. Yu, “Electromagnetic scattering laws in Weyl systems,” Nat. Commun. 8(1), 1388 (2017).
[Crossref]

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos. Trans. R. Soc., A 375(2090), 20160059 (2017).
[Crossref]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

2016 (5)

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Gaglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–346 (2016).
[Crossref]

Z. Wang, Z. Y. Wang, and Z. F. Yu, “Photon management with index-near-zero materials,” Appl. Phys. Lett. 109(5), 051101 (2016).
[Crossref]

J. Ran, Y. W. Zhang, X. D. Chen, K. Fang, J. F. Zhao, and H. Chen, “Observation of the zero Doppler effect,” Sci. Rep. 6(1), 23973 (2016).
[Crossref]

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

2015 (8)

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

M. Memarian and G. V. Eleftheriades, “Analysis of anisotropic epsilon-near-zero hetero-junction lens for concentration and beam splitting,” Opt. Lett. 40(6), 1010–1013 (2015).
[Crossref]

M. Zhou, L. Shi, J. Zi, and Z. F. Yu, “Extraordinarily large optical cross section for localized single nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref]

C. Rizza, A. D. Falco, M. Scalora, and A. Ciattoni, “One-dimensional chirality: Strong optical activity in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 115(5), 057401 (2015).
[Crossref]

X. T. He, Y. N. Zhong, Y. Zhou, Z. C. Zhong, and J. W. Dong, “Dirac directional emission in anisotropic zero refractive index photonic crystals,” Sci. Rep. 5(1), 13085 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

2014 (3)

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

A. M. Mahmoud and N. Engheta, “Wave–matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
[Crossref]

J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref]

2013 (9)

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref]

S. M. Zhong and S. L. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref]

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microwave Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

W. R. Zhu, L. M. Si, and M. Premaratne, “Light focusing using epsilon-near-zero metamaterials,” AIP Adv. 3(11), 112124 (2013).
[Crossref]

S. Campione, D. D. Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B. Yin, and X. Zhang, “Phase mismatch–free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

2012 (1)

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref]

2011 (3)

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

T. Zentgraf, Y. M. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref]

2010 (2)

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref]

J. M. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

2008 (4)

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ɛ-near-zero–filled narrow channels,” Phys. Rev. E 78(1), 016604 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref]

N. M. Litchinitser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, “Metamaterials: Electromagnetic enhancement at zero-index transition,” Opt. Lett. 33(20), 2350–2352 (2008).
[Crossref]

2007 (2)

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref]

2006 (1)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

2002 (2)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically LC loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Agarwal, G. S.

Z. W. Guo, H. T. Jiang, Y. H. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).
[Crossref]

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

Alam, M. Z.

O. Reshef, I. D. Leon, M. Z. Alam, and R. W. Boyd, “Nonlinear optical effects in epsilon-near-zero media,” Nat. Rev. Mater. 4(8), 535–551 (2019).
[Crossref]

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12(2), 79–83 (2018).
[Crossref]

Alù, A.

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ɛ-near-zero–filled narrow channels,” Phys. Rev. E 78(1), 016604 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

Amirhosseini, M. M.

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microwave Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Ankonina, G.

Argyropoulos, C.

Y. Li, A. Nemilentsau, and C. Argyropoulos, “Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems,” Nanoscale 11(31), 14635–14647 (2019).
[Crossref]

Atrashchenko, A.

Atwater, H. A.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Basharin, A. A.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

Belov, P.

M. Song, P. Belov, and P. Kapitanova, “Wireless power transfer inspired by the modern trends in electromagnetics,” Appl. Phys. Rev. 4(2), 021102 (2017).
[Crossref]

Belov, P. A.

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref]

Beneat, J.

P. Jarry and J. Beneat, Design and Realizations of Miniaturized Fractal Microwave and RF Filters (John Wiley & Sons, New York, 2009).

Bezares, F. J.

Biehs, S.-A.

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

Boltasseva, A.

Boyd, R. W.

O. Reshef, I. D. Leon, M. Z. Alam, and R. W. Boyd, “Nonlinear optical effects in epsilon-near-zero media,” Nat. Rev. Mater. 4(8), 535–551 (2019).
[Crossref]

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12(2), 79–83 (2018).
[Crossref]

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Caldwell, J. D.

Campagnola, P.

L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
[Crossref]

Campione, S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

S. Campione, D. D. Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microwave Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

Capolino, F.

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microwave Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

S. Campione, D. D. Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Capretti, A.

Ceglia, D. D.

S. Campione, D. D. Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Chan, C. T.

J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref]

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref]

Chattopadhyay, U.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Cheben, P.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Chen, H.

