Abstract

We report an idler-resonant, continuous-wave (CW) seed injected, optical parametric oscillator (OPO) based on cadmium selenide (CdSe). The CdSe OPO was pumped by a 2.09 µm ns-pulsed laser and injection-seeded by a 2.58 µm CW laser. The idler-resonant oscillator was designed to maximize the optical-to-optical conversion efficiency and optimize the beam quality. The injected seed laser was designed to reduce the pump threshold. With this setup, the average idler output power of 802 mW was obtained corresponding to a pulse energy of 0.8 mJ at the wavelength of 11.01 µm and linewidth (FWHM) of 0.6 cm−1, optical-to-optical conversion efficiency of 4.4%, quantum conversion efficiency of 23.3%, beam quality of M2x = 1.23, M2y = 1.12, and pulse width of 21 ns. In addition, by turning the angle of the CdSe, wavelength tuning of 10.55-11.98 µm was achieved.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Liu, Y. Chen, B. Yao, K. Yang, C. Qian, T. Dai, and X. Duan, “Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals,” Appl. Phys. B 125(12), 233 (2019).
    [Crossref]
  2. C. Qian, X. Duan, B. Yao, Y. Shen, Y. Zhang, B. Zhao, J. Yuan, T. Dai, Y. Ju, and Y. Wang, “11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier,” Opt. Express 26(23), 30195–30201 (2018).
    [Crossref]
  3. Y. Chen, G. Liu, C. Yang, B. Yao, R. Wang, S. Mi, K. Yang, T. Dai, X. Duan, and Y. Ju, “1  W, 10.1  µm, CdSe optical parametric oscillator with continuous-wave seed injection,” Opt. Lett. 45(7), 2119–2122 (2020).
    [Crossref]
  4. T. Skauli, K. Vodopyanov, T. Pinguet, A. Schober, O. Levi, L. Eyres, M. Fejer, J. Harris, B. Gerard, and L. Becouarn, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27(8), 628–630 (2002).
    [Crossref]
  5. J. Wueppen, S. Nyga, B. Jungbluth, and D. Hoffmann, “1.95 µm-pumped OP-GaAs optical parametric oscillator with 10.6 µm idler wavelength,” Opt. Lett. 41(18), 4225–4228 (2016).
    [Crossref]
  6. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer Series in Optical Sciences (Springer, 1999), pp. XVIII, 414.
  7. Y. Ni, H. Wu, M. Mao, W. Li, Z. Wang, J. Ma, S. Chen, and C. Huang, “Growth and characterization of mid-far infrared optical material CdSe crystal,” Opt. Mater. Express 8(7), 1796–1805 (2018).
    [Crossref]
  8. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
    [Crossref]
  9. J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
    [Crossref]
  10. J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, and Y. Ju, “CdSe optical parametric oscillator operating at 12.07 µm with 170 mW Output,” Opt. Laser Technol. 92, 1–4 (2017).
    [Crossref]
  11. J. Wang, L. Yuan, Y. Zhang, G. Chen, H. Cheng, and Y. Gao, “Generation of 320 mW at 10.20 µm based on CdSe long-wave infrared crystal,” J. Cryst. Growth 491, 16–19 (2018).
    [Crossref]
  12. C.-P. Qian, B.-Q. Yao, B.-R. Zhao, G.-Y. Liu, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation,” Opt. Lett. 44(3), 715–718 (2019).
    [Crossref]
  13. M. Schellhorn, G. Spindler, and M. Eichhorn, “Improvement of the beam quality of a high-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 42(6), 1185–1188 (2017).
    [Crossref]
  14. M. Schellhorn, G. Spindler, and M. Eichhorn, “Mid-infrared ZGP OPO with divergence compensation and high beam quality,” Opt. Express 26(2), 1402–1410 (2018).
    [Crossref]
  15. M. Eichhorn, M. Schellhorn, M. W. Haakestad, H. Fonnum, and E. Lippert, “High-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 41(11), 2596–2599 (2016).
    [Crossref]
  16. G. Rustad, G. Arisholm, and Ø Farsund, “Effect of idler absorption in pulsed optical parametric oscillators,” Opt. Express 19(3), 2815–2830 (2011).
    [Crossref]
  17. S. Pearl, Y. Ehrlich, S. Fastig, and S. Rosenwaks, “Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator,” Appl. Opt. 42(6), 1048–1051 (2003).
    [Crossref]
  18. B. Zhao, Y. Chen, B. Yao, J. Yao, Y. Guo, R. Wang, T. Dai, and X. Duan, “High-efficiency, tunable 8-9 µm BaGa4Se7 optical parametric oscillator pumped at 2.1 µm,” Opt. Mater. Express 8(11), 3332–3337 (2018).
    [Crossref]
  19. J.-H. Yuan, Y. Chen, H.-Y. Yang, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, and Y.-L. Ju, “Investigation of a gain-switched Cr2+: ZnSe laser pumped by an acousto-optic Q-switched Ho: YAG laser,” Quantum Electron. 46(9), 772–776 (2016).
    [Crossref]
  20. G. Baxter, J. Haub, and B. Orr, “Backconversion in a pulsed optical parametric oscillator: evidence from injection-seeded sidebands,” J. Opt. Soc. Am. B 14(10), 2723–2730 (1997).
    [Crossref]
  21. M. W. Haakestad, H. Fonnum, and E. Lippert, “Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2,” Opt. Express 22(7), 8556–8564 (2014).
    [Crossref]
  22. G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt. 15(2), 305–307 (1976).
    [Crossref]
  23. E. J. Turner, S. A. McDaniel, N. Tabiryan, and G. Cook, “Rapidly tunable HIP treated Cr:ZnSe narrow-linewidth laser,” Opt. Express 27(9), 12282–12288 (2019).
    [Crossref]
  24. M. Yumoto, N. Saito, U. Takagi, and S. Wada, “Electronically tuned Cr:ZnSe laser pumped with Q-switched Tm:YAG laser,” Opt. Express 23(19), 25009–25016 (2015).
    [Crossref]
  25. M. Yumoto, N. Saito, and S. Wada, “50 mJ/pulse, electronically tuned Cr:ZnSe master oscillator power amplifier,” Opt. Express 25(26), 32948–32956 (2017).
    [Crossref]
  26. R. M. Sullenberger, S. Kaushik, and C. M. Wynn, “Photoacoustic communications: delivering audible signals via absorption of light by atmospheric H2O,” Opt. Lett. 44(3), 622–625 (2019).
    [Crossref]
  27. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
    [Crossref]

