Abstract

Sodium beacon adaptive optics (AO) system has been proved to be a highly productive tool for improving the resolving power of large-aperture ground-based telescope imaging. The performance of the AO system is mainly limited by photon return of the sodium beacon, which is determined by the coupling efficiency that characterizes the interaction rate between sodium laser and sodium atoms. The interaction processing is strictly influenced by the collisions of sodium atoms with other molecules (N2, O2). Most of the existing collision kernels are assumed as the “memoryless” hard collision, which is completely velocity reset in a Maxwellian distribution of the sodium atoms after scattering. To be more realistic, we adopt a more practical “memory” Cusp weak collision kernel, considering the velocity distribution of sodium atoms after collisions are correlated with the velocity before collision. By solving the Bloch equations, the processing for the interaction between sodium laser and sodium atom with Cusp kernel is established, and the coupling efficiency of sodium beacon with different collision kernel by analyzing the population is obtained. The researching results show that, for “memoryless” kernel, comparing to Cusp kernel with shaping parameter (s) of 100, the coupling efficiency is larger than 56% at best case; for sodium laser with 12% power detuned to D2b line and at a power density ranges from 10 to 100 W/m2, the coupling efficiency of “memoryless” kernel is nearly the same as “memory” Cusp kernel with s of 10, 100 and 3 Cusp kernel.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Hardy,” Adaptive optics for astronomical telescope,” (Oxford University, 1998).
  2. R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.
  3. F. Rigaut and B. Neichel, “Multiconjugate Adaptive Optics for Astronomy,” Annu. Rev. Astron. Astrophys. 56(1), 277–314 (2018).
    [Crossref]
  4. D. Ma, “Recommended conceptual optical system design for China’s large optical-infrared telescope (LOT),” Opt. Express 26(1), 108–119 (2018).
    [Crossref]
  5. J. Huang, K. Wei, K. Jin, M. Li, and Y. Zhang, “Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping,” Opt. Commun. 416, 172–180 (2018).
    [Crossref]
  6. R. Holzlöhner, S. M. Rochester, D. B. Calia, D. Budker, J. M Higbie, and W Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
    [Crossref]
  7. P. W. Milonni, H. Fearn, J. M. Telle, and R. Q. Fugate, “Theory of continuous wave excitation of the sodium beacon,” J. Opt. Soc. Am. A 16(10), 2555 (1999).
    [Crossref]
  8. X. Liu, X. Qian, D. Liu, H. Huang, and R. Rao, “influencing factors and numerical simulation for the number of return photons from sodium laser beacon,” Chin. J. Laser 40(6), 0613001 (2013).
    [Crossref]
  9. K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
    [Crossref]
  10. F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
    [Crossref]
  11. W. Happer, Y. Y. Jau, and T. Walker,” Optically pumped atoms,” (John Wiley & Sons, 2010).
  12. S. W. Morgan and W. Happer, “Optically pumped atoms with velocity- and spin-changing collisions at low gas pressures,” Phys. Rev. A: At., Mol., Opt. Phys. 81(4), 042703 (2010).
    [Crossref]
  13. R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
    [Crossref]
  14. S. Hackett and R. Johnson, “Non Boltzmann Modeling of Sodium Guidestar Returns and Implications for Guidestar Linewidth,” Proc. SPIE 1(1), 1–13 (2015).
    [Crossref]
  15. S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
    [Crossref]
  16. B. H. McGuyer, R. Marsland, B. A. Olsen, and W. Happer, “Cusp Kernels for Velocity-Changing Collisions,” Phys. Rev. Lett. 108(18), 183202 (2012).
    [Crossref]
  17. T. Bhamre, R. Marsland, I. K. Kominis, B. H. McGuyer, and W. Happer, “Collision kernels from velocity-selective optical pumping with magnetic depolarization,” Phys. Rev. A: At., Mol., Opt. Phys. 87(4), 043412 (2013).
    [Crossref]
  18. R. Marsland, B. H. Mcguyer, B. A. Olsen, and W. Happer, “Spin-velocity correlations of optically pumped atoms,” Phys. Rev. A: At., Mol., Opt. Phys. 86(2), 023404 (2012).
    [Crossref]
  19. J. E. M. Haverkort, J. P. Woerdman, and P. R. Berman, “Experimental determination of Na-noble-gas velocity-changing and fine-structure-changing collision kernels,” Phys. Rev. A: At., Mol., Opt. Phys. 36(11), 5251–5264 (1987).
    [Crossref]
  20. M. J. O’Callaghan and J. Cooper, “Theory of velocity-dependent, collision-broadened, Doppler-free line shapes,” Phys. Rev. A: At., Mol., Opt. Phys. 39(12), 6206–6223 (1989).
    [Crossref]
  21. D. A. Steck. “Sodium D Line Data,” Available from: https://steck.us/alkalidata/ , (2010).
  22. M. Auzinsh, D. Budker, and S. M. Rochester,” Optically polarized atoms,” (Oxford University, 2010).
  23. S. M. Rochester and R. Holzlöhner. LGSBloch, Available from: http://rochesterscientific/ADM/ , (2015)
  24. T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. G. Meyer, “Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range,” Phys. Rev. A: At., Mol., Opt. Phys. 94(1), 013403 (2016).
    [Crossref]
  25. T. J. Kane, P. D. Hillman, and C. A. Denman, “Pulsed laser architecture for enhancing backscatter from sodium,” Proc. SPIE 9148, 91483G (2014).
    [Crossref]
  26. S. M. Rochester. “Atomic Density Matrix package for mathematica,” Version, 2015.
  27. L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
    [Crossref]
  28. T. H. Jeys, R. M. Heinrichs, K. F. Wall, J. Korn, T. C. Hotaling, and E. Kibblewhite, “Observation of optical pumping of mesospheric sodium,” Opt. Lett. 17(16), 1143–1145 (1992).
    [Crossref]
  29. S. M. Rochester, A. Otarola, C. Boyer, D. Budker, B. Ellerbroek, R. Holzlöhner, and L. Wang, “Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project,” J. Opt. Soc. Am. B 29(8), 2176–2188 (2012).
    [Crossref]

