Abstract

Terahertz time-domain spectroscopy (THz-TDS) systems based on ultra-high repetition rate mode-locked laser diodes (MLLDs) and semiconductor photomixers show great potential in terms of a wide bandwidth, fast acquisition speed, compactness, and robustness. They come at a much lower total cost than systems using femtosecond fiber lasers. However, to date, there is no adequate mathematical description of THz-TDS using a MLLD. In this paper, we provide a simple formula based on a system-theoretical model that accurately describes the detected terahertz spectrum as a function of the optical amplitude and phase spectrum of the MLLD and the transfer function of the terahertz system. Furthermore, we give a simple yet exact relationship between the optical intensity autocorrelation and the detected terahertz spectrum. We theoretically analyze these results for typical optical spectra of MLLDs to quantify the effect of pulse chirp on the terahertz spectrum. Finally, we confirm the validity of the model with comprehensive experimental results using a single-section and a two-section MLLD in a conventional THz-TDS system.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref]
  4. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [Crossref]
  5. M. Naftaly, N. Vieweg, and A. Deninger, “Industrial applications of terahertz sensing: State of play,” Sensors 19(19), 4203 (2019).
    [Crossref]
  6. T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: Historic development, present, and trends,” J. Infrared, Millimeter, Terahertz Waves 36(3), 235–254 (2015).
    [Crossref]
  7. O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
    [Crossref]
  8. M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17(20), 17723–17733 (2009).
    [Crossref]
  9. D. Molter, M. Kolano, and G. von Freymann, “Terahertz cross-correlation spectroscopy driven by incoherent light from a superluminescent diode,” Opt. Express 27(9), 12659–12665 (2019).
    [Crossref]
  10. K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared, Millimeter, Terahertz Waves 38(8), 958–962 (2017).
    [Crossref]
  11. K.-H. Tybussek, K. Kolpatzeck, F. Faridi, S. Preu, and J. C. Balzer, “Terahertz time-domain spectroscopy based on commercially available 1550 nm fabry-perot laser diode and eras:in(al)gaas photoconductors,” Appl. Sci. 9(13), 2704 (2019).
    [Crossref]
  12. P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  13. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [Crossref]
  14. K. Wynne and J. J. Carey, “An integrated description of terahertz generation through optical rectification, charge transfer, and current surge,” Opt. Commun. 256(4-6), 400–413 (2005).
    [Crossref]
  15. M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7(9), 282–284 (1997).
    [Crossref]
  16. S. Preu, “A unified derivation of the terahertz spectra generated by photoconductors and diodes,” J. Infrared, Millimeter, Terahertz Waves 35(12), 998–1010 (2014).
    [Crossref]
  17. R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012).
    [Crossref]
  18. X. Tang, A. S. Karar, J. C. Cartledge, A. Shen, and G. Duan, “Characterization of a mode-locked quantum-dash fabry-perot laser based on measurement of the complex optical spectrum,” in 2009 35th European Conference on Optical Communication, (2009), pp. 1–2
  19. S. G. Murdoch, R. T. Watts, Y. Q. Xu, R. Maldonado-Basilio, J. Parra-Cetina, S. Latkowski, P. Landais, and L. P. Barry, “Spectral amplitude and phase measurement of a 40 GHz free-running quantum-dash modelocked laser diode,” Opt. Express 19(14), 13628–13635 (2011).
    [Crossref]
  20. S. P. O. Duill, S. G. Murdoch, R. T. Watts, R. Rosales, A. Ramdane, P. Landais, and L. P. Barry, “Simple dispersion estimate for single-section quantum-dash and quantum-dot mode-locked laser diodes,” Opt. Lett. 41(24), 5676–5679 (2016).
    [Crossref]
  21. S. C. Tonder, K. Kolpatzeck, X. Liu, S. Rumpza, A. Czylwik, and J. C. Balzer, “A compact THz quasi TDS system for mobile scenarios,” in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), (2019), pp. 1–5.
  22. M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, and D. Bimberg, InAs/InP QD and InGaAsP/InP QW comb lasers for >1 Tb/s transmission, in 2019 Compound Semiconductor Week (CSW), (2019), p. 1.
  23. M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.
  24. D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express 18(19), 19724–19731 (2010).
    [Crossref]

2019 (3)