2020 (1)

2019 (4)

2018 (5)

2017 (4)

J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, and Y. Ju, “CdSe optical parametric oscillator operating at 12.07 µm with 170 mW Output,” Opt. Laser Technol. 92, 1–4 (2017).
[Crossref]

M. Schellhorn, G. Spindler, and M. Eichhorn, “Improvement of the beam quality of a high-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 42(6), 1185–1188 (2017).
[Crossref]

M. Yumoto, N. Saito, and S. Wada, “50 mJ/pulse, electronically tuned Cr:ZnSe master oscillator power amplifier,” Opt. Express 25(26), 32948–32956 (2017).
[Crossref]

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

2016 (5)

2015 (1)

2014 (1)

2011 (1)

2003 (1)

2002 (1)

1997 (1)

1976 (1)

Arisholm, G.

Baxter, G.

Becouarn, L.

Bernath, P. F.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Bhar, G. C.

Birk, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Boudon, V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Budni, P. A.

Campargue, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Chance, K.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Chen, G.

J. Wang, L. Yuan, Y. Zhang, G. Chen, H. Cheng, and Y. Gao, “Generation of 320 mW at 10.20 µm based on CdSe long-wave infrared crystal,” J. Cryst. Growth 491, 16–19 (2018).
[Crossref]

Chen, S.

Chen, Y.