2018 (4)

F. Rigaut and B. Neichel, “Multiconjugate Adaptive Optics for Astronomy,” Annu. Rev. Astron. Astrophys. 56(1), 277–314 (2018).
[Crossref]

D. Ma, “Recommended conceptual optical system design for China’s large optical-infrared telescope (LOT),” Opt. Express 26(1), 108–119 (2018).
[Crossref]

J. Huang, K. Wei, K. Jin, M. Li, and Y. Zhang, “Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping,” Opt. Commun. 416, 172–180 (2018).
[Crossref]

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

2016 (2)

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. G. Meyer, “Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range,” Phys. Rev. A: At., Mol., Opt. Phys. 94(1), 013403 (2016).
[Crossref]

2015 (3)

S. Hackett and R. Johnson, “Non Boltzmann Modeling of Sodium Guidestar Returns and Implications for Guidestar Linewidth,” Proc. SPIE 1(1), 1–13 (2015).
[Crossref]

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

2014 (1)

T. J. Kane, P. D. Hillman, and C. A. Denman, “Pulsed laser architecture for enhancing backscatter from sodium,” Proc. SPIE 9148, 91483G (2014).
[Crossref]

2013 (2)

T. Bhamre, R. Marsland, I. K. Kominis, B. H. McGuyer, and W. Happer, “Collision kernels from velocity-selective optical pumping with magnetic depolarization,” Phys. Rev. A: At., Mol., Opt. Phys. 87(4), 043412 (2013).
[Crossref]

X. Liu, X. Qian, D. Liu, H. Huang, and R. Rao, “influencing factors and numerical simulation for the number of return photons from sodium laser beacon,” Chin. J. Laser 40(6), 0613001 (2013).
[Crossref]

2012 (3)

R. Marsland, B. H. Mcguyer, B. A. Olsen, and W. Happer, “Spin-velocity correlations of optically pumped atoms,” Phys. Rev. A: At., Mol., Opt. Phys. 86(2), 023404 (2012).
[Crossref]

B. H. McGuyer, R. Marsland, B. A. Olsen, and W. Happer, “Cusp Kernels for Velocity-Changing Collisions,” Phys. Rev. Lett. 108(18), 183202 (2012).
[Crossref]

S. M. Rochester, A. Otarola, C. Boyer, D. Budker, B. Ellerbroek, R. Holzlöhner, and L. Wang, “Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project,” J. Opt. Soc. Am. B 29(8), 2176–2188 (2012).
[Crossref]

2010 (3)

S. W. Morgan and W. Happer, “Optically pumped atoms with velocity- and spin-changing collisions at low gas pressures,” Phys. Rev. A: At., Mol., Opt. Phys. 81(4), 042703 (2010).
[Crossref]

R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
[Crossref]

