Abstract

Based on the phased-shifted interference between supermodes, a novel method that can directly convert LP01 mode to orbital angular momentum (OAM) mode in a dual-ring microstructure optical fiber is proposed. In this fiber, the resonance between even and odd HE11 modes in inner ring and higher order mode in outer ring will form two pairs of supermodes, and the intensities and phases of the complete superposition mode fields for the involved supermodes created by the resonance at different wavelengths and propagating lengths are investigated and exhibited in this paper. We demonstrate that OAM mode can be generated from π/2-phase-shifted linear combinations of supermodes, and the phase difference of the even and odd higher order eigenmodes can accumulate to π/2 during the coupling process, which is defined as “phase-shifted” conversion. We build a complete theoretical model and systematically analyze the phase-shifted coupling mechanism, and the design principle and optimization method of this fiber are also illustrated in detail. The proposed microstructure fiber is compact, and the OAM mode conversion method is simple and flexible, which could provide a new approach to generate OAM states.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Padgett, “Orbital angular momentum 25 years on [Invited],” Opt. Express 25(10), 11265–11274 (2017).
    [Crossref]
  2. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  3. L. Zhu and J. Wang, “A review of multiple optical vortices generation: methods and applications,” Front. Optoelectron. 12(1), 52–68 (2019).
    [Crossref]
  4. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
    [Crossref]
  5. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
    [Crossref]
  6. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period twisted elliptical fibers,” Appl. Opt. 51(10), C193–C197 (2012).
    [Crossref]
  7. X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
    [Crossref]
  8. L. Li, S. Zhu, J. Li, X. Shao, A. Galvanauskas, and X. Ma, “All-in-fiber method of generating orbital angular momentum with helically symmetric fibers,” Appl. Opt. 57(28), 8182–8186 (2018).
    [Crossref]
  9. C. Fu, S. Liu, Z. Bai, J. He, C. Liao, Y. Wang, Z. Li, Y. Zhang, K. Yang, B. Yu, and Y. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen–Oxygen Flame,” J. Lightwave Technol. 36(9), 1683–1688 (2018).
    [Crossref]
  10. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
    [Crossref]
  11. C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, “High-order orbital angular momentum mode generator based on twisted photonic crystal fiber,” Opt. Lett. 43(8), 1786–1789 (2018).
    [Crossref]
  12. C. Zhu, P. Wang, H. Zhao, R. Mizushima, S. Ishikami, and H. Li, “DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator,” IEEE Photonics Technol. Lett. 31(17), 1445–1448 (2019).
    [Crossref]
  13. S. Li, Z. Xu, R. Zhao, L. Shen, C. Du, and J. Wang, “Generation of Orbital Angular Momentum Beam Using Fiber-to-Fiber Butt Coupling,” IEEE Photonics J. 10(4), 1–7 (2018).
    [Crossref]
  14. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
    [Crossref]
  15. Y. Jiang, G. Ren, Y. Lian, B. Zhu, W. Jin, and S. Jian, “Tunable orbital angular momentum generation in optical fibers,” Opt. Lett. 41(15), 3535–3538 (2016).
    [Crossref]
  16. S. Wu, Y. Li, L. Feng, X. Zeng, W. Li, J. Qiu, Y. Zuo, X. Hong, H. Yu, R. Chen, I. P. Giles, and J. Wu, “Continuously tunable orbital angular momentum generation controlled by input linear polarization,” Opt. Lett. 43(9), 2130–2133 (2018).
    [Crossref]
  17. C. Zhang, F. Pang, H. Liu, L. Chen, J. Yang, J. Wen, and T. Wang, “Highly efficient excitation of LP01 mode in ring-core fibers by tapering for optimizing OAM generation,” Chin. Opt. Lett. 18(2), 020602 (2020).
    [Crossref]
  18. X. Heng, J. Gan, Z. Zhang, J. Li, M. Li, H. Zhao, Q. Qian, S. Xu, and Z. Yang, “All-fiber stable orbital angular momentum beam generation and propagation,” Opt. Express 26(13), 17429–17436 (2018).
    [Crossref]
  19. Y. Jiang, G. Ren, Y. Shen, Y. Xu, W. Jin, Y. Wu, W. Jian, and S. Jian, “Two-dimensional tunable orbital angular momentum generation using a vortex fiber,” Opt. Lett. 42(23), 5014–5017 (2017).
    [Crossref]
  20. T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of Femtosecond Optical Vortex Beams in All-Fiber Mode-Locked Fiber Laser Using Mode Selective Coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
    [Crossref]
  21. Y. Huang, F. Shi, T. Wang, X. Liu, X. Zeng, F. Pang, T. Wang, and P. Zhou, “High-order mode Yb-doped fiber lasers based on mode-selective couplers,” Opt. Express 26(15), 19171–19181 (2018).
    [Crossref]
  22. G. Yin, C. Liang, I. P. Ikechukwu, M. Deng, L. Shi, Q. Fu, T. Zhu, and L. Zhang, “Orbital angular momentum generation in two-mode fiber, based on the modal interference principle,” Opt. Lett. 44(4), 999–1002 (2019).
    [Crossref]
  23. W. Huang, Y. Liu, Z. Wang, W. Zhang, M. Luo, X. Liu, J. Guo, B. Liu, and L. Lin, “Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber,” Opt. Express 23(26), 33741–33752 (2015).
    [Crossref]
  24. Y. Han, Y. Liu, W. Huang, Z. Wang, J. Guo, and M. Luo, “Generation of linearly polarized orbital angular momentum modes in a side-hole ring fiber with tunable topology numbers,” Opt. Express 24(15), 17272–17284 (2016).
    [Crossref]
  25. X. Zeng, Q. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).
    [Crossref]
  26. J. Liu, Photonic Devices (Cambridge University, 2005), Chap. 4.
  27. S. Li and J. Wang, “Supermode fiber for orbital angular momentum (OAM) transmission,” Opt. Express 23(14), 18736–18745 (2015).
    [Crossref]