M. Naftaly, N. Vieweg, and A. Deninger, “Industrial applications of terahertz sensing: State of play,” Sensors 19(19), 4203 (2019).
[Crossref]

D. Molter, M. Kolano, and G. von Freymann, “Terahertz cross-correlation spectroscopy driven by incoherent light from a superluminescent diode,” Opt. Express 27(9), 12659–12665 (2019).
[Crossref]

K.-H. Tybussek, K. Kolpatzeck, F. Faridi, S. Preu, and J. C. Balzer, “Terahertz time-domain spectroscopy based on commercially available 1550 nm fabry-perot laser diode and eras:in(al)gaas photoconductors,” Appl. Sci. 9(13), 2704 (2019).
[Crossref]

2017 (1)

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared, Millimeter, Terahertz Waves 38(8), 958–962 (2017).
[Crossref]

2016 (1)

2015 (1)

T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: Historic development, present, and trends,” J. Infrared, Millimeter, Terahertz Waves 36(3), 235–254 (2015).
[Crossref]

2014 (1)

S. Preu, “A unified derivation of the terahertz spectra generated by photoconductors and diodes,” J. Infrared, Millimeter, Terahertz Waves 35(12), 998–1010 (2014).
[Crossref]

2012 (1)

2011 (3)

S. G. Murdoch, R. T. Watts, Y. Q. Xu, R. Maldonado-Basilio, J. Parra-Cetina, S. Latkowski, P. Landais, and L. P. Barry, “Spectral amplitude and phase measurement of a 40 GHz free-running quantum-dash modelocked laser diode,” Opt. Express 19(14), 13628–13635 (2011).
[Crossref]

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2005 (1)

K. Wynne and J. J. Carey, “An integrated description of terahertz generation through optical rectification, charge transfer, and current surge,” Opt. Commun. 256(4-6), 400–413 (2005).
[Crossref]

2000 (1)

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

1997 (1)

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7(9), 282–284 (1997).
[Crossref]

1995 (1)

1989 (1)

Accard, A.

Balzer, J. C.

K.-H. Tybussek, K. Kolpatzeck, F. Faridi, S. Preu, and J. C. Balzer, “Terahertz time-domain spectroscopy based on commercially available 1550 nm fabry-perot laser diode and eras:in(al)gaas photoconductors,” Appl. Sci. 9(13), 2704 (2019).
[Crossref]

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared, Millimeter, Terahertz Waves 38(8), 958–962 (2017).
[Crossref]

S. C. Tonder, K. Kolpatzeck, X. Liu, S. Rumpza, A. Czylwik, and J. C. Balzer, “A compact THz quasi TDS system for mobile scenarios,” in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), (2019), pp. 1–5.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.

Barry, L. P.

Bimberg, D.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, and D. Bimberg, InAs/InP QD and InGaAsP/InP QW comb lasers for >1 Tb/s transmission, in 2019 Compound Semiconductor Week (CSW), (2019), p. 1.

Böttcher, J.

Breuer, S.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, and D. Bimberg, InAs/InP QD and InGaAsP/InP QW comb lasers for >1 Tb/s transmission, in 2019 Compound Semiconductor Week (CSW), (2019), p. 1.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.

Busch, S. F.

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared, Millimeter, Terahertz Waves 38(8), 958–962 (2017).
[Crossref]

Carey, J. J.

K. Wynne and J. J. Carey, “An integrated description of terahertz generation through optical rectification, charge transfer, and current surge,” Opt. Commun. 256(4-6), 400–413 (2005).
[Crossref]

Cartledge, J. C.

X. Tang, A. S. Karar, J. C. Cartledge, A. Shen, and G. Duan, “Characterization of a mode-locked quantum-dash fabry-perot laser based on measurement of the complex optical spectrum,” in 2009 35th European Conference on Optical Communication, (2009), pp. 1–2

Cooke, D.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Czylwik, A.

S. C. Tonder, K. Kolpatzeck, X. Liu, S. Rumpza, A. Czylwik, and J. C. Balzer, “A compact THz quasi TDS system for mobile scenarios,” in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), (2019), pp. 1–5.

Deninger, A.

M. Naftaly, N. Vieweg, and A. Deninger, “Industrial applications of terahertz sensing: State of play,” Sensors 19(19), 4203 (2019).
[Crossref]

Döhler, G. H.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Duan, G.