Y. Chen, G. Liu, C. Yang, B. Yao, R. Wang, S. Mi, K. Yang, T. Dai, X. Duan, and Y. Ju, “1  W, 10.1  µm, CdSe optical parametric oscillator with continuous-wave seed injection,” Opt. Lett. 45(7), 2119–2122 (2020).
[Crossref]

G. Liu, Y. Chen, B. Yao, K. Yang, C. Qian, T. Dai, and X. Duan, “Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals,” Appl. Phys. B 125(12), 233 (2019).
[Crossref]

B. Zhao, Y. Chen, B. Yao, J. Yao, Y. Guo, R. Wang, T. Dai, and X. Duan, “High-efficiency, tunable 8-9 µm BaGa4Se7 optical parametric oscillator pumped at 2.1 µm,” Opt. Mater. Express 8(11), 3332–3337 (2018).
[Crossref]

J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, and Y. Ju, “CdSe optical parametric oscillator operating at 12.07 µm with 170 mW Output,” Opt. Laser Technol. 92, 1–4 (2017).
[Crossref]

J.-H. Yuan, Y. Chen, H.-Y. Yang, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, and Y.-L. Ju, “Investigation of a gain-switched Cr2+: ZnSe laser pumped by an acousto-optic Q-switched Ho: YAG laser,” Quantum Electron. 46(9), 772–776 (2016).
[Crossref]

Cheng, H.

J. Wang, L. Yuan, Y. Zhang, G. Chen, H. Cheng, and Y. Gao, “Generation of 320 mW at 10.20 µm based on CdSe long-wave infrared crystal,” J. Cryst. Growth 491, 16–19 (2018).
[Crossref]

Cook, G.

Creeden, D. J.

Cui, Z.

J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
[Crossref]

Dai, T.

Y. Chen, G. Liu, C. Yang, B. Yao, R. Wang, S. Mi, K. Yang, T. Dai, X. Duan, and Y. Ju, “1  W, 10.1  µm, CdSe optical parametric oscillator with continuous-wave seed injection,” Opt. Lett. 45(7), 2119–2122 (2020).
[Crossref]

G. Liu, Y. Chen, B. Yao, K. Yang, C. Qian, T. Dai, and X. Duan, “Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals,” Appl. Phys. B 125(12), 233 (2019).
[Crossref]

C. Qian, X. Duan, B. Yao, Y. Shen, Y. Zhang, B. Zhao, J. Yuan, T. Dai, Y. Ju, and Y. Wang, “11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier,” Opt. Express 26(23), 30195–30201 (2018).
[Crossref]

B. Zhao, Y. Chen, B. Yao, J. Yao, Y. Guo, R. Wang, T. Dai, and X. Duan, “High-efficiency, tunable 8-9 µm BaGa4Se7 optical parametric oscillator pumped at 2.1 µm,” Opt. Mater. Express 8(11), 3332–3337 (2018).
[Crossref]

J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, and Y. Ju, “CdSe optical parametric oscillator operating at 12.07 µm with 170 mW Output,” Opt. Laser Technol. 92, 1–4 (2017).
[Crossref]

J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
[Crossref]

Dai, T.-Y.

C.-P. Qian, B.-Q. Yao, B.-R. Zhao, G.-Y. Liu, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation,” Opt. Lett. 44(3), 715–718 (2019).
[Crossref]

J.-H. Yuan, Y. Chen, H.-Y. Yang, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, and Y.-L. Ju, “Investigation of a gain-switched Cr2+: ZnSe laser pumped by an acousto-optic Q-switched Ho: YAG laser,” Quantum Electron. 46(9), 772–776 (2016).
[Crossref]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer Series in Optical Sciences (Springer, 1999), pp. XVIII, 414.

Duan, X.