2020 (1)

2019 (3)

C. Zhu, P. Wang, H. Zhao, R. Mizushima, S. Ishikami, and H. Li, “DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator,” IEEE Photonics Technol. Lett. 31(17), 1445–1448 (2019).
[Crossref]

L. Zhu and J. Wang, “A review of multiple optical vortices generation: methods and applications,” Front. Optoelectron. 12(1), 52–68 (2019).
[Crossref]

G. Yin, C. Liang, I. P. Ikechukwu, M. Deng, L. Shi, Q. Fu, T. Zhu, and L. Zhang, “Orbital angular momentum generation in two-mode fiber, based on the modal interference principle,” Opt. Lett. 44(4), 999–1002 (2019).
[Crossref]

2018 (7)

S. Wu, Y. Li, L. Feng, X. Zeng, W. Li, J. Qiu, Y. Zuo, X. Hong, H. Yu, R. Chen, I. P. Giles, and J. Wu, “Continuously tunable orbital angular momentum generation controlled by input linear polarization,” Opt. Lett. 43(9), 2130–2133 (2018).
[Crossref]

Y. Huang, F. Shi, T. Wang, X. Liu, X. Zeng, F. Pang, T. Wang, and P. Zhou, “High-order mode Yb-doped fiber lasers based on mode-selective couplers,” Opt. Express 26(15), 19171–19181 (2018).
[Crossref]

L. Li, S. Zhu, J. Li, X. Shao, A. Galvanauskas, and X. Ma, “All-in-fiber method of generating orbital angular momentum with helically symmetric fibers,” Appl. Opt. 57(28), 8182–8186 (2018).
[Crossref]

C. Fu, S. Liu, Z. Bai, J. He, C. Liao, Y. Wang, Z. Li, Y. Zhang, K. Yang, B. Yu, and Y. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen–Oxygen Flame,” J. Lightwave Technol. 36(9), 1683–1688 (2018).
[Crossref]

S. Li, Z. Xu, R. Zhao, L. Shen, C. Du, and J. Wang, “Generation of Orbital Angular Momentum Beam Using Fiber-to-Fiber Butt Coupling,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, “High-order orbital angular momentum mode generator based on twisted photonic crystal fiber,” Opt. Lett. 43(8), 1786–1789 (2018).
[Crossref]

X. Heng, J. Gan, Z. Zhang, J. Li, M. Li, H. Zhao, Q. Qian, S. Xu, and Z. Yang, “All-fiber stable orbital angular momentum beam generation and propagation,” Opt. Express 26(13), 17429–17436 (2018).
[Crossref]

2017 (3)

2016 (3)

2015 (4)

2013 (2)

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

2012 (1)

2011 (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

2006 (1)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref]

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Alexeyev, C. N.

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref]

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ashrafi, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Bai, Z.

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Barnett, S. M.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref]

Biancalana, F.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref]

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Chen, L.

Chen, R.

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref]

Deng, M.

Du, C.

S. Li, Z. Xu, R. Zhao, L. Shen, C. Du, and J. Wang, “Generation of Orbital Angular Momentum Beam Using Fiber-to-Fiber Butt Coupling,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[Crossref]

Fadeyeva, T. A.