Z. W. Guo, H. T. Jiang, and H. Chen, “Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials,” JPhys Photonics 2(1), 011001 (2020).
[Crossref]

Z. W. Guo, H. T. Jiang, and H. Chen, “Hyperbolic metamaterials: From dispersion manipulation to applications,” J. Appl. Phys. 127(7), 071101 (2020).
[Crossref]

Y. Q. Wang, Z. W. Guo, Y. Q. Chen, X. Chen, H. T. Jiang, and H. Chen, “Circuit-based magnetic hyperbolic cavities,” Phys. Rev. Appl. 13(4), 044024 (2020).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. H. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).
[Crossref]

Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, K. J. Zhu, Y. Sun, Y. H. Li, and H. Chen, “Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials,” Phys. Rev. Appl. 10(6), 064048 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
[Crossref]

J. Ran, Y. W. Zhang, X. D. Chen, K. Fang, J. F. Zhao, and H. Chen, “Observation of the zero Doppler effect,” Sci. Rep. 6(1), 23973 (2016).
[Crossref]

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

Chen, H. Y.

J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref]

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

Chen, J.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Chen, L.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref]

Chen, X.

Y. Q. Wang, Z. W. Guo, Y. Q. Chen, X. Chen, H. T. Jiang, and H. Chen, “Circuit-based magnetic hyperbolic cavities,” Phys. Rev. Appl. 13(4), 044024 (2020).
[Crossref]

Chen, X. D.

J. Ran, Y. W. Zhang, X. D. Chen, K. Fang, J. F. Zhao, and H. Chen, “Observation of the zero Doppler effect,” Sci. Rep. 6(1), 23973 (2016).
[Crossref]

Chen, Y. Q.

Y. Q. Wang, Z. W. Guo, Y. Q. Chen, X. Chen, H. T. Jiang, and H. Chen, “Circuit-based magnetic hyperbolic cavities,” Phys. Rev. Appl. 13(4), 044024 (2020).
[Crossref]

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

Cheng, Q.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref]

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref]

Chong, Y. D.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Chu, H. C.

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

Chu, S. S.

X. X. Niu, X. Y. Hu, S. S. Chu, and Q. H. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Ciattoni, A.

C. Rizza, A. D. Falco, M. Scalora, and A. Ciattoni, “One-dimensional chirality: Strong optical activity in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 115(5), 057401 (2015).
[Crossref]

Cui, T. J.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref]

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref]

Cummer, S. A.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref]

Davoyan, A.

A. Davoyan and N. Engheta, “Nonreciprocal emission in magnetized epsilon-near-zero metamaterials,” ACS Photonics 6(3), 581–586 (2019).
[Crossref]

de Ceglia, D.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

De Leon, I.

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12(2), 79–83 (2018).
[Crossref]

DeVault, C.

N. Kinsey, C. DeVault, A. Boltasseva, and V. M. Shalaev, “Near-zero-index materials for photonics,” Nat. Rev. Mater. 4(12), 742–760 (2019).
[Crossref]

Dickson, W.

Dong, J. W.

X. T. He, Y. N. Zhong, Y. Zhou, Z. C. Zhong, and J. W. Dong, “Dirac directional emission in anisotropic zero refractive index photonic crystals,” Sci. Rep. 5(1), 13085 (2015).
[Crossref]

Dubrovina, I. A.

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

Dutta, A.

Economou, E. N.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

Edwards, B.

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

Eleftheriades, G. V.

M. Memarian and G. V. Eleftheriades, “Analysis of anisotropic epsilon-near-zero hetero-junction lens for concentration and beam splitting,” Opt. Lett. 40(6), 1010–1013 (2015).
[Crossref]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically LC loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

Ellis, C. T.

Engheta, N.

A. Davoyan and N. Engheta, “Nonreciprocal emission in magnetized epsilon-near-zero metamaterials,” ACS Photonics 6(3), 581–586 (2019).
[Crossref]

Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, “Substrate-integrated photonic doping for near-zero-index devices,” Nat. Commun. 10(1), 4132 (2019).
[Crossref]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref]

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos. Trans. R. Soc., A 375(2090), 20160059 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Gaglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–346 (2016).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref]

A. M. Mahmoud and N. Engheta, “Wave–matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
[Crossref]

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ɛ-near-zero–filled narrow channels,” Phys. Rev. E 78(1), 016604 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Falco, A. D.

C. Rizza, A. D. Falco, M. Scalora, and A. Ciattoni, “One-dimensional chirality: Strong optical activity in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 115(5), 057401 (2015).
[Crossref]

Fang, K.

J. Ran, Y. W. Zhang, X. D. Chen, K. Fang, J. F. Zhao, and H. Chen, “Observation of the zero Doppler effect,” Sci. Rep. 6(1), 23973 (2016).
[Crossref]

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

Feng, L.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Fisher, P.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref]

Fu, Y. Y.