Y. Chen, G. Liu, C. Yang, B. Yao, R. Wang, S. Mi, K. Yang, T. Dai, X. Duan, and Y. Ju, “1  W, 10.1  µm, CdSe optical parametric oscillator with continuous-wave seed injection,” Opt. Lett. 45(7), 2119–2122 (2020).
[Crossref]

G. Liu, Y. Chen, B. Yao, K. Yang, C. Qian, T. Dai, and X. Duan, “Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals,” Appl. Phys. B 125(12), 233 (2019).
[Crossref]

C. Qian, X. Duan, B. Yao, Y. Shen, Y. Zhang, B. Zhao, J. Yuan, T. Dai, Y. Ju, and Y. Wang, “11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier,” Opt. Express 26(23), 30195–30201 (2018).
[Crossref]

B. Zhao, Y. Chen, B. Yao, J. Yao, Y. Guo, R. Wang, T. Dai, and X. Duan, “High-efficiency, tunable 8-9 µm BaGa4Se7 optical parametric oscillator pumped at 2.1 µm,” Opt. Mater. Express 8(11), 3332–3337 (2018).
[Crossref]

J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, and Y. Ju, “CdSe optical parametric oscillator operating at 12.07 µm with 170 mW Output,” Opt. Laser Technol. 92, 1–4 (2017).
[Crossref]

J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
[Crossref]

Duan, X.-M.

C.-P. Qian, B.-Q. Yao, B.-R. Zhao, G.-Y. Liu, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation,” Opt. Lett. 44(3), 715–718 (2019).
[Crossref]

J.-H. Yuan, Y. Chen, H.-Y. Yang, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, and Y.-L. Ju, “Investigation of a gain-switched Cr2+: ZnSe laser pumped by an acousto-optic Q-switched Ho: YAG laser,” Quantum Electron. 46(9), 772–776 (2016).
[Crossref]

Ehrlich, Y.

Eichhorn, M.

Eyres, L.

Farsund, Ø

Fastig, S.

Fejer, M.

Fonnum, H.

Gao, Y.

J. Wang, L. Yuan, Y. Zhang, G. Chen, H. Cheng, and Y. Gao, “Generation of 320 mW at 10.20 µm based on CdSe long-wave infrared crystal,” J. Cryst. Growth 491, 16–19 (2018).
[Crossref]

Gerard, B.

Gordon, I. E.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Guo, Y.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer Series in Optical Sciences (Springer, 1999), pp. XVIII, 414.

Haakestad, M. W.

Harris, J.

Haub, J.

Hill, C.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Hoffmann, D.

Huang, C.

Ju, Y.

Y. Chen, G. Liu, C. Yang, B. Yao, R. Wang, S. Mi, K. Yang, T. Dai, X. Duan, and Y. Ju, “1  W, 10.1  µm, CdSe optical parametric oscillator with continuous-wave seed injection,” Opt. Lett. 45(7), 2119–2122 (2020).
[Crossref]

C. Qian, X. Duan, B. Yao, Y. Shen, Y. Zhang, B. Zhao, J. Yuan, T. Dai, Y. Ju, and Y. Wang, “11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier,” Opt. Express 26(23), 30195–30201 (2018).
[Crossref]

J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, and Y. Ju, “CdSe optical parametric oscillator operating at 12.07 µm with 170 mW Output,” Opt. Laser Technol. 92, 1–4 (2017).
[Crossref]

J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
[Crossref]

Ju, Y.-L.

C.-P. Qian, B.-Q. Yao, B.-R. Zhao, G.-Y. Liu, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation,” Opt. Lett. 44(3), 715–718 (2019).
[Crossref]

J.-H. Yuan, Y. Chen, H.-Y. Yang, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, and Y.-L. Ju, “Investigation of a gain-switched Cr2+: ZnSe laser pumped by an acousto-optic Q-switched Ho: YAG laser,” Quantum Electron. 46(9), 772–776 (2016).
[Crossref]

Jungbluth, B.

Kaushik, S.

Kochanov, R. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Levi, O.

Li, W.

Li, Y.

J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
[Crossref]

Lippert, E.

Liu, G.