Feng, L.

Fu, C.

Fu, Q.

Galvanauskas, A.

Gan, J.

Gao, S.

Giles, I. P.

Guo, J.

Han, Y.

He, J.

Heng, X.

Hong, X.

Hu, X.

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Huang, S.

Huang, W.

Huang, Y.

Ikechukwu, I. P.

Ishikami, S.

C. Zhu, P. Wang, H. Zhao, R. Mizushima, S. Ishikami, and H. Li, “DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator,” IEEE Photonics Technol. Lett. 31(17), 1445–1448 (2019).
[Crossref]

Jian, S.

Jian, W.

Jiang, Y.

Jin, W.

Kristensen, P.

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

Lapin, B. P.

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref]

Li, H.

C. Zhu, P. Wang, H. Zhao, R. Mizushima, S. Ishikami, and H. Li, “DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator,” IEEE Photonics Technol. Lett. 31(17), 1445–1448 (2019).
[Crossref]

Li, J.

Li, L.

L. Li, S. Zhu, J. Li, X. Shao, A. Galvanauskas, and X. Ma, “All-in-fiber method of generating orbital angular momentum with helically symmetric fibers,” Appl. Opt. 57(28), 8182–8186 (2018).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Li, M.

Li, Q.

X. Zeng, Q. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Li, S.

Li, W.

S. Wu, Y. Li, L. Feng, X. Zeng, W. Li, J. Qiu, Y. Zuo, X. Hong, H. Yu, R. Chen, I. P. Giles, and J. Wu, “Continuously tunable orbital angular momentum generation controlled by input linear polarization,” Opt. Lett. 43(9), 2130–2133 (2018).
[Crossref]

X. Zeng, Q. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Li, Y.

Li, Z.

Lian, Y.

Liang, C.

Liao, C.

Lin, L.

Liu, B.

Liu, H.

Liu, J.

J. Liu, Photonic Devices (Cambridge University, 2005), Chap. 4.

Liu, S.

Liu, X.

Liu, Y.

Liu, Z.

X. Zeng, Q. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Luo, M.

Ma, X.

Mizushima, R.

C. Zhu, P. Wang, H. Zhao, R. Mizushima, S. Ishikami, and H. Li, “DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator,” IEEE Photonics Technol. Lett. 31(17), 1445–1448 (2019).
[Crossref]

Mo, Q.

X. Zeng, Q. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[Crossref]

Molisch, A. F.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Padgett, M. J.

M. J. Padgett, “Orbital angular momentum 25 years on [Invited],” Opt. Express 25(10), 11265–11274 (2017).
[Crossref]

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Pang, F.

Qian, Q.

Qiu, J.

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

Ren, G.

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Shao, X.

Shen, L.

S. Li, Z. Xu, R. Zhao, L. Shen, C. Du, and J. Wang, “Generation of Orbital Angular Momentum Beam Using Fiber-to-Fiber Butt Coupling,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

Shen, Y.

Shi, F.

Shi, L.

St. Russell, P. J.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref]

Tian, Y.

X. Zeng, Q. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Tur, M.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Wang, F.

Wang, J.

L. Zhu and J. Wang, “A review of multiple optical vortices generation: methods and applications,” Front. Optoelectron. 12(1), 52–68 (2019).
[Crossref]

S. Li, Z. Xu, R. Zhao, L. Shen, C. Du, and J. Wang, “Generation of Orbital Angular Momentum Beam Using Fiber-to-Fiber Butt Coupling,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[Crossref]

S. Li and J. Wang, “Supermode fiber for orbital angular momentum (OAM) transmission,” Opt. Express 23(14), 18736–18745 (2015).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Wang, P.

C. Zhu, P. Wang, H. Zhao, R. Mizushima, S. Ishikami, and H. Li, “DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator,” IEEE Photonics Technol. Lett. 31(17), 1445–1448 (2019).
[Crossref]

Wang, T.

Wang, Y.

Wang, Z.

Weiss, T.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref]

Wen, J.

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Wong, G. K. L.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref]

Wu, J.

S. Wu, Y. Li, L. Feng, X. Zeng, W. Li, J. Qiu, Y. Zuo, X. Hong, H. Yu, R. Chen, I. P. Giles, and J. Wu, “Continuously tunable orbital angular momentum generation controlled by input linear polarization,” Opt. Lett. 43(9), 2130–2133 (2018).
[Crossref]

X. Zeng, Q. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

Wu, S.

