Abstract

Graduated optical filters are commonly used for spatial image control as they are capable of darkening the overexposed parts of the image specifically. However, they lack flexibility because each filter has a fixed transmission distribution. We herein present a fully controllable graduated filter based on the electrochromic device. Its graduated transmission distribution can be spatially controlled by the application of multiple electric potentials. In this way, the control of the gradient’s position and its width, transmission and angular orientation is possible. Simulation of both the spatial potential distribution and the resultant optical absorption distribution are conducted to optimize the electrode configuration and furthermore to derive a control dataset that facilitates the adjustment and thus the application of the graduated filter. Based on three objective and quantitative criteria, we identify the electrode configuration with the highest flexibility in all four controls, manufacture the device using a gravure printing process for the nanoparticle electrodes and show its successful application.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging (Taylor & Francis Inc, 2017).
  2. A. Serrano, F. Heide, and D. Gutierrez, “Convolutional Sparse Coding for High Dynamic Range Imaging,” Comput. Graph. Forum 35(2), 153–163 (2016).
    [Crossref]
  3. R. Mortimer, D. Rosseinsky, and P. Monk, Electrochromic Materials and Devices (Wiley-VCH, 2015).
  4. A. Kraft, “Electrochromism : a fascinating branch of electrochemistry,” ChemTexts 5(1), 1 (2019).
    [Crossref]
  5. G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
    [Crossref]
  6. R. J. Mortimer, “Electrochromic Materials,” Annu. Rev. Mater. Res. 41(1), 241–268 (2011).
    [Crossref]
  7. T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, “High contrast electrochromic iris,” Opt. Express 23(24), 31544 (2015).
    [Crossref]
  8. A. Tsuboi, K. Nakamura, and N. Kobayashi, “Chromatic control of multicolor electrochromic device with localized surface plasmon resonance of silver nanoparticles by voltage-step method,” Sol. Energy Mater. Sol. Cells 145, 16–25 (2016).
    [Crossref]
  9. A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor Electrochromism Showing Three Primary Color States Based on Size- and Shape-Controlled Silver Nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
    [Crossref]
  10. G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows : thin films of tungsten oxide and nickel oxide , and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
    [Crossref]
  11. R. Kirchgeorg, S. Berger, and P. Schmuki, “Ultra fast electrochromic switching of nanoporous tungsten – tantalum oxide films,” Chem. Commun. 47(3), 1000–1002 (2011).
    [Crossref]
  12. C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
    [Crossref]
  13. A. Hein, C. Kortz, and E. Oesterschulze, “Electrochromic tunable filters based on nanotubes with viologen incorporation,” Proc. SPIE 10679, 106791U (2018).
    [Crossref]
  14. F. Campus, P. Bonhôte, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
    [Crossref]
  15. P. Bonhôte, E. Gogniat, F. Campus, L. Walder, and M. Graetzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
    [Crossref]
  16. M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
    [Crossref]
  17. U. zum Felde, M. Haase, and H. Weller, “Electrochromism of Highly Doped Nanocrystalline SnO2:Sb,” J. Phys. Chem. B 104(40), 9388–9395 (2000).
    [Crossref]
  18. A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
    [Crossref]

2019 (4)

A. Kraft, “Electrochromism : a fascinating branch of electrochemistry,” ChemTexts 5(1), 1 (2019).
[Crossref]

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

2018 (2)

A. Hein, C. Kortz, and E. Oesterschulze, “Electrochromic tunable filters based on nanotubes with viologen incorporation,” Proc. SPIE 10679, 106791U (2018).
[Crossref]

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

2016 (2)

A. Serrano, F. Heide, and D. Gutierrez, “Convolutional Sparse Coding for High Dynamic Range Imaging,” Comput. Graph. Forum 35(2), 153–163 (2016).
[Crossref]

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Chromatic control of multicolor electrochromic device with localized surface plasmon resonance of silver nanoparticles by voltage-step method,” Sol. Energy Mater. Sol. Cells 145, 16–25 (2016).
[Crossref]

2015 (1)

2014 (1)

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor Electrochromism Showing Three Primary Color States Based on Size- and Shape-Controlled Silver Nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

2011 (2)

R. Kirchgeorg, S. Berger, and P. Schmuki, “Ultra fast electrochromic switching of nanoporous tungsten – tantalum oxide films,” Chem. Commun. 47(3), 1000–1002 (2011).
[Crossref]

R. J. Mortimer, “Electrochromic Materials,” Annu. Rev. Mater. Res. 41(1), 241–268 (2011).
[Crossref]

2007 (1)

G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows : thin films of tungsten oxide and nickel oxide , and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
[Crossref]

2000 (1)

U. zum Felde, M. Haase, and H. Weller, “Electrochromism of Highly Doped Nanocrystalline SnO2:Sb,” J. Phys. Chem. B 104(40), 9388–9395 (2000).
[Crossref]

1999 (2)

F. Campus, P. Bonhôte, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

P. Bonhôte, E. Gogniat, F. Campus, L. Walder, and M. Graetzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Artusi, A.