R. Holzlöhner, S. M. Rochester, D. B. Calia, D. Budker, J. M Higbie, and W Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[Crossref]

1999 (1)

1992 (1)

1989 (1)

M. J. O’Callaghan and J. Cooper, “Theory of velocity-dependent, collision-broadened, Doppler-free line shapes,” Phys. Rev. A: At., Mol., Opt. Phys. 39(12), 6206–6223 (1989).
[Crossref]

1987 (1)

J. E. M. Haverkort, J. P. Woerdman, and P. R. Berman, “Experimental determination of Na-noble-gas velocity-changing and fine-structure-changing collision kernels,” Phys. Rev. A: At., Mol., Opt. Phys. 36(11), 5251–5264 (1987).
[Crossref]

Albrecht, A. R.

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

Angel, R

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

Auzinsh, M.

M. Auzinsh, D. Budker, and S. M. Rochester,” Optically polarized atoms,” (Oxford University, 2010).

Bahae, M. S.

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

Berman, P. R.

J. E. M. Haverkort, J. P. Woerdman, and P. R. Berman, “Experimental determination of Na-noble-gas velocity-changing and fine-structure-changing collision kernels,” Phys. Rev. A: At., Mol., Opt. Phys. 36(11), 5251–5264 (1987).
[Crossref]

Bhamre, T.

T. Bhamre, R. Marsland, I. K. Kominis, B. H. McGuyer, and W. Happer, “Collision kernels from velocity-selective optical pumping with magnetic depolarization,” Phys. Rev. A: At., Mol., Opt. Phys. 87(4), 043412 (2013).
[Crossref]

Bian, Q.

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

Bo, Y.

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

Bouchez, A

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

Boyer, C.

Britton, M

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

Budker, D.

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

S. M. Rochester, A. Otarola, C. Boyer, D. Budker, B. Ellerbroek, R. Holzlöhner, and L. Wang, “Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project,” J. Opt. Soc. Am. B 29(8), 2176–2188 (2012).
[Crossref]

R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
[Crossref]

R. Holzlöhner, S. M. Rochester, D. B. Calia, D. Budker, J. M Higbie, and W Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[Crossref]

M. Auzinsh, D. Budker, and S. M. Rochester,” Optically polarized atoms,” (Oxford University, 2010).

Bustos, F. P.

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

Calia, D. B.

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

R. Holzlöhner, S. M. Rochester, D. B. Calia, D. Budker, J. M Higbie, and W Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[Crossref]

R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
[Crossref]

Cederberg, J. G.

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

Centrone, M.

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

Chun, M

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

Close, L

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

Codona, J

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

Cooper, J.

M. J. O’Callaghan and J. Cooper, “Theory of velocity-dependent, collision-broadened, Doppler-free line shapes,” Phys. Rev. A: At., Mol., Opt. Phys. 39(12), 6206–6223 (1989).
[Crossref]

Dai, X.

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

Dekany, R

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

Denman, C

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

Denman, C. A.

T. J. Kane, P. D. Hillman, and C. A. Denman, “Pulsed laser architecture for enhancing backscatter from sodium,” Proc. SPIE 9148, 91483G (2014).
[Crossref]

Ellerbroek, B.

Fearn, H.

Feng, L.

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

Fritzsche, S.

T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. G. Meyer, “Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range,” Phys. Rev. A: At., Mol., Opt. Phys. 94(1), 013403 (2016).
[Crossref]

Fu, H.

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

Fugate, R. Q.

Hackenberg, W

R. Holzlöhner, S. M. Rochester, D. B. Calia, D. Budker, J. M Higbie, and W Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[Crossref]

Hackenberg, W.

R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
[Crossref]

Hackett, S.

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

S. Hackett and R. Johnson, “Non Boltzmann Modeling of Sodium Guidestar Returns and Implications for Guidestar Linewidth,” Proc. SPIE 1(1), 1–13 (2015).
[Crossref]

Happer, W.