Y. Chen, G. Liu, C. Yang, B. Yao, R. Wang, S. Mi, K. Yang, T. Dai, X. Duan, and Y. Ju, “1  W, 10.1  µm, CdSe optical parametric oscillator with continuous-wave seed injection,” Opt. Lett. 45(7), 2119–2122 (2020).
[Crossref]

G. Liu, Y. Chen, B. Yao, K. Yang, C. Qian, T. Dai, and X. Duan, “Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals,” Appl. Phys. B 125(12), 233 (2019).
[Crossref]

Liu, G.-Y.

Ma, J.

Mao, M.

McDaniel, S. A.

Mi, S.

Ni, Y.

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer Series in Optical Sciences (Springer, 1999), pp. XVIII, 414.

Nyga, S.

Orr, B.

Pearl, S.

Pinguet, T.

Pomeranz, L. A.

Qian, C.

G. Liu, Y. Chen, B. Yao, K. Yang, C. Qian, T. Dai, and X. Duan, “Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals,” Appl. Phys. B 125(12), 233 (2019).
[Crossref]

C. Qian, X. Duan, B. Yao, Y. Shen, Y. Zhang, B. Zhao, J. Yuan, T. Dai, Y. Ju, and Y. Wang, “11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier,” Opt. Express 26(23), 30195–30201 (2018).
[Crossref]

Qian, C.-P.

Rosenwaks, S.

Rothman, L. S.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Rustad, G.

Saito, N.

Schellhorn, M.

Schober, A.

Schunemann, P. G.

Shen, Y.

C. Qian, X. Duan, B. Yao, Y. Shen, Y. Zhang, B. Zhao, J. Yuan, T. Dai, Y. Ju, and Y. Wang, “11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier,” Opt. Express 26(23), 30195–30201 (2018).
[Crossref]

J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
[Crossref]

Skauli, T.

Spindler, G.

Sullenberger, R. M.

Tabiryan, N.

Takagi, U.

Tan, Y.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Turner, E. J.

Vodopyanov, K.

Wada, S.

Wang, J.

J. Wang, L. Yuan, Y. Zhang, G. Chen, H. Cheng, and Y. Gao, “Generation of 320 mW at 10.20 µm based on CdSe long-wave infrared crystal,” J. Cryst. Growth 491, 16–19 (2018).
[Crossref]

Wang, R.

Wang, Y.

Wang, Y.-Z.

Wang, Z.

Wu, H.

Wueppen, J.

Wynn, C. M.

Yang, C.

Yang, H.-Y.

J.-H. Yuan, Y. Chen, H.-Y. Yang, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, and Y.-L. Ju, “Investigation of a gain-switched Cr2+: ZnSe laser pumped by an acousto-optic Q-switched Ho: YAG laser,” Quantum Electron. 46(9), 772–776 (2016).
[Crossref]

Yang, K.

Y. Chen, G. Liu, C. Yang, B. Yao, R. Wang, S. Mi, K. Yang, T. Dai, X. Duan, and Y. Ju, “1  W, 10.1  µm, CdSe optical parametric oscillator with continuous-wave seed injection,” Opt. Lett. 45(7), 2119–2122 (2020).
[Crossref]

G. Liu, Y. Chen, B. Yao, K. Yang, C. Qian, T. Dai, and X. Duan, “Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals,” Appl. Phys. B 125(12), 233 (2019).
[Crossref]

Yao, B.

Y. Chen, G. Liu, C. Yang, B. Yao, R. Wang, S. Mi, K. Yang, T. Dai, X. Duan, and Y. Ju, “1  W, 10.1  µm, CdSe optical parametric oscillator with continuous-wave seed injection,” Opt. Lett. 45(7), 2119–2122 (2020).
[Crossref]

G. Liu, Y. Chen, B. Yao, K. Yang, C. Qian, T. Dai, and X. Duan, “Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals,” Appl. Phys. B 125(12), 233 (2019).
[Crossref]

C. Qian, X. Duan, B. Yao, Y. Shen, Y. Zhang, B. Zhao, J. Yuan, T. Dai, Y. Ju, and Y. Wang, “11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier,” Opt. Express 26(23), 30195–30201 (2018).
[Crossref]

B. Zhao, Y. Chen, B. Yao, J. Yao, Y. Guo, R. Wang, T. Dai, and X. Duan, “High-efficiency, tunable 8-9 µm BaGa4Se7 optical parametric oscillator pumped at 2.1 µm,” Opt. Mater. Express 8(11), 3332–3337 (2018).
[Crossref]

J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, and Y. Ju, “CdSe optical parametric oscillator operating at 12.07 µm with 170 mW Output,” Opt. Laser Technol. 92, 1–4 (2017).
[Crossref]

J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
[Crossref]

Yao, B.-Q.