X. Tang, A. S. Karar, J. C. Cartledge, A. Shen, and G. Duan, “Characterization of a mode-locked quantum-dash fabry-perot laser based on measurement of the complex optical spectrum,” in 2009 35th European Conference on Optical Communication, (2009), pp. 1–2

Duill, S. P. O.

Faridi, F.

K.-H. Tybussek, K. Kolpatzeck, F. Faridi, S. Preu, and J. C. Balzer, “Terahertz time-domain spectroscopy based on commercially available 1550 nm fabry-perot laser diode and eras:in(al)gaas photoconductors,” Appl. Sci. 9(13), 2704 (2019).
[Crossref]

Fattinger, C.

Franke, D.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, and D. Bimberg, InAs/InP QD and InGaAsP/InP QW comb lasers for >1 Tb/s transmission, in 2019 Compound Semiconductor Week (CSW), (2019), p. 1.

Gossard, A. C.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Grischkowsky, D.

Hangyo, M.

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7(9), 282–284 (1997).
[Crossref]

Hochrein, T.

T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: Historic development, present, and trends,” J. Infrared, Millimeter, Terahertz Waves 36(3), 235–254 (2015).
[Crossref]

Hu, B. B.

Jepsen, P.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Karar, A. S.

X. Tang, A. S. Karar, J. C. Cartledge, A. Shen, and G. Duan, “Characterization of a mode-locked quantum-dash fabry-perot laser based on measurement of the complex optical spectrum,” in 2009 35th European Conference on Optical Communication, (2009), pp. 1–2

Koch, M.

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared, Millimeter, Terahertz Waves 38(8), 958–962 (2017).
[Crossref]

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17(20), 17723–17733 (2009).
[Crossref]

Kolano, M.

Kolpatzeck, K.

K.-H. Tybussek, K. Kolpatzeck, F. Faridi, S. Preu, and J. C. Balzer, “Terahertz time-domain spectroscopy based on commercially available 1550 nm fabry-perot laser diode and eras:in(al)gaas photoconductors,” Appl. Sci. 9(13), 2704 (2019).
[Crossref]

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.

S. C. Tonder, K. Kolpatzeck, X. Liu, S. Rumpza, A. Czylwik, and J. C. Balzer, “A compact THz quasi TDS system for mobile scenarios,” in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), (2019), pp. 1–5.

Künzel, H.

Landais, P.

Latkowski, S.

Lelarge, F.

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared, Millimeter, Terahertz Waves 38(8), 958–962 (2017).
[Crossref]

R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012).
[Crossref]

Liu, X.

S. C. Tonder, K. Kolpatzeck, X. Liu, S. Rumpza, A. Czylwik, and J. C. Balzer, “A compact THz quasi TDS system for mobile scenarios,” in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), (2019), pp. 1–5.

Maldonado-Basilio, R.

Malzer, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Martinez, A.

Matsuura, S.

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7(9), 282–284 (1997).
[Crossref]

Merghem, K.

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared, Millimeter, Terahertz Waves 38(8), 958–962 (2017).
[Crossref]

R. Rosales, S. G. Murdoch, R. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012).
[Crossref]

Moehrle, M.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, and D. Bimberg, InAs/InP QD and InGaAsP/InP QW comb lasers for >1 Tb/s transmission, in 2019 Compound Semiconductor Week (CSW), (2019), p. 1.

Molter, D.

Morikawa, O.

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

Murdoch, S. G.

Naftaly, M.

M. Naftaly, N. Vieweg, and A. Deninger, “Industrial applications of terahertz sensing: State of play,” Sensors 19(19), 4203 (2019).
[Crossref]

Nuss, M. C.

Parra-Cetina, J.

Preu, S.

K.-H. Tybussek, K. Kolpatzeck, F. Faridi, S. Preu, and J. C. Balzer, “Terahertz time-domain spectroscopy based on commercially available 1550 nm fabry-perot laser diode and eras:in(al)gaas photoconductors,” Appl. Sci. 9(13), 2704 (2019).
[Crossref]

S. Preu, “A unified derivation of the terahertz spectra generated by photoconductors and diodes,” J. Infrared, Millimeter, Terahertz Waves 35(12), 998–1010 (2014).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Ramdane, A.