T. Bhamre, R. Marsland, I. K. Kominis, B. H. McGuyer, and W. Happer, “Collision kernels from velocity-selective optical pumping with magnetic depolarization,” Phys. Rev. A: At., Mol., Opt. Phys. 87(4), 043412 (2013).
[Crossref]

R. Marsland, B. H. Mcguyer, B. A. Olsen, and W. Happer, “Spin-velocity correlations of optically pumped atoms,” Phys. Rev. A: At., Mol., Opt. Phys. 86(2), 023404 (2012).
[Crossref]

B. H. McGuyer, R. Marsland, B. A. Olsen, and W. Happer, “Cusp Kernels for Velocity-Changing Collisions,” Phys. Rev. Lett. 108(18), 183202 (2012).
[Crossref]

S. W. Morgan and W. Happer, “Optically pumped atoms with velocity- and spin-changing collisions at low gas pressures,” Phys. Rev. A: At., Mol., Opt. Phys. 81(4), 042703 (2010).
[Crossref]

W. Happer, Y. Y. Jau, and T. Walker,” Optically pumped atoms,” (John Wiley & Sons, 2010).

Hardy, J. W.

J. W. Hardy,” Adaptive optics for astronomical telescope,” (Oxford University, 1998).

Haverkort, J. E. M.

J. E. M. Haverkort, J. P. Woerdman, and P. R. Berman, “Experimental determination of Na-noble-gas velocity-changing and fine-structure-changing collision kernels,” Phys. Rev. A: At., Mol., Opt. Phys. 36(11), 5251–5264 (1987).
[Crossref]

Heinrichs, R. M.

Hellemeier, J.

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

Hickson, P.

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

Higbie, J. M

R. Holzlöhner, S. M. Rochester, D. B. Calia, D. Budker, J. M Higbie, and W Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[Crossref]

Higbie, J. M.

R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
[Crossref]

Hillman, P. D.

T. J. Kane, P. D. Hillman, and C. A. Denman, “Pulsed laser architecture for enhancing backscatter from sodium,” Proc. SPIE 9148, 91483G (2014).
[Crossref]

Holzlöhner, R.

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

S. M. Rochester, A. Otarola, C. Boyer, D. Budker, B. Ellerbroek, R. Holzlöhner, and L. Wang, “Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project,” J. Opt. Soc. Am. B 29(8), 2176–2188 (2012).
[Crossref]

R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
[Crossref]

R. Holzlöhner, S. M. Rochester, D. B. Calia, D. Budker, J. M Higbie, and W Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[Crossref]

S. M. Rochester and R. Holzlöhner. LGSBloch, Available from: http://rochesterscientific/ADM/ , (2015)

Hotaling, T. C.

Huang, H.

X. Liu, X. Qian, D. Liu, H. Huang, and R. Rao, “influencing factors and numerical simulation for the number of return photons from sodium laser beacon,” Chin. J. Laser 40(6), 0613001 (2013).
[Crossref]

Huang, J.

J. Huang, K. Wei, K. Jin, M. Li, and Y. Zhang, “Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping,” Opt. Commun. 416, 172–180 (2018).
[Crossref]

Jau, Y. Y.

W. Happer, Y. Y. Jau, and T. Walker,” Optically pumped atoms,” (John Wiley & Sons, 2010).

Jeys, T. H.

Jin, K.

J. Huang, K. Wei, K. Jin, M. Li, and Y. Zhang, “Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping,” Opt. Commun. 416, 172–180 (2018).
[Crossref]

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

Johnson, R.

S. Hackett and R. Johnson, “Non Boltzmann Modeling of Sodium Guidestar Returns and Implications for Guidestar Linewidth,” Proc. SPIE 1(1), 1–13 (2015).
[Crossref]

Johnson, R. L.

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

Kane, T. J.

T. J. Kane, P. D. Hillman, and C. A. Denman, “Pulsed laser architecture for enhancing backscatter from sodium,” Proc. SPIE 9148, 91483G (2014).
[Crossref]

Kibblewhite, E.

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

T. H. Jeys, R. M. Heinrichs, K. F. Wall, J. Korn, T. C. Hotaling, and E. Kibblewhite, “Observation of optical pumping of mesospheric sodium,” Opt. Lett. 17(16), 1143–1145 (1992).
[Crossref]

Kominis, I. K.

T. Bhamre, R. Marsland, I. K. Kominis, B. H. McGuyer, and W. Happer, “Collision kernels from velocity-selective optical pumping with magnetic depolarization,” Phys. Rev. A: At., Mol., Opt. Phys. 87(4), 043412 (2013).
[Crossref]

Korn, J.

Li, M.

J. Huang, K. Wei, K. Jin, M. Li, and Y. Zhang, “Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping,” Opt. Commun. 416, 172–180 (2018).
[Crossref]

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

Liu, D.

X. Liu, X. Qian, D. Liu, H. Huang, and R. Rao, “influencing factors and numerical simulation for the number of return photons from sodium laser beacon,” Chin. J. Laser 40(6), 0613001 (2013).
[Crossref]

Liu, X.