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging (Taylor & Francis Inc, 2017).

Bae, H. W.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Banterle, F.

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging (Taylor & Francis Inc, 2017).

Berger, S.

R. Kirchgeorg, S. Berger, and P. Schmuki, “Ultra fast electrochromic switching of nanoporous tungsten – tantalum oxide films,” Chem. Commun. 47(3), 1000–1002 (2011).
[Crossref]

Bonhôte, P.

F. Campus, P. Bonhôte, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

P. Bonhôte, E. Gogniat, F. Campus, L. Walder, and M. Graetzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Campus, F.

P. Bonhôte, E. Gogniat, F. Campus, L. Walder, and M. Graetzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

F. Campus, P. Bonhôte, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

Carl, F.

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

Chalmers, A.

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging (Taylor & Francis Inc, 2017).

Ciobanu, M.

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

Debattista, K.

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging (Taylor & Francis Inc, 2017).

Deutschmann, T.

Gogniat, E.

P. Bonhôte, E. Gogniat, F. Campus, L. Walder, and M. Graetzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Graetzel, M.

P. Bonhôte, E. Gogniat, F. Campus, L. Walder, and M. Graetzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Granqvist, C. G.

G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows : thin films of tungsten oxide and nickel oxide , and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
[Crossref]

Grätzel, M.

F. Campus, P. Bonhôte, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

Gutierrez, D.

A. Serrano, F. Heide, and D. Gutierrez, “Convolutional Sparse Coding for High Dynamic Range Imaging,” Comput. Graph. Forum 35(2), 153–163 (2016).
[Crossref]

Haase, M.

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

U. zum Felde, M. Haase, and H. Weller, “Electrochromism of Highly Doped Nanocrystalline SnO2:Sb,” J. Phys. Chem. B 104(40), 9388–9395 (2000).
[Crossref]

Heide, F.

A. Serrano, F. Heide, and D. Gutierrez, “Convolutional Sparse Coding for High Dynamic Range Imaging,” Comput. Graph. Forum 35(2), 153–163 (2016).
[Crossref]

Hein, A.

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

A. Hein, C. Kortz, and E. Oesterschulze, “Electrochromic tunable filters based on nanotubes with viologen incorporation,” Proc. SPIE 10679, 106791U (2018).
[Crossref]

Heinen, S.

F. Campus, P. Bonhôte, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

Kim, G. W.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Kim, Y. C.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Kirchgeorg, R.

R. Kirchgeorg, S. Berger, and P. Schmuki, “Ultra fast electrochromic switching of nanoporous tungsten – tantalum oxide films,” Chem. Commun. 47(3), 1000–1002 (2011).
[Crossref]

Klein, J.

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

Ko, I. J.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Kobayashi, N.

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Chromatic control of multicolor electrochromic device with localized surface plasmon resonance of silver nanoparticles by voltage-step method,” Sol. Energy Mater. Sol. Cells 145, 16–25 (2016).
[Crossref]

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor Electrochromism Showing Three Primary Color States Based on Size- and Shape-Controlled Silver Nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

Kortz, C.

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

A. Hein, C. Kortz, and E. Oesterschulze, “Electrochromic tunable filters based on nanotubes with viologen incorporation,” Proc. SPIE 10679, 106791U (2018).
[Crossref]

T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, “High contrast electrochromic iris,” Opt. Express 23(24), 31544 (2015).
[Crossref]

Kraft, A.

A. Kraft, “Electrochromism : a fascinating branch of electrochemistry,” ChemTexts 5(1), 1 (2019).
[Crossref]

Kwon, J. H.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Lampande, R.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Middendorf, M.

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

Mohsen, S.

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

Monk, P.

R. Mortimer, D. Rosseinsky, and P. Monk, Electrochromic Materials and Devices (Wiley-VCH, 2015).

Mortimer, R.

R. Mortimer, D. Rosseinsky, and P. Monk, Electrochromic Materials and Devices (Wiley-VCH, 2015).

Mortimer, R. J.

R. J. Mortimer, “Electrochromic Materials,” Annu. Rev. Mater. Res. 41(1), 241–268 (2011).
[Crossref]

Mousavi, B.

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

Nakamura, K.

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Chromatic control of multicolor electrochromic device with localized surface plasmon resonance of silver nanoparticles by voltage-step method,” Sol. Energy Mater. Sol. Cells 145, 16–25 (2016).
[Crossref]

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor Electrochromism Showing Three Primary Color States Based on Size- and Shape-Controlled Silver Nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

Niklasson, G. A.