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

Gabitov, I. R.

Gaglayan, H.

Gao, N.

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

Geng, T.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Genov, D. A.

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

Giles, A. J.

Ginzburg, P.

Glembocki, O. J.

Goldsmith, R. H.

L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
[Crossref]

Gong, Q. H.

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

X. X. Niu, X. Y. Hu, S. S. Chu, and Q. H. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Gu, M.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Guclu, C.

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microwave Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Guo, Z. W.

Z. W. Guo, H. T. Jiang, and H. Chen, “Hyperbolic metamaterials: From dispersion manipulation to applications,” J. Appl. Phys. 127(7), 071101 (2020).
[Crossref]

Z. W. Guo, H. T. Jiang, and H. Chen, “Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials,” JPhys Photonics 2(1), 011001 (2020).
[Crossref]

Y. Q. Wang, Z. W. Guo, Y. Q. Chen, X. Chen, H. T. Jiang, and H. Chen, “Circuit-based magnetic hyperbolic cavities,” Phys. Rev. Appl. 13(4), 044024 (2020).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. H. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, K. J. Zhu, Y. Sun, Y. H. Li, and H. Chen, “Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials,” Phys. Rev. Appl. 10(6), 064048 (2018).
[Crossref]

Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
[Crossref]

Halir, R.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Halterman, K.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref]

Hand, T.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref]

Hang, Z. H.

J. Luo, B. B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref]

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref]

Hao, J. M.

J. M. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

He, S. L.

S. M. Zhong and S. L. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref]

He, X. T.

X. T. He, Y. N. Zhong, Y. Zhou, Z. C. Zhong, and J. W. Dong, “Dirac directional emission in anisotropic zero refractive index photonic crystals,” Sci. Rep. 5(1), 13085 (2015).
[Crossref]

Hou, B.

J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref]

Hu, X. Y.

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

X. X. Niu, X. Y. Hu, S. S. Chu, and Q. H. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Huang, X. Q.

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref]

Iorsh, I.

Iyer, A. K.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically LC loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

Jacob, Z.

S. Jahani, H. Zhao, and Z. Jacob, “Switching Purcell effect with nonlinear epsilon-near-zero media,” Appl. Phys. Lett. 113(2), 021103 (2018).
[Crossref]

Jahani, S.

S. Jahani, H. Zhao, and Z. Jacob, “Switching Purcell effect with nonlinear epsilon-near-zero media,” Appl. Phys. Lett. 113(2), 021103 (2018).
[Crossref]

Jarry, P.

P. Jarry and J. Beneat, Design and Realizations of Miniaturized Fractal Microwave and RF Filters (John Wiley & Sons, New York, 2009).

Jia, B.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Jiang, H. T.

Z. W. Guo, H. T. Jiang, and H. Chen, “Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials,” JPhys Photonics 2(1), 011001 (2020).
[Crossref]

Z. W. Guo, H. T. Jiang, and H. Chen, “Hyperbolic metamaterials: From dispersion manipulation to applications,” J. Appl. Phys. 127(7), 071101 (2020).
[Crossref]

Y. Q. Wang, Z. W. Guo, Y. Q. Chen, X. Chen, H. T. Jiang, and H. Chen, “Circuit-based magnetic hyperbolic cavities,” Phys. Rev. Appl. 13(4), 044024 (2020).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. H. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).
[Crossref]

Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, K. J. Zhu, Y. Sun, Y. H. Li, and H. Chen, “Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials,” Phys. Rev. Appl. 10(6), 064048 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
[Crossref]

Jiang, W. X.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref]

Joannopoulos, J. D.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref]

Kafesaki, M.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

Kapitanova, P.

M. Song, P. Belov, and P. Kapitanova, “Wireless power transfer inspired by the modern trends in electromagnetics,” Appl. Phys. Rev. 4(2), 021102 (2017).
[Crossref]

Karalis, A.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref]

Keeler, G. A.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Khanikaev, A. B.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Kildishev, A. V.

Kim, J.

Kinsey, N.

N. Kinsey, C. DeVault, A. Boltasseva, and V. M. Shalaev, “Near-zero-index materials for photonics,” Nat. Rev. Mater. 4(12), 742–760 (2019).
[Crossref]

Kita, S.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Kivshar, Y. S.

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref]

Kozachenko, A. V.

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Kremer, P. C.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically LC loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

Kurs, A.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref]

Lai, Y.

J. W. Song, J. Luo, and Y. Lai, “Side scattering shadow and energy concentration effects of epsilon-near-zero media,” Opt. Lett. 43(8), 1738–1741 (2018).
[Crossref]

J. Luo, B. B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref]

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref]

Leon, I. D.