X. Liu, X. Qian, D. Liu, H. Huang, and R. Rao, “influencing factors and numerical simulation for the number of return photons from sodium laser beacon,” Chin. J. Laser 40(6), 0613001 (2013).
[Crossref]

Lloyd-Hart, M

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

Ma, D.

Marsland, R.

T. Bhamre, R. Marsland, I. K. Kominis, B. H. McGuyer, and W. Happer, “Collision kernels from velocity-selective optical pumping with magnetic depolarization,” Phys. Rev. A: At., Mol., Opt. Phys. 87(4), 043412 (2013).
[Crossref]

R. Marsland, B. H. Mcguyer, B. A. Olsen, and W. Happer, “Spin-velocity correlations of optically pumped atoms,” Phys. Rev. A: At., Mol., Opt. Phys. 86(2), 023404 (2012).
[Crossref]

B. H. McGuyer, R. Marsland, B. A. Olsen, and W. Happer, “Cusp Kernels for Velocity-Changing Collisions,” Phys. Rev. Lett. 108(18), 183202 (2012).
[Crossref]

McGraw, J. T.

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

McGuyer, B. H.

T. Bhamre, R. Marsland, I. K. Kominis, B. H. McGuyer, and W. Happer, “Collision kernels from velocity-selective optical pumping with magnetic depolarization,” Phys. Rev. A: At., Mol., Opt. Phys. 87(4), 043412 (2013).
[Crossref]

R. Marsland, B. H. Mcguyer, B. A. Olsen, and W. Happer, “Spin-velocity correlations of optically pumped atoms,” Phys. Rev. A: At., Mol., Opt. Phys. 86(2), 023404 (2012).
[Crossref]

B. H. McGuyer, R. Marsland, B. A. Olsen, and W. Happer, “Cusp Kernels for Velocity-Changing Collisions,” Phys. Rev. Lett. 108(18), 183202 (2012).
[Crossref]

Meyer, H. G.

T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. G. Meyer, “Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range,” Phys. Rev. A: At., Mol., Opt. Phys. 94(1), 013403 (2016).
[Crossref]

Milonni, P. W.

Morgan, S. W.

S. W. Morgan and W. Happer, “Optically pumped atoms with velocity- and spin-changing collisions at low gas pressures,” Phys. Rev. A: At., Mol., Opt. Phys. 81(4), 042703 (2010).
[Crossref]

Neichel, B.

F. Rigaut and B. Neichel, “Multiconjugate Adaptive Optics for Astronomy,” Annu. Rev. Astron. Astrophys. 56(1), 277–314 (2018).
[Crossref]

O’Callaghan, M. J.

M. J. O’Callaghan and J. Cooper, “Theory of velocity-dependent, collision-broadened, Doppler-free line shapes,” Phys. Rev. A: At., Mol., Opt. Phys. 39(12), 6206–6223 (1989).
[Crossref]

Olsen, B. A.

R. Marsland, B. H. Mcguyer, B. A. Olsen, and W. Happer, “Spin-velocity correlations of optically pumped atoms,” Phys. Rev. A: At., Mol., Opt. Phys. 86(2), 023404 (2012).
[Crossref]

B. H. McGuyer, R. Marsland, B. A. Olsen, and W. Happer, “Cusp Kernels for Velocity-Changing Collisions,” Phys. Rev. Lett. 108(18), 183202 (2012).
[Crossref]

Otarola, A.

Pfrommer, T.

R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
[Crossref]

Pustelny, S.

T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. G. Meyer, “Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range,” Phys. Rev. A: At., Mol., Opt. Phys. 94(1), 013403 (2016).
[Crossref]

Qian, X.

X. Liu, X. Qian, D. Liu, H. Huang, and R. Rao, “influencing factors and numerical simulation for the number of return photons from sodium laser beacon,” Chin. J. Laser 40(6), 0613001 (2013).
[Crossref]

Rao, R.

X. Liu, X. Qian, D. Liu, H. Huang, and R. Rao, “influencing factors and numerical simulation for the number of return photons from sodium laser beacon,” Chin. J. Laser 40(6), 0613001 (2013).
[Crossref]

Richey, J. W.

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

Rigaut, F.

F. Rigaut and B. Neichel, “Multiconjugate Adaptive Optics for Astronomy,” Annu. Rev. Astron. Astrophys. 56(1), 277–314 (2018).
[Crossref]

Rochester, S.