G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows : thin films of tungsten oxide and nickel oxide , and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
[Crossref]

Oesterschulze, E.

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

A. Hein, C. Kortz, and E. Oesterschulze, “Electrochromic tunable filters based on nanotubes with viologen incorporation,” Proc. SPIE 10679, 106791U (2018).
[Crossref]

T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, “High contrast electrochromic iris,” Opt. Express 23(24), 31544 (2015).
[Crossref]

Park, J. H.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Rosseinsky, D.

R. Mortimer, D. Rosseinsky, and P. Monk, Electrochromic Materials and Devices (Wiley-VCH, 2015).

Schmuki, P.

R. Kirchgeorg, S. Berger, and P. Schmuki, “Ultra fast electrochromic switching of nanoporous tungsten – tantalum oxide films,” Chem. Commun. 47(3), 1000–1002 (2011).
[Crossref]

Serrano, A.

A. Serrano, F. Heide, and D. Gutierrez, “Convolutional Sparse Coding for High Dynamic Range Imaging,” Comput. Graph. Forum 35(2), 153–163 (2016).
[Crossref]

Tsuboi, A.

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Chromatic control of multicolor electrochromic device with localized surface plasmon resonance of silver nanoparticles by voltage-step method,” Sol. Energy Mater. Sol. Cells 145, 16–25 (2016).
[Crossref]

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor Electrochromism Showing Three Primary Color States Based on Size- and Shape-Controlled Silver Nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

Walder, L.

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

T. Deutschmann, C. Kortz, L. Walder, and E. Oesterschulze, “High contrast electrochromic iris,” Opt. Express 23(24), 31544 (2015).
[Crossref]

F. Campus, P. Bonhôte, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

P. Bonhôte, E. Gogniat, F. Campus, L. Walder, and M. Graetzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

Weller, H.

U. zum Felde, M. Haase, and H. Weller, “Electrochromism of Highly Doped Nanocrystalline SnO2:Sb,” J. Phys. Chem. B 104(40), 9388–9395 (2000).
[Crossref]

zum Felde, U.

U. zum Felde, M. Haase, and H. Weller, “Electrochromism of Highly Doped Nanocrystalline SnO2:Sb,” J. Phys. Chem. B 104(40), 9388–9395 (2000).
[Crossref]

Adv. Opt. Mater. (1)

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Annu. Rev. Mater. Res. (1)

R. J. Mortimer, “Electrochromic Materials,” Annu. Rev. Mater. Res. 41(1), 241–268 (2011).
[Crossref]

Chem. Commun. (1)

R. Kirchgeorg, S. Berger, and P. Schmuki, “Ultra fast electrochromic switching of nanoporous tungsten – tantalum oxide films,” Chem. Commun. 47(3), 1000–1002 (2011).
[Crossref]

Chem. Mater. (1)

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor Electrochromism Showing Three Primary Color States Based on Size- and Shape-Controlled Silver Nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

ChemTexts (1)

A. Kraft, “Electrochromism : a fascinating branch of electrochemistry,” ChemTexts 5(1), 1 (2019).
[Crossref]

Comput. Graph. Forum (1)

A. Serrano, F. Heide, and D. Gutierrez, “Convolutional Sparse Coding for High Dynamic Range Imaging,” Comput. Graph. Forum 35(2), 153–163 (2016).
[Crossref]

Displays (1)

P. Bonhôte, E. Gogniat, F. Campus, L. Walder, and M. Graetzel, “Nanocrystalline electrochromic displays,” Displays 20(3), 137–144 (1999).
[Crossref]

J. Mater. Chem. (1)

G. A. Niklasson and C. G. Granqvist, “Electrochromics for smart windows : thin films of tungsten oxide and nickel oxide , and devices based on these,” J. Mater. Chem. 17(2), 127–156 (2007).
[Crossref]

J. Phys. Chem. B (1)

U. zum Felde, M. Haase, and H. Weller, “Electrochromism of Highly Doped Nanocrystalline SnO2:Sb,” J. Phys. Chem. B 104(40), 9388–9395 (2000).
[Crossref]

Nat. Commun. (1)

C. Kortz, A. Hein, M. Ciobanu, L. Walder, and E. Oesterschulze, “Complementary hybrid electrodes for high contrast electrochromic devices with fast response,” Nat. Commun. 10(1), 4874 (2019).
[Crossref]

Opt. Express (1)

Proc. SPIE (1)

A. Hein, C. Kortz, and E. Oesterschulze, “Electrochromic tunable filters based on nanotubes with viologen incorporation,” Proc. SPIE 10679, 106791U (2018).
[Crossref]