O. Reshef, I. D. Leon, M. Z. Alam, and R. W. Boyd, “Nonlinear optical effects in epsilon-near-zero media,” Nat. Rev. Mater. 4(8), 535–551 (2019).
[Crossref]

Leykam, D.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Li, B. B.

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

Li, H.

Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, “Substrate-integrated photonic doping for near-zero-index devices,” Nat. Commun. 10(1), 4132 (2019).
[Crossref]

Li, Q.

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

Li, X.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Li, Y.

Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, “Substrate-integrated photonic doping for near-zero-index devices,” Nat. Commun. 10(1), 4132 (2019).
[Crossref]

Y. Li, A. Nemilentsau, and C. Argyropoulos, “Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems,” Nanoscale 11(31), 14635–14647 (2019).
[Crossref]

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos. Trans. R. Soc., A 375(2090), 20160059 (2017).
[Crossref]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Li, Y. H.

Z. W. Guo, H. T. Jiang, K. J. Zhu, Y. Sun, Y. H. Li, and H. Chen, “Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials,” Phys. Rev. Appl. 10(6), 064048 (2018).
[Crossref]

Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. H. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).
[Crossref]

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

Liang, B.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Liberal, I.

Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, “Substrate-integrated photonic doping for near-zero-index devices,” Nat. Commun. 10(1), 4132 (2019).
[Crossref]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref]

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos. Trans. R. Soc., A 375(2090), 20160059 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Litchinitser, N. M.

Liu, B.

L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
[Crossref]

Liu, B. B.

J. Luo, B. B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

Liu, H.

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

Liu, R. P.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref]

Liu, S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Liu, Y. C.

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

Liu, Y. M.

T. Zentgraf, Y. M. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref]

Loncar, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Long, Y.

Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
[Crossref]

Lu, C. C.

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

Lu, L.

M. Zhou, L. Yang, L. Lu, L. Shi, J. Zi, and Z. F. Yu, “Electromagnetic scattering laws in Weyl systems,” Nat. Commun. 8(1), 1388 (2017).
[Crossref]

Lu, W. X.

J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref]

Luk, T. S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Luo, J.

J. W. Song, J. Luo, and Y. Lai, “Side scattering shadow and energy concentration effects of epsilon-near-zero media,” Opt. Lett. 43(8), 1738–1741 (2018).
[Crossref]

J. Luo, B. B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref]

Mahmoud, A. M.

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Gaglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–346 (2016).
[Crossref]

A. M. Mahmoud and N. Engheta, “Wave–matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
[Crossref]

Maimistov, A. I.

Mattei, M.

L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
[Crossref]

Mavidis, C.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

Mazur, E.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Melchakova, I. V.

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

Memarian, M.

Menon, V. M.

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

Mikkelsen, M. H.

T. Zentgraf, Y. M. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref]

Mock, J. J.

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref]

Moffatt, R.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Morgan, F.

Muñoz, P.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Murphy, A.

Naik, G. V.

Negro, L. D.

Nemilentsau, A.

Y. Li, A. Nemilentsau, and C. Argyropoulos, “Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems,” Nanoscale 11(31), 14635–14647 (2019).
[Crossref]

Nevet, A.

Nguyen, V. C.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref]

Niu, X. X.

X. X. Niu, X. Y. Hu, S. S. Chu, and Q. H. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

O’Brien, K.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B. Yin, and X. Zhang, “Phase mismatch–free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Orenstein, M.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Poddubny, A. N.

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

Pollard, R. J.

Prasankumar, R. P.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Premaratne, M.

W. R. Zhu, L. M. Si, and M. Premaratne, “Light focusing using epsilon-near-zero metamaterials,” AIP Adv. 3(11), 112124 (2013).
[Crossref]

Qian, W.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Qiu, M.

J. M. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

Raaijmakers, A. J. E.

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

Ran, J.

J. Ran, Y. W. Zhang, X. D. Chen, K. Fang, J. F. Zhao, and H. Chen, “Observation of the zero Doppler effect,” Sci. Rep. 6(1), 23973 (2016).
[Crossref]

Ren, J.

Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
[Crossref]

Reshef, O.

O. Reshef, I. D. Leon, M. Z. Alam, and R. W. Boyd, “Nonlinear optical effects in epsilon-near-zero media,” Nat. Rev. Mater. 4(8), 535–551 (2019).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Rizza, C.

C. Rizza, A. D. Falco, M. Scalora, and A. Ciattoni, “One-dimensional chirality: Strong optical activity in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 115(5), 057401 (2015).
[Crossref]

Rodríguez Fortuño, F. J.

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Sagdeev, R. Z.