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

Rochester, S. M.

S. M. Rochester, A. Otarola, C. Boyer, D. Budker, B. Ellerbroek, R. Holzlöhner, and L. Wang, “Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project,” J. Opt. Soc. Am. B 29(8), 2176–2188 (2012).
[Crossref]

R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
[Crossref]

R. Holzlöhner, S. M. Rochester, D. B. Calia, D. Budker, J. M Higbie, and W Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[Crossref]

M. Auzinsh, D. Budker, and S. M. Rochester,” Optically polarized atoms,” (Oxford University, 2010).

S. M. Rochester and R. Holzlöhner. LGSBloch, Available from: http://rochesterscientific/ADM/ , (2015)

S. M. Rochester. “Atomic Density Matrix package for mathematica,” Version, 2015.

Scholtes, T.

T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. G. Meyer, “Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range,” Phys. Rev. A: At., Mol., Opt. Phys. 94(1), 013403 (2016).
[Crossref]

Schultze, V.

T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. G. Meyer, “Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range,” Phys. Rev. A: At., Mol., Opt. Phys. 94(1), 013403 (2016).
[Crossref]

Shen, Z.

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

Steck, D. A.

D. A. Steck. “Sodium D Line Data,” Available from: https://steck.us/alkalidata/ , (2010).

Stolz, R.

T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. G. Meyer, “Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range,” Phys. Rev. A: At., Mol., Opt. Phys. 94(1), 013403 (2016).
[Crossref]

Telle, J. M.

Walker, T.

W. Happer, Y. Y. Jau, and T. Walker,” Optically pumped atoms,” (John Wiley & Sons, 2010).

Wall, K. F.

Wang, L.

Wei, K.

J. Huang, K. Wei, K. Jin, M. Li, and Y. Zhang, “Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping,” Opt. Commun. 416, 172–180 (2018).
[Crossref]

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

Woerdman, J. P.

J. E. M. Haverkort, J. P. Woerdman, and P. R. Berman, “Experimental determination of Na-noble-gas velocity-changing and fine-structure-changing collision kernels,” Phys. Rev. A: At., Mol., Opt. Phys. 36(11), 5251–5264 (1987).
[Crossref]

Xue, S.

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

Yao, J.

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

Zhang, Y.

J. Huang, K. Wei, K. Jin, M. Li, and Y. Zhang, “Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping,” Opt. Commun. 416, 172–180 (2018).
[Crossref]

Zhou, Y.

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

Zuo, J.

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

Annu. Rev. Astron. Astrophys. (1)

F. Rigaut and B. Neichel, “Multiconjugate Adaptive Optics for Astronomy,” Annu. Rev. Astron. Astrophys. 56(1), 277–314 (2018).
[Crossref]

Astron. Astrophys. (1)

R. Holzlöhner, S. M. Rochester, D. B. Calia, D. Budker, J. M Higbie, and W Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[Crossref]

Chin. J. Laser (1)

X. Liu, X. Qian, D. Liu, H. Huang, and R. Rao, “influencing factors and numerical simulation for the number of return photons from sodium laser beacon,” Chin. J. Laser 40(6), 0613001 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

F. P. Bustos, D. B. Calia, D. Budker, M. Centrone, J. Hellemeier, P. Hickson, R. Holzlöhner, and S. Rochester, “Remote sensing of geomagnetic fields and atomic collisions in the mesosphere,” Nat. Commun. 9(1), 3981 (2018).
[Crossref]

Opt. Commun. (1)

J. Huang, K. Wei, K. Jin, M. Li, and Y. Zhang, “Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping,” Opt. Commun. 416, 172–180 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A: At., Mol., Opt. Phys. (6)

S. W. Morgan and W. Happer, “Optically pumped atoms with velocity- and spin-changing collisions at low gas pressures,” Phys. Rev. A: At., Mol., Opt. Phys. 81(4), 042703 (2010).
[Crossref]

T. Bhamre, R. Marsland, I. K. Kominis, B. H. McGuyer, and W. Happer, “Collision kernels from velocity-selective optical pumping with magnetic depolarization,” Phys. Rev. A: At., Mol., Opt. Phys. 87(4), 043412 (2013).
[Crossref]

R. Marsland, B. H. Mcguyer, B. A. Olsen, and W. Happer, “Spin-velocity correlations of optically pumped atoms,” Phys. Rev. A: At., Mol., Opt. Phys. 86(2), 023404 (2012).
[Crossref]