Wu, Y.

Xi, X. M.

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref]

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Xu, S.

Xu, Y.

Xu, Z.

S. Li, Z. Xu, R. Zhao, L. Shen, C. Du, and J. Wang, “Generation of Orbital Angular Momentum Beam Using Fiber-to-Fiber Butt Coupling,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Yang, J.

Yang, K.

Yang, Z.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yavorsky, M. A.

Yin, G.

Yu, B.

Yu, H.

Zeng, X.

Zhang, C.

Zhang, F.

Zhang, L.

Zhang, W.

Zhang, Y.

Zhang, Z.

Zhao, H.

C. Zhu, P. Wang, H. Zhao, R. Mizushima, S. Ishikami, and H. Li, “DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator,” IEEE Photonics Technol. Lett. 31(17), 1445–1448 (2019).
[Crossref]

X. Heng, J. Gan, Z. Zhang, J. Li, M. Li, H. Zhao, Q. Qian, S. Xu, and Z. Yang, “All-fiber stable orbital angular momentum beam generation and propagation,” Opt. Express 26(13), 17429–17436 (2018).
[Crossref]

Zhao, R.

S. Li, Z. Xu, R. Zhao, L. Shen, C. Du, and J. Wang, “Generation of Orbital Angular Momentum Beam Using Fiber-to-Fiber Butt Coupling,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Zhou, P.

Zhu, B.

Zhu, C.

C. Zhu, P. Wang, H. Zhao, R. Mizushima, S. Ishikami, and H. Li, “DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator,” IEEE Photonics Technol. Lett. 31(17), 1445–1448 (2019).
[Crossref]

Zhu, L.

L. Zhu and J. Wang, “A review of multiple optical vortices generation: methods and applications,” Front. Optoelectron. 12(1), 52–68 (2019).
[Crossref]

Zhu, S.

Zhu, T.

Zuo, Y.

Adv. Opt. Photonics (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Appl. Opt. (2)

Chin. Opt. Lett. (1)

Front. Optoelectron. (1)

L. Zhu and J. Wang, “A review of multiple optical vortices generation: methods and applications,” Front. Optoelectron. 12(1), 52–68 (2019).
[Crossref]

IEEE Photonics J. (2)

S. Li, Z. Xu, R. Zhao, L. Shen, C. Du, and J. Wang, “Generation of Orbital Angular Momentum Beam Using Fiber-to-Fiber Butt Coupling,” IEEE Photonics J. 10(4), 1–7 (2018).
[Crossref]

X. Zeng, Q. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. Zhu, P. Wang, H. Zhao, R. Mizushima, S. Ishikami, and H. Li, “DC-Sampled Helical Fiber Grating and its Application to Multi-Channel OAM Generator,” IEEE Photonics Technol. Lett. 31(17), 1445–1448 (2019).
[Crossref]

J. Lightwave Technol. (2)

Nanophotonics (1)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. Lett. (2)

X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. J. St. Russell, “Optical Activity in Twisted Solid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 110(14), 143903 (2013).
[Crossref]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref]

Other (1)

J. Liu, Photonic Devices (Cambridge University, 2005), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Principle of mode conversion between LP01 mode and OAM mode in the proposed fiber. The modal energy distributions of HE11 modes, HE71 modes, and the corresponding supermodes are shown as example images in this figure.
Fig. 2.
Fig. 2. Cross section of the proposed fiber.
Fig. 3.
Fig. 3. The optimization method to unify the coupling wavelengths for even and odd modes, and we suppose the ERI for even mode is larger than odd mode. (a) The coupling wavelength for even mode is shorter than odd mode. (b) The coupling wavelength for even mode is longer than odd mode. (c) The coupling wavelengths for odd and even modes are the same.
Fig. 4.
Fig. 4. Dispersion curves and modal energy distributions of the four supermodes created by the resonance between HE11 and HE51 modes.
Fig. 5.
Fig. 5. The intensities and phases of the superpositions of different supermodes created by the resonance between HE11 and HE51 modes at 1550.3 nm.
Fig. 6.
Fig. 6. The intensity profiles, phase distributions, purities and azimuthal phase variations for the generated OAM41 modes in outer ring at 1550.3 nm with different propagation distances.
Fig. 7.
Fig. 7. (a)-(c) The intensity profiles, phase distributions, purities and azimuthal phase variations of the generated OAM41 mode in outer ring at different wavelengths under the same propagation distance of 268 mm; (d)-(e) The intensity profiles and phase distributions of the superposition mode fields $E(r) = {E_D}(x,y) - {E_C}(x,y) + i{E_B}(x,y) - i{E_A}(x,y)$ at the corresponding different wavelengths.
Fig. 8.
Fig. 8. The intensity profiles, phase distributions, purities and azimuthal phase variations for the generated OAM61 modes in outer ring at different propagation distances. The OAM modes are generated from HE71 mode.
Fig. 9.
Fig. 9. The intensity profiles, phase distributions, purities and azimuthal phase variations for the generated OAM81 modes in outer ring at different propagation distances (HE91 mode).
Fig. 10.
Fig. 10. The intensity profiles, phase distributions, purities and azimuthal phase variations for the generated OAM41 modes in outer ring at different propagation distances (EH31 mode).
Fig. 11.
Fig. 11. The intensity profiles, phase distributions, purities and azimuthal phase variations for the generated OAM61 modes in outer ring at different propagation distances (EH51 mode).
Fig. 12.
Fig. 12. The intensity profiles, phase distributions, purities and azimuthal phase variations for the generated OAM81 modes in outer ring at different propagation distances (EH71 mode).