Salandrino, A.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B. Yin, and X. Zhang, “Phase mismatch–free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Scalora, M.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

C. Rizza, A. D. Falco, M. Scalora, and A. Ciattoni, “One-dimensional chirality: Strong optical activity in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 115(5), 057401 (2015).
[Crossref]

S. Campione, D. D. Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Schmid, J. H.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

Schulz, S. A.

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12(2), 79–83 (2018).
[Crossref]

Sedighy, S. H.

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microwave Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

Shalaev, V. M.

N. Kinsey, C. DeVault, A. Boltasseva, and V. M. Shalaev, “Near-zero-index materials for photonics,” Nat. Rev. Mater. 4(12), 742–760 (2019).
[Crossref]

N. M. Litchinitser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, “Metamaterials: Electromagnetic enhancement at zero-index transition,” Opt. Lett. 33(20), 2350–2352 (2008).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

Sheng, C.

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

Shi, L.

M. Zhou, L. Yang, L. Lu, L. Shi, J. Zi, and Z. F. Yu, “Electromagnetic scattering laws in Weyl systems,” Nat. Commun. 8(1), 1388 (2017).
[Crossref]

M. Zhou, L. Shi, J. Zi, and Z. F. Yu, “Extraordinarily large optical cross section for localized single nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref]

Si, L. M.

W. R. Zhu, L. M. Si, and M. Premaratne, “Light focusing using epsilon-near-zero metamaterials,” AIP Adv. 3(11), 112124 (2013).
[Crossref]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ɛ-near-zero–filled narrow channels,” Phys. Rev. E 78(1), 016604 (2008).
[Crossref]

Sinclair, M. B.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Slobozhanyuk, A. P.

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

Smith, D. R.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

Soljacic, M.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref]

Song, J. W.

Song, M.

M. Song, P. Belov, and P. Kapitanova, “Wireless power transfer inspired by the modern trends in electromagnetics,” Appl. Phys. Rev. 4(2), 021102 (2017).
[Crossref]

Soukoulis, C. M.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

Suchowski, H.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B. Yin, and X. Zhang, “Phase mismatch–free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Sun, S. L.

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

Sun, W.

Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, “Substrate-integrated photonic doping for near-zero-index devices,” Nat. Commun. 10(1), 4132 (2019).
[Crossref]

Sun, Y.

Z. W. Guo, H. T. Jiang, K. J. Zhu, Y. Sun, Y. H. Li, and H. Chen, “Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials,” Phys. Rev. Appl. 10(6), 064048 (2018).
[Crossref]

Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Tischler, J. G.

Upham, J.

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12(2), 79–83 (2018).
[Crossref]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

T. Zentgraf, Y. M. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref]

van den Berg, C. A. T.

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

Vincent, P. A.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Vincenti, M. A.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

S. Campione, D. D. Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Vulis, D. I.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Wang, F. F.

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

Wang, Y.

A. Capretti, Y. Wang, N. Engheta, and L. D. Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref]

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Wang, Y. Q.

Y. Q. Wang, Z. W. Guo, Y. Q. Chen, X. Chen, H. T. Jiang, and H. Chen, “Circuit-based magnetic hyperbolic cavities,” Phys. Rev. Appl. 13(4), 044024 (2020).
[Crossref]

Wang, Z.

Z. Wang, Z. Y. Wang, and Z. F. Yu, “Photon management with index-near-zero materials,” Appl. Phys. Lett. 109(5), 051101 (2016).
[Crossref]

Wang, Z. Y.

Z. Wang, Z. Y. Wang, and Z. F. Yu, “Photon management with index-near-zero materials,” Appl. Phys. Lett. 109(5), 051101 (2016).
[Crossref]

Wong, Z. J.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B. Yin, and X. Zhang, “Phase mismatch–free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Wu, F.

Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Wu, Q.

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

Wu, Y.

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

Wurtz, G. A.

Xu, L.

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

Xue, C. H.

Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
[Crossref]

Yan, W.

J. M. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

Yang, F.

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

Yang, H.

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

Yang, J. H.

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

Yang, L.

M. Zhou, L. Yang, L. Lu, L. Shi, J. Zi, and Z. F. Yu, “Electromagnetic scattering laws in Weyl systems,” Nat. Commun. 8(1), 1388 (2017).
[Crossref]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Yin, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Yin, X. B.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B. Yin, and X. Zhang, “Phase mismatch–free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Ying, L.

L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

Yu, K.

Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
[Crossref]

Yu, Z. F.

L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
[Crossref]

M. Zhou, L. Yang, L. Lu, L. Shi, J. Zi, and Z. F. Yu, “Electromagnetic scattering laws in Weyl systems,” Nat. Commun. 8(1), 1388 (2017).
[Crossref]

Z. Wang, Z. Y. Wang, and Z. F. Yu, “Photon management with index-near-zero materials,” Appl. Phys. Lett. 109(5), 051101 (2016).
[Crossref]

M. Zhou, L. Shi, J. Zi, and Z. F. Yu, “Extraordinarily large optical cross section for localized single nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref]

Zayats, A. V.