J. E. M. Haverkort, J. P. Woerdman, and P. R. Berman, “Experimental determination of Na-noble-gas velocity-changing and fine-structure-changing collision kernels,” Phys. Rev. A: At., Mol., Opt. Phys. 36(11), 5251–5264 (1987).
[Crossref]

M. J. O’Callaghan and J. Cooper, “Theory of velocity-dependent, collision-broadened, Doppler-free line shapes,” Phys. Rev. A: At., Mol., Opt. Phys. 39(12), 6206–6223 (1989).
[Crossref]

T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and H. G. Meyer, “Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range,” Phys. Rev. A: At., Mol., Opt. Phys. 94(1), 013403 (2016).
[Crossref]

Phys. Rev. Lett. (1)

B. H. McGuyer, R. Marsland, B. A. Olsen, and W. Happer, “Cusp Kernels for Velocity-Changing Collisions,” Phys. Rev. Lett. 108(18), 183202 (2012).
[Crossref]

Proc. SPIE (5)

T. J. Kane, P. D. Hillman, and C. A. Denman, “Pulsed laser architecture for enhancing backscatter from sodium,” Proc. SPIE 9148, 91483G (2014).
[Crossref]

L. Feng, E. Kibblewhite, K. Jin, S. Xue, Z. Shen, Y. Bo, J. Zuo, and K. Wei, “A Monte Carlo simulation for predicting photon return from sodium laser guide star,” Proc. SPIE 9678, 96781B (2015).
[Crossref]

R. Holzlöhner, S. M. Rochester, T. Pfrommer, D. B. Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Laser guide star return flux simulations based on observed sodium density profiles,” Proc. SPIE 7736, 77360V (2010).
[Crossref]

S. Hackett and R. Johnson, “Non Boltzmann Modeling of Sodium Guidestar Returns and Implications for Guidestar Linewidth,” Proc. SPIE 1(1), 1–13 (2015).
[Crossref]

S. Hackett, A. R. Albrecht, Y. Zhou, J. G. Cederberg, M. S. Bahae, J. T. McGraw, R. L. Johnson, and J. W. Richey, “Development of vertical external cavity surface emitting lasers (VECSELs) for use as monochromatic and polychromatic sodium guidestars,” Proc. SPIE 9909, 99095R (2016).
[Crossref]

Publ. Astron. Soc. Pac. (1)

K. Jin, K. Wei, L. Feng, Y. Bo, J. Zuo, M. Li, H. Fu, X. Dai, Q. Bian, and J. Yao, “Photon return on-sky test of pulsed sodium laser guide star with D2b repumping,” Publ. Astron. Soc. Pac. 127(954), 749–756 (2015).
[Crossref]

Other (7)

W. Happer, Y. Y. Jau, and T. Walker,” Optically pumped atoms,” (John Wiley & Sons, 2010).

J. W. Hardy,” Adaptive optics for astronomical telescope,” (Oxford University, 1998).

R Dekany, M Lloyd-Hart, R Angel, A Bouchez, M Britton, M Chun, L Close, J Codona, and C Denman, Eikenberry S. “A roadmap for the development of United States astronomical adaptive optics,” NOAO/AURA ( http://www.aura-astronomy.org/news/AO_Roadmap2008_Final.pdf ) 2008.