Tables (3)

Tables Icon

Table 1. Structural parameters for the generation of different orders

Tables Icon

Table 2. The matching coefficients under different transmission lengths

Tables Icon

Table 3. The matching coefficients for different resonance modes

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E 11 e v e n ( r ) = ( cos γ e v e n z i δ e v e n γ e v e n sin γ e v e n z ) exp ( i δ e v e n z ) E 11 e v e n ( x , y ) exp [ i ( β 11 e v e n + κ 11 e v e n ) z ,
E m n e v e n ( r ) = ( i κ e v e n γ e v e n sin γ e v e n z ) exp ( i δ e v e n z ) E m n e v e n ( x , y ) exp [ i ( β m n e v e n + κ m n e v e n ) z .
E e v e n ( r ) = E 11 e v e n ( r ) + E m n e v e n ( r ) = E A ( x , y ) exp ( i β A z ) + E B ( x , y ) exp ( i β B z ) .
E A ( x , y ) = ( γ e v e n δ e v e n ) E 11 e v e n ( x , y ) + κ e v e n E m n e v e n ( x , y ) 2 γ e v e n ,
E B ( x , y ) = ( γ e v e n + δ e v e n ) E 11 e v e n ( x , y ) κ e v e n E m n e v e n ( x , y ) 2 γ e v e n ,
l 0 = π 2 γ e v e n = π β A β B .
E e v e n ( r ) = γ e v e n E 11 e v e n ( x , y ) 2 γ e v e n ( e i β A L + e i β B L ) + κ e v e n E m n e v e n ( x , y ) 2 γ e v e n ( e i β A L e i β B L ) = E m n e v e n ( x , y ) e i β A L .
E o d d ( r ) = E 11 o d d ( r ) + E m n o d d ( r ) = E C ( x , y ) exp ( i β C z ) + E D ( x , y ) exp ( i β D z ) .
E C ( x , y ) = ( γ o d d δ o d d ) E 11 o d d ( x , y ) + κ o d d E m n o d d ( x , y ) 2 γ o d d ,
E D ( x , y ) = ( γ o d d + δ o d d ) E 11 o d d ( x , y ) κ o d d E m n o d d ( x , y ) 2 γ o d d ,
E o d d ( r ) = E C ( x , y ) e i β C L + E D ( x , y ) e i β D L = E m n o d d ( x , y ) e i β C L .
E ( r ) = E A ( x , y ) e i β A z + E B ( x , y ) e i β B z + E C ( x , y ) e i β C z + E D ( x , y ) e i β D z .
L = ( 2 n + 1 ) π β A β B  =  ( 2 m + 1 ) π β C β D  =  ( 2 p ± 1 2 ) π β A β C = ( 2 q ± 1 2 ) π β B β D ,
E ( r ) = E m n e v e n ( x , y ) e i β A L + E m n o d d ( x , y ) e i β C L = [ E m n o d d ( x , y ) ± i E m n e v e n ( x , y ) ] e i β C L .
E e v e n ( r ) = E A ( x , y ) e i β A L + E B ( x , y ) e i β B L = [ E B ( x , y ) E A ( x , y ) ] e i β B L .
E o d d ( r ) = E C ( x , y ) e i β C L + E D ( x , y ) e i β D L = [ E D ( x , y ) E C ( x , y ) ] e i β D L ,
E ( r ) = [ E D ( x , y ) E C ( x , y ) + i E B ( x , y ) i E A ( x , y ) ] e i β D L .