Rehbein, W.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, and D. Bimberg, InAs/InP QD and InGaAsP/InP QW comb lasers for >1 Tb/s transmission, in 2019 Compound Semiconductor Week (CSW), (2019), p. 1.

Reid, D. A.

Roehle, H.

Rosales, R.

Rumpza, S.

S. C. Tonder, K. Kolpatzeck, X. Liu, S. Rumpza, A. Czylwik, and J. C. Balzer, “A compact THz quasi TDS system for mobile scenarios,” in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), (2019), pp. 1–5.

Sakai, K.

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7(9), 282–284 (1997).
[Crossref]

Sartorius, B.

Schell, M.

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref]

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.

Scheller, M.

Schlak, M.

Shen, A.

X. Tang, A. S. Karar, J. C. Cartledge, A. Shen, and G. Duan, “Characterization of a mode-locked quantum-dash fabry-perot laser based on measurement of the complex optical spectrum,” in 2009 35th European Conference on Optical Communication, (2009), pp. 1–2

Stanze, D.

Tang, X.

X. Tang, A. S. Karar, J. C. Cartledge, A. Shen, and G. Duan, “Characterization of a mode-locked quantum-dash fabry-perot laser based on measurement of the complex optical spectrum,” in 2009 35th European Conference on Optical Communication, (2009), pp. 1–2

Tani, M.

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7(9), 282–284 (1997).
[Crossref]

Tonder, S. C.

S. C. Tonder, K. Kolpatzeck, X. Liu, S. Rumpza, A. Czylwik, and J. C. Balzer, “A compact THz quasi TDS system for mobile scenarios,” in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), (2019), pp. 1–5.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

Tybussek, K.-H.

K.-H. Tybussek, K. Kolpatzeck, F. Faridi, S. Preu, and J. C. Balzer, “Terahertz time-domain spectroscopy based on commercially available 1550 nm fabry-perot laser diode and eras:in(al)gaas photoconductors,” Appl. Sci. 9(13), 2704 (2019).
[Crossref]

van Exter, M.

Venghaus, H.

Vieweg, N.

M. Naftaly, N. Vieweg, and A. Deninger, “Industrial applications of terahertz sensing: State of play,” Sensors 19(19), 4203 (2019).
[Crossref]

von Freymann, G.

Wang, L. J.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Watts, R.

Watts, R. T.

Wynne, K.

K. Wynne and J. J. Carey, “An integrated description of terahertz generation through optical rectification, charge transfer, and current surge,” Opt. Commun. 256(4-6), 400–413 (2005).
[Crossref]

Xu, Y. Q.

Zander, M.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, and D. Bimberg, InAs/InP QD and InGaAsP/InP QW comb lasers for >1 Tb/s transmission, in 2019 Compound Semiconductor Week (CSW), (2019), p. 1.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.

Appl. Phys. Lett. (1)

O. Morikawa, M. Tonouchi, and M. Hangyo, “A cross-correlation spectroscopy in subterahertz region using an incoherent light source,” Appl. Phys. Lett. 76(12), 1519–1521 (2000).
[Crossref]

Appl. Sci. (1)

K.-H. Tybussek, K. Kolpatzeck, F. Faridi, S. Preu, and J. C. Balzer, “Terahertz time-domain spectroscopy based on commercially available 1550 nm fabry-perot laser diode and eras:in(al)gaas photoconductors,” Appl. Sci. 9(13), 2704 (2019).
[Crossref]

IEEE Microw. Guid. Wave Lett. (1)

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microw. Guid. Wave Lett. 7(9), 282–284 (1997).
[Crossref]

J. Appl. Phys. (1)

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (3)

S. Preu, “A unified derivation of the terahertz spectra generated by photoconductors and diodes,” J. Infrared, Millimeter, Terahertz Waves 35(12), 998–1010 (2014).
[Crossref]

K. Merghem, S. F. Busch, F. Lelarge, M. Koch, A. Ramdane, and J. C. Balzer, “Terahertz time-domain spectroscopy system driven by a monolithic semiconductor laser,” J. Infrared, Millimeter, Terahertz Waves 38(8), 958–962 (2017).
[Crossref]

T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: Historic development, present, and trends,” J. Infrared, Millimeter, Terahertz Waves 36(3), 235–254 (2015).
[Crossref]

Laser Photonics Rev. (1)

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Commun. (1)