Zentgraf, T.

T. Zentgraf, Y. M. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref]

Zhang, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B. Yin, and X. Zhang, “Phase mismatch–free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

T. Zentgraf, Y. M. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Zhang, Y. W.

J. Ran, Y. W. Zhang, X. D. Chen, K. Fang, J. F. Zhao, and H. Chen, “Observation of the zero Doppler effect,” Sci. Rep. 6(1), 23973 (2016).
[Crossref]

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

Zhao, H.

S. Jahani, H. Zhao, and Z. Jacob, “Switching Purcell effect with nonlinear epsilon-near-zero media,” Appl. Phys. Lett. 113(2), 021103 (2018).
[Crossref]

Zhao, J. F.

J. Ran, Y. W. Zhang, X. D. Chen, K. Fang, J. F. Zhao, and H. Chen, “Observation of the zero Doppler effect,” Sci. Rep. 6(1), 23973 (2016).
[Crossref]

Zheng, H. H.

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref]

Zhong, S. M.

S. M. Zhong and S. L. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref]

Zhong, Y. N.

X. T. He, Y. N. Zhong, Y. Zhou, Z. C. Zhong, and J. W. Dong, “Dirac directional emission in anisotropic zero refractive index photonic crystals,” Sci. Rep. 5(1), 13085 (2015).
[Crossref]

Zhong, Z. C.

X. T. He, Y. N. Zhong, Y. Zhou, Z. C. Zhong, and J. W. Dong, “Dirac directional emission in anisotropic zero refractive index photonic crystals,” Sci. Rep. 5(1), 13085 (2015).
[Crossref]

Zhou, L.

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

Zhou, M.

L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
[Crossref]

M. Zhou, L. Yang, L. Lu, L. Shi, J. Zi, and Z. F. Yu, “Electromagnetic scattering laws in Weyl systems,” Nat. Commun. 8(1), 1388 (2017).
[Crossref]

M. Zhou, L. Shi, J. Zi, and Z. F. Yu, “Extraordinarily large optical cross section for localized single nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref]

Zhou, X.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Zhou, Y.

X. T. He, Y. N. Zhong, Y. Zhou, Z. C. Zhong, and J. W. Dong, “Dirac directional emission in anisotropic zero refractive index photonic crystals,” Sci. Rep. 5(1), 13085 (2015).
[Crossref]

Zhou, Z.

Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, “Substrate-integrated photonic doping for near-zero-index devices,” Nat. Commun. 10(1), 4132 (2019).
[Crossref]

Zhu, K. J.

Z. W. Guo, H. T. Jiang, K. J. Zhu, Y. Sun, Y. H. Li, and H. Chen, “Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials,” Phys. Rev. Appl. 10(6), 064048 (2018).
[Crossref]

Zhu, S. N.

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

Zhu, W. R.

W. R. Zhu, L. M. Si, and M. Premaratne, “Light focusing using epsilon-near-zero metamaterials,” AIP Adv. 3(11), 112124 (2013).
[Crossref]

Zhuang, S.

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Zi, J.

M. Zhou, L. Yang, L. Lu, L. Shi, J. Zi, and Z. F. Yu, “Electromagnetic scattering laws in Weyl systems,” Nat. Commun. 8(1), 1388 (2017).
[Crossref]

M. Zhou, L. Shi, J. Zi, and Z. F. Yu, “Extraordinarily large optical cross section for localized single nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref]

ACS Photonics (1)

A. Davoyan and N. Engheta, “Nonreciprocal emission in magnetized epsilon-near-zero metamaterials,” ACS Photonics 6(3), 581–586 (2019).
[Crossref]

Adv. Mater. (1)

A. P. Slobozhanyuk, A. N. Poddubny, A. J. E. Raaijmakers, C. A. T. van den Berg, A. V. Kozachenko, I. A. Dubrovina, I. V. Melchakova, Y. S. Kivshar, and P. A. Belov, “Enhancement of magnetic resonance imaging with metasurfaces,” Adv. Mater. 28(9), 1832–1838 (2016).
[Crossref]

Adv. Opt. Mater. (1)

X. X. Niu, X. Y. Hu, S. S. Chu, and Q. H. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

AIP Adv. (1)

W. R. Zhu, L. M. Si, and M. Premaratne, “Light focusing using epsilon-near-zero metamaterials,” AIP Adv. 3(11), 112124 (2013).
[Crossref]

Appl. Phys. Lett. (5)