C.-P. Qian, B.-Q. Yao, B.-R. Zhao, G.-Y. Liu, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation,” Opt. Lett. 44(3), 715–718 (2019).
[Crossref]

J.-H. Yuan, Y. Chen, H.-Y. Yang, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, and Y.-L. Ju, “Investigation of a gain-switched Cr2+: ZnSe laser pumped by an acousto-optic Q-switched Ho: YAG laser,” Quantum Electron. 46(9), 772–776 (2016).
[Crossref]

Yao, J.

Yuan, J.

C. Qian, X. Duan, B. Yao, Y. Shen, Y. Zhang, B. Zhao, J. Yuan, T. Dai, Y. Ju, and Y. Wang, “11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier,” Opt. Express 26(23), 30195–30201 (2018).
[Crossref]

J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, and Y. Ju, “CdSe optical parametric oscillator operating at 12.07 µm with 170 mW Output,” Opt. Laser Technol. 92, 1–4 (2017).
[Crossref]

J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
[Crossref]

Yuan, J.-H.

J.-H. Yuan, Y. Chen, H.-Y. Yang, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, and Y.-L. Ju, “Investigation of a gain-switched Cr2+: ZnSe laser pumped by an acousto-optic Q-switched Ho: YAG laser,” Quantum Electron. 46(9), 772–776 (2016).
[Crossref]

Yuan, L.

J. Wang, L. Yuan, Y. Zhang, G. Chen, H. Cheng, and Y. Gao, “Generation of 320 mW at 10.20 µm based on CdSe long-wave infrared crystal,” J. Cryst. Growth 491, 16–19 (2018).
[Crossref]

Yumoto, M.

Zawilski, K. T.

Zhang, Y.

J. Wang, L. Yuan, Y. Zhang, G. Chen, H. Cheng, and Y. Gao, “Generation of 320 mW at 10.20 µm based on CdSe long-wave infrared crystal,” J. Cryst. Growth 491, 16–19 (2018).
[Crossref]

C. Qian, X. Duan, B. Yao, Y. Shen, Y. Zhang, B. Zhao, J. Yuan, T. Dai, Y. Ju, and Y. Wang, “11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier,” Opt. Express 26(23), 30195–30201 (2018).
[Crossref]

Zhao, B.

Zhao, B.-R.

Appl. Opt. (2)

Appl. Phys. B (2)

G. Liu, Y. Chen, B. Yao, K. Yang, C. Qian, T. Dai, and X. Duan, “Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals,” Appl. Phys. B 125(12), 233 (2019).
[Crossref]

J. Yuan, X. Duan, B. Yao, Z. Cui, Y. Li, T. Dai, Y. Shen, and Y. Ju, “Tunable 10-to 11-µm CdSe optical parametric oscillator pumped by a 2.1-µm Ho: YAG laser,” Appl. Phys. B 122(7), 202 (2016).
[Crossref]

J. Cryst. Growth (1)

J. Wang, L. Yuan, Y. Zhang, G. Chen, H. Cheng, and Y. Gao, “Generation of 320 mW at 10.20 µm based on CdSe long-wave infrared crystal,” J. Cryst. Growth 491, 16–19 (2018).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Quant. Spectrosc. Radiat. Transfer (1)

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, and K. Chance, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Opt. Express (7)

Opt. Laser Technol. (1)

J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, and Y. Ju, “CdSe optical parametric oscillator operating at 12.07 µm with 170 mW Output,” Opt. Laser Technol. 92, 1–4 (2017).
[Crossref]