S. M. Rochester. “Atomic Density Matrix package for mathematica,” Version, 2015.

D. A. Steck. “Sodium D Line Data,” Available from: https://steck.us/alkalidata/ , (2010).

M. Auzinsh, D. Budker, and S. M. Rochester,” Optically polarized atoms,” (Oxford University, 2010).

S. M. Rochester and R. Holzlöhner. LGSBloch, Available from: http://rochesterscientific/ADM/ , (2015)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Comparison for velocity distribution after collision for KS kernel (a) and Cups kernel (b). There display a sharp peak near the initial velocity (500 m/s) for Cups kernel compared to KS kernel.
Fig. 2.
Fig. 2. Sodium D2 line transition hyperfine structure, with frequency splitings between the hyperfine energy levels.
Fig. 3.
Fig. 3. Coupling efficiency for a) linear polarization and b) circular polarization pump laser with different sharping parameters (s). Red dashed lines: “memoryless” LGSBloch hard collision kernel, q=0.12. Blue dashed lines: “memory” Cusp weak collision kernel for s is 10, q=0.12. Brown dashed lines: “memory” Cusp weak collision kernel for s is 100, q=0.12. Green dashed lines: 3 Cusp kernel, q=0.12. Red triangle symbol solid lines: “memoryless” LGSBloch hard collision kernel, q=0. Blue diamond symbol solid lines: “memory” Cusp weak collision kernel for s is 10, q=0. Brown circle symbol solid lines: “memory” Cusp weak collision kernel for s is 100, q=0. Green diamond symbol solid lines: 3 Cusp kernel, q=0.
Fig. 4.
Fig. 4. Population distribution of ground state for a), c), e) linear pump laser and b), d), f) circular pump laser, at a power density of 1W/m2, 10W/m2 and 100W/m2 respectively. Red solid line: “memoryless” LGSBloch hard collision kernel, q=0; red dashed line: “memoryless” LGSBloch hard collision kernel, q=0.12; blue solid line: “memory” Cusp weak collision kernel, s=100, q=0; blue dashed line: “memory” Cusp weak collision kernel, s=100, q=0.12; green solid line: 3 Cusp kernel, q=0; green dashed line: 3 Cusp kernel, q=0.12.
Fig. 5.
Fig. 5. Population distribution of hyperfine sub-level F=1 for a), c), e) linear pump laser and b), d), f) circular pump laser, at a power density of 1W/m2, 10W/m2 and 100W/m2 respectively. Red solid line: “memoryless” LGSBloch hard collision kernel, q=0; red dashed line: “memoryless” LGSBloch hard collision kernel, q=0.12; blue solid line: “memory” Cusp weak collision kernel, s=100, q=0; blue dashed line: “memory” Cusp weak collision kernel, s=100, q=0.12; green solid line: 3 Cusp kernel, q=0; green dashed line: 3 Cusp kernel, q=0.12.
Fig. 6.
Fig. 6. Population distribution of hyperfine sub-level F=2 for a), c), e) linear pump laser and b), d), f) circular pump laser, at a power density of 1W/m2, 10W/m2 and 100W/m2 respectively. Red solid line: “memoryless” LGSBloch hard collision kernel, q=0; red dashed line: “memoryless” LGSBloch hard collision kernel, q=0.12; blue solid line: “memory” Cusp weak collision kernel, s=100, q=0; blue dashed line: “memory” Cusp weak collision kernel, s=100, q=0.12; green solid line: 3 Cusp kernel, q=0; green dashed line: 3 Cusp kernel, q=0.12.
Fig. 7.
Fig. 7. Population distribution at excited state with different kernels. a), c), e) linear pump laser and b), d), f) circular pump laser, at a power density of 1W/m2, 10W/m2 and 100W/m2 respectively. Red solid line: “memoryless” LGSBloch hard collision kernel, q=0; red dashed line: “memoryless” LGSBloch hard collision kernel, q=0.12; blue solid line: “memory” Cusp weak collision kernel, s=100, q=0; blue dashed line: “memory” Cusp weak collision kernel, s=100, q=0.12; green solid line: 3 Cusp kernel, q=0; green dashed line: 3 Cusp kernel, q=0.12.

Tables (1)

Tables Icon

Table 1. Simulation parameters and their standard nominal values

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

W K S ( x , y ) = ( m 2 π k B T ) 1 / 2 e m ( x α y ) 2 / ( 2 k B T β 2 ) β
P s ( α ) = s α s 1
W c u s p ( x , y ) = 0 1 W K S ( x , y ) P s ( α ) d α = 0 1 W K S ( x , y ) s α s 1 d α
ρ ˙  =  1 i [ H , ρ ] 1 2 { Γ ^ , ρ } + Λ
ρ ˙ m n = r , s 4 ω r m 3 3 c 3 d m r d s n ρ r s = r , s F m n s r ρ r s
P i = a b 1 Γ D π e ( Δ Γ D ) 2 d Δ
P i 2 = a Δ i 1 Γ D π e ( Δ Γ D ) 2 d Δ
ρ ˙ G = γ S c o l l i s i o n ( 3 4 ρ G + S ρ G S + S ( { S , ρ G } 2 i S × ρ G S ) )
P i , i = a b W c u s p ( Δ , Δ i ) d Δ = a b 0 1 1 Γ π ( 1 α 2 ) e ( Δ Γ α Δ i Γ ) 2 / 1 α 2 s α s 1 d α d Δ
P j , i = a b W c u s p ( Δ , Δ j ) d Δ = a b 0 1 1 Γ π ( 1 α 2 ) e ( Δ Γ α Δ j Γ ) 2 / 1 α 2 s α s 1 d α d Δ