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

J. M. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

S. Jahani, H. Zhao, and Z. Jacob, “Switching Purcell effect with nonlinear epsilon-near-zero media,” Appl. Phys. Lett. 113(2), 021103 (2018).
[Crossref]

Z. Wang, Z. Y. Wang, and Z. F. Yu, “Photon management with index-near-zero materials,” Appl. Phys. Lett. 109(5), 051101 (2016).
[Crossref]

Appl. Phys. Rev. (1)

M. Song, P. Belov, and P. Kapitanova, “Wireless power transfer inspired by the modern trends in electromagnetics,” Appl. Phys. Rev. 4(2), 021102 (2017).
[Crossref]

Europhys. Lett. (1)

Q. Wu, Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, “Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms,” Europhys. Lett. 109(6), 68005 (2015).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically LC loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

S. H. Sedighy, C. Guclu, S. Campione, M. M. Amirhosseini, and F. Capolino, “Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution,” IEEE Trans. Microwave Theory Tech. 61(12), 4110–4117 (2013).
[Crossref]

J. Appl. Phys. (2)

Z. W. Guo, F. Wu, C. H. Xue, H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Z. W. Guo, H. T. Jiang, and H. Chen, “Hyperbolic metamaterials: From dispersion manipulation to applications,” J. Appl. Phys. 127(7), 071101 (2020).
[Crossref]

JPhys Photonics (1)

Z. W. Guo, H. T. Jiang, and H. Chen, “Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials,” JPhys Photonics 2(1), 011001 (2020).
[Crossref]

Laser Photonics Rev. (1)

J. Luo, B. B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

Light: Sci. Appl. (1)

H. C. Chu, Q. Li, B. B. Li, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, and Y. Lai, “A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials,” Light: Sci. Appl. 7(1), 50 (2018).
[Crossref]

Nanoscale (1)

Y. Li, A. Nemilentsau, and C. Argyropoulos, “Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems,” Nanoscale 11(31), 14635–14647 (2019).
[Crossref]

Nat. Commun. (3)

A. M. Mahmoud and N. Engheta, “Wave–matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5(1), 5638 (2014).
[Crossref]

Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, and N. Engheta, “Substrate-integrated photonic doping for near-zero-index devices,” Nat. Commun. 10(1), 4132 (2019).
[Crossref]

M. Zhou, L. Yang, L. Lu, L. Shi, J. Zi, and Z. F. Yu, “Electromagnetic scattering laws in Weyl systems,” Nat. Commun. 8(1), 1388 (2017).
[Crossref]

Nat. Mater. (1)

X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref]

Nat. Nanotechnol. (1)

T. Zentgraf, Y. M. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref]

Nat. Photonics (6)

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero-index metamaterials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

M. Z. Alam, S. A. Schulz, J. Upham, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material,” Nat. Photonics 12(2), 79–83 (2018).
[Crossref]

J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu, and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5(4), 239–242 (2011).
[Crossref]

Nat. Rev. Mater. (2)

N. Kinsey, C. DeVault, A. Boltasseva, and V. M. Shalaev, “Near-zero-index materials for photonics,” Nat. Rev. Mater. 4(12), 742–760 (2019).
[Crossref]

O. Reshef, I. D. Leon, M. Z. Alam, and R. W. Boyd, “Nonlinear optical effects in epsilon-near-zero media,” Nat. Rev. Mater. 4(8), 535–551 (2019).
[Crossref]

Nature (1)

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optica (1)

Philos. Trans. R. Soc., A (1)

I. Liberal, Y. Li, and N. Engheta, “Magnetic field concentration assisted by epsilon-near-zero media,” Philos. Trans. R. Soc., A 375(2090), 20160059 (2017).
[Crossref]

Phys. Rev. Appl. (3)

Y. Wu, X. Y. Hu, F. F. Wang, J. H. Yang, C. C. Lu, Y. C. Liu, H. Yang, and Q. H. Gong, “Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range,” Phys. Rev. Appl. 12(5), 054021 (2019).
[Crossref]

Y. Q. Wang, Z. W. Guo, Y. Q. Chen, X. Chen, H. T. Jiang, and H. Chen, “Circuit-based magnetic hyperbolic cavities,” Phys. Rev. Appl. 13(4), 044024 (2020).
[Crossref]

Z. W. Guo, H. T. Jiang, K. J. Zhu, Y. Sun, Y. H. Li, and H. Chen, “Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials,” Phys. Rev. Appl. 10(6), 064048 (2018).
[Crossref]

Phys. Rev. B (5)

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

S. Campione, D. D. Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Phys. Rev. E (1)

A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ɛ-near-zero–filled narrow channels,” Phys. Rev. E 78(1), 016604 (2008).
[Crossref]

Phys. Rev. Lett. (11)

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. A. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref]