Opt. Lett. (7)

T. Skauli, K. Vodopyanov, T. Pinguet, A. Schober, O. Levi, L. Eyres, M. Fejer, J. Harris, B. Gerard, and L. Becouarn, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27(8), 628–630 (2002).
[Crossref]

M. Eichhorn, M. Schellhorn, M. W. Haakestad, H. Fonnum, and E. Lippert, “High-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 41(11), 2596–2599 (2016).
[Crossref]

J. Wueppen, S. Nyga, B. Jungbluth, and D. Hoffmann, “1.95 µm-pumped OP-GaAs optical parametric oscillator with 10.6 µm idler wavelength,” Opt. Lett. 41(18), 4225–4228 (2016).
[Crossref]

Y. Chen, G. Liu, C. Yang, B. Yao, R. Wang, S. Mi, K. Yang, T. Dai, X. Duan, and Y. Ju, “1  W, 10.1  µm, CdSe optical parametric oscillator with continuous-wave seed injection,” Opt. Lett. 45(7), 2119–2122 (2020).
[Crossref]

R. M. Sullenberger, S. Kaushik, and C. M. Wynn, “Photoacoustic communications: delivering audible signals via absorption of light by atmospheric H2O,” Opt. Lett. 44(3), 622–625 (2019).
[Crossref]

C.-P. Qian, B.-Q. Yao, B.-R. Zhao, G.-Y. Liu, X.-M. Duan, T.-Y. Dai, Y.-L. Ju, and Y.-Z. Wang, “High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation,” Opt. Lett. 44(3), 715–718 (2019).
[Crossref]

M. Schellhorn, G. Spindler, and M. Eichhorn, “Improvement of the beam quality of a high-pulse-energy mid-infrared fractional-image-rotation-enhancement ZnGeP2 optical parametric oscillator,” Opt. Lett. 42(6), 1185–1188 (2017).
[Crossref]

Opt. Mater. Express (2)

Quantum Electron. (1)

J.-H. Yuan, Y. Chen, H.-Y. Yang, B.-Q. Yao, X.-M. Duan, T.-Y. Dai, and Y.-L. Ju, “Investigation of a gain-switched Cr2+: ZnSe laser pumped by an acousto-optic Q-switched Ho: YAG laser,” Quantum Electron. 46(9), 772–776 (2016).
[Crossref]

Other (1)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer Series in Optical Sciences (Springer, 1999), pp. XVIII, 414.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup of CdSe IROPO with CW seed injection. CW, continuous-wave; s, s-polarization; p, p-polarization.
Fig. 2.
Fig. 2. (a) Calculated beam radii of resonant-lasers at front-end of the CdSe crystal versus CdSe thermal lens focal length. IROPO, idler-resonant OPO; SROPO, signal-resonant OPO. (b) Simulated idler output average power and (c) simulated idler beam quality factor M2 versus length of the CdSe crystal. The power of seed laser is 90 mW.
Fig. 3.
Fig. 3. (a) Idler output average power and (b) idler optical-to-optical conversion efficiency under different seed power. (c) Normalized power stabilities of idler and pump in 10 minutes. The average power of idler and pump is 802 mW and 18.2 W, respectively. SD: standard deviation.
Fig. 4.
Fig. 4. Temporal pulse profiles of the depleted pump, pump, signal, and idler at the pump average power of (a) 11.8W, (b) 14.2 W, (c) 15.9 W, and (d) 18.2 W and 90 mW seed.
Fig. 5.
Fig. 5. (a) Idler spectrum at 802 mW output power. Inset, the central wavelength of the idler measured multiple times. (b) Beam propagation and M2 factors of idler at 802 mW output power.
Fig. 6.
Fig. 6. (a) Calculated CdSe angle tuning curve and measured wavelength value, (b) H2O absorption lines and corresponding sound intensity. PAE, photoacoustic effect.

Tables (1)

Tables Icon

Table 1. Comparison of performances of reported 10-12 µm CdSe OPOs