Sci. Rep. (1)

A. Hein, C. Kortz, and E. Oesterschulze, “Tunable graduated filters based on electrochromic materials for spatial image control,” Sci. Rep. 9(1), 15822 (2019).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Chromatic control of multicolor electrochromic device with localized surface plasmon resonance of silver nanoparticles by voltage-step method,” Sol. Energy Mater. Sol. Cells 145, 16–25 (2016).
[Crossref]

F. Campus, P. Bonhôte, M. Grätzel, S. Heinen, and L. Walder, “Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes,” Sol. Energy Mater. Sol. Cells 56(3-4), 281–297 (1999).
[Crossref]

M. Ciobanu, J. Klein, M. Middendorf, S. Mohsen, B. Mousavi, F. Carl, M. Haase, and L. Walder, “High contrast hybrid electrochromic film based on cross-linked phosphonated triarylamine on mesoporous antimony doped tin oxide,” Sol. Energy Mater. Sol. Cells 203, 110186 (2019).
[Crossref]

Other (2)

F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging (Taylor & Francis Inc, 2017).

R. Mortimer, D. Rosseinsky, and P. Monk, Electrochromic Materials and Devices (Wiley-VCH, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Cross-section of the graduated filter device consisting of the working electrode with phosphonated viologen on TiO$_2$ nanoparticles (bottom, shown as blue colored disc) and the counter electrode with TPB on ATO nanoparticles (top, shown as green colored disc). Both EC electrodes use type III materials which are solid in both their transparent and opaque form to avoid migration of the EC species. On the working electrode, eight individually controllable Au contact pads are established on the circumference of the round optical area ($\varnothing$ = 40 mm). Owing to the ohmic resistance of the ITO layer on the glass substrate, the lateral current flow allows to create the two-dimensional potential distribution on the working electrode with respect to the counter electrode. This results in a local coloration of the EC materials and the desired continuous graduated transmission distribution.
Fig. 2.
Fig. 2. Definition of the gradient’s parameters and the electrode contact angle $\alpha$ (a) and correlation maps for the five different values of $\alpha$ indicated at the top of each image ((b)-(f)). We varied $g_0$ and $\theta$ while keeping $\Delta g = 10$ mm and $T_{\textrm {min}} = 10$ % fixed.
Fig. 3.
Fig. 3. Spatial transmission distribution across the round active optical area displayed as color coded surface. The upper left diagram shows the specification for $g_0 = +2$ mm, $\Delta g = 10$ mm, $T_{\textrm {min}} = 10$ % and $\theta = 0^\circ$.
Fig. 4.
Fig. 4. Difference of the simulated and specified point of medium transmission $g_{\textrm {0sim}}-g_{\textrm {0spec}}$ for various $g_0$, $\theta$ and $\alpha$. Yellow coloration indicates that for this combination of $g_0$ and $\theta$, the calculated $g_{\textrm {0sim}}$ exceeds the expected $g_{\textrm {0spec}}$, while blue coloration indicates that $g_{\textrm {0sim}} < g_{\textrm {0spec}}$. For an ideal $\alpha$ with every $g_{\textrm {0sim}}$ matching its corresponding $g_{\textrm {0spec}}$, the whole map would have the color of 0 mm deviation.
Fig. 5.
Fig. 5. Difference of the simulated and specified rotation of the gradient $\theta _{\textrm {sim}}-\theta _{\textrm {spec}}$ for various $g_0$, $\theta$ and $\alpha$. For an ideal $\alpha$ with every $\theta _{\textrm {sim}}$ matching its corresponding $\theta _{\textrm {spec}}$, the whole map would have the color of 0° deviation.
Fig. 6.
Fig. 6. Differences of the simulated and specified transmission along the y-axis for different widths of the transition zone $\Delta g$ depicted in color code. Additionally, the coefficient of determination $R^2$ is given for seven different $\Delta g$ values as blue line in the $R^2$-$\Delta g$ plane. In all simulations, the remaining parameters were kept at $g_0 = +2$ mm, $\theta = 0^\circ$ and $T_{\textrm {min}} = 10\,\%$.
Fig. 7.
Fig. 7. Images of the manufactured EC graduated filter in the transparent state (a), the homogeneously colored state at −1.7 V (b) and in a graduated state (c) with $g_0 = +2$ mm, $\Delta g = 10$ mm, $T_{\textrm {min}} = 10\,$% and $\theta = 30^\circ$.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( ϕ ( x ) ) = T 0 exp ( ϵ d 1 + exp ( z F R T room ( ϕ ( x ) ϕ redox ) ) ) ,
R 2 = 1 x , y ( T sim T spec ) 2 x , y ( T spec T spec ¯ ) 2