M. Zhou, L. Shi, J. Zi, and Z. F. Yu, “Extraordinarily large optical cross section for localized single nanoresonator,” Phys. Rev. Lett. 115(2), 023903 (2015).
[Crossref]

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref]

C. Rizza, A. D. Falco, M. Scalora, and A. Ciattoni, “One-dimensional chirality: Strong optical activity in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 115(5), 057401 (2015).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

L. Ying, M. Zhou, M. Mattei, B. Liu, P. Campagnola, R. H. Goldsmith, and Z. F. Yu, “Extended range of dipole-dipole interactions in periodically structured photonic media,” Phys. Rev. Lett. 123(17), 173901 (2019).
[Crossref]

J. Luo, W. X. Lu, Z. H. Hang, H. Y. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref]

Sci. Rep. (4)

S. M. Zhong and S. L. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref]

Z. W. Guo, H. T. Jiang, Y. Long, K. Yu, J. Ren, C. H. Xue, and H. Chen, “Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials,” Sci. Rep. 7(1), 7742 (2017).
[Crossref]

J. Ran, Y. W. Zhang, X. D. Chen, K. Fang, J. F. Zhao, and H. Chen, “Observation of the zero Doppler effect,” Sci. Rep. 6(1), 23973 (2016).
[Crossref]

X. T. He, Y. N. Zhong, Y. Zhou, Z. C. Zhong, and J. W. Dong, “Dirac directional emission in anisotropic zero refractive index photonic crystals,” Sci. Rep. 5(1), 13085 (2015).
[Crossref]

Science (4)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref]

I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, “Photonic doping of epsilon-near-zero media,” Science 355(6329), 1058–1062 (2017).
[Crossref]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. B. Yin, and X. Zhang, “Phase mismatch–free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Other (1)

P. Jarry and J. Beneat, Design and Realizations of Miniaturized Fractal Microwave and RF Filters (John Wiley & Sons, New York, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic illustration of the energy concentration effects realized with the MNZ scatterer.
Fig. 2.
Fig. 2. (a) Prototype of the 2D TL with $15 \times 11$ unit cells, where the scatterer is a $3 \times 2$ TL with lumped capacitors. The lumped capacitors representing the scatterer are connected in series along the x and z directions to the TL system. The background part is a normal TL. The source was placed near to the center of the sample. Inset show the amplified capacitor C = 5 pF and resistor R = 71.4 Ω, respectively. The length of the unit size and the width of the microstrip are p = 12 mm and w = 2.8 mm, respectively. The perfect matching boundary is marked by the green dashed line. (b) The 2D circuit models of the MIZ and the background medium. (c) The effective EM parameters based on the TLs. (d) The 3D dispersion relationships of the TL-based metamaterials, with the loaded series lumped capacitors. The reference frequency ${f_c} = 1.14$ GHz is marked by a mesh surface.
Fig. 3.
Fig. 3. The simulated distributions of the electric field Ey (a) and phase $\varphi$ (b) distributions of the TL-based effective MNZ medium excited by one source. The perfect matching boundary is marked by the white dashed line.
Fig. 4.
Fig. 4. Simulated |H| spectra for the magnetic field concentration effect in circuit-based MNZ scatterer. Bandwidth with magnetic field strength greater than 7 A/m is marked.
Fig. 5.
Fig. 5. (a)–(c) The simulated field distributions of |Hx|, |Hz|, and |H| 1 mm above the structure surface at 1.14 GHz. The MNZ scatterer is marked by the white dashed rectangle. (d)–(f) Similar to (a)–(c), but for the measured field distributions at 1.073 GHz.
Fig. 6.
Fig. 6. The measured values of |H| in the z direction at the two lines marked by the pink dashed lines in Fig. 5(f). The FWHM value of the concentration peak is marked.
Fig. 7.
Fig. 7. (a)–(c) When the frequency is 1.14 GHz, the simulated magnetic field |H| distribution in the structures without the MNZ scatterer, with one shifting MNZ scatterer, and with two MNZ scatterers, respectively. (d)–(f) The corresponding vector graphic of the energy flux.
Fig. 8.
Fig. 8. (a) When the frequency is 1.14 GHz, the simulated magnetic field |H| distribution in the structures with two MNZ scatterers along the horizontal direction. (b) The corresponding vector graphic of the energy flux. (c) (d) Similar to (a) (b) but for the case that two scatterers along an oblique direction. (e)-(h) Similar to (a)–(d) but for the effective MNG medium with a frequency of 0.2 GHz. To see clearly, the red arrows and blue arrows denote the energy flux vectors at the frequency is 1.14 GHz and 0.2 GHz, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H z s / μ b = H z b / μ s ,
ε s = 2 C 0 g / ε 0 , μ s = L 0 g μ 0 1 ω 2 C d g μ 0 ,