K. Wynne and J. J. Carey, “An integrated description of terahertz generation through optical rectification, charge transfer, and current surge,” Opt. Commun. 256(4-6), 400–413 (2005).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Sensors (1)

M. Naftaly, N. Vieweg, and A. Deninger, “Industrial applications of terahertz sensing: State of play,” Sensors 19(19), 4203 (2019).
[Crossref]

Other (4)

X. Tang, A. S. Karar, J. C. Cartledge, A. Shen, and G. Duan, “Characterization of a mode-locked quantum-dash fabry-perot laser based on measurement of the complex optical spectrum,” in 2009 35th European Conference on Optical Communication, (2009), pp. 1–2

S. C. Tonder, K. Kolpatzeck, X. Liu, S. Rumpza, A. Czylwik, and J. C. Balzer, “A compact THz quasi TDS system for mobile scenarios,” in 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), (2019), pp. 1–5.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, and D. Bimberg, InAs/InP QD and InGaAsP/InP QW comb lasers for >1 Tb/s transmission, in 2019 Compound Semiconductor Week (CSW), (2019), p. 1.

M. Zander, W. Rehbein, M. Moehrle, S. Breuer, D. Franke, M. Schell, K. Kolpatzeck, and J. C. Balzer, “High performance bh inas/inp qd and ingaasp/inp qw mode-locked lasers as comb and pulse sources,” Optical Fiber Communication Conference (OFC) 2020, (Optical Society of America, 2020), p. T3C.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Block diagram of a fiber-coupled THz-TDS setup. The optical output signal of the mode-locked laser source is distributed to a terahertz emitter (THz Tx) and, through a variable delay line, to a terahertz detector (THz Rx). The terahertz radiation generated by the emitter is transmitted through a sample and focused into the detector.
Fig. 2.
Fig. 2. System model of a THz-TDS system. Quantities in the time domain are represented by lower-case letters, wheras quantities in the frequency domain are represented by capital letters. The input signal $e_\textrm {opt}(t)$ of the terahertz spectrometer is the optical output signal of the light source. The output signal $i_\textrm {det}(\tau )$ is the time-averaged photocurrent at the output of the detector as a function of the delay $\tau$ of the variabel delay line in the setup.
Fig. 3.
Fig. 3. Resulting amplitudes $A_m$ for a MLLD with 101 modes with equal amplitude. The parameter $c=0$ describes the case of no chirp and $c=1$ describes the chirp that can be expected directly at the output of the laser diode. Subfigure (a) shows the frequency dependence of the amplitudes $A_m$ for different amounts of chirp, whereas (b) shows the chirp dependence of the amplitudes $A_m$ for different frequencies.
Fig. 4.
Fig. 4. Amplitude spectra of (a) the Thorlabs FPL1009P and (b) the HHI QD laser. The spectra measured with the optical spectrum analyzer are plotted in solid blue lines and the modes within the 40 dB-bandwidth are highlighted with red crosses.
Fig. 5.
Fig. 5. Measurement setup for the stepped-heterodyne measurement of the optical phase spectrum and the intensity autocorrelation for different single-mode fiber lengths. Red lines indicate single-mode fibers, blue lines indicate polarization maintaining fibers, and black lines indicate electrical connections.
Fig. 6.
Fig. 6. Phase spectra of (a) the Thorlabs FPL1009P and (b) the HHI QD laser measured with the stepped-heterodyne technique for different single-mode fiber lengths.
Fig. 7.
Fig. 7. Measured (blue) and calculated (red) intensity autocorrelations of (a) the Thorlabs FPL1009P and (b) the HHI QD laser for different single-mode fiber lengths. The dashed black line represents the noise floor of the measured autocorrelation.
Fig. 8.
Fig. 8. Terahertz transfer function measured by frequency-domain spectroscopy.
Fig. 9.
Fig. 9. Measurement setup for THz-TDS.
Fig. 10.
Fig. 10. Calculated and measured detected terahertz spectra acquired (a) with the Thorlabs FPL1009P and (b) with the HHI QD laser for different single-mode fiber lengths. Blue traces: Measured spectra. Red crosses: Amplitudes of the discrete spectral components in the measured spectra. Yellow circles: Amplitudes calculated from the complex optical spectra (COS). Purple squares: Amplitudes calculated from the intensity autocorrelation function (ACF). Both the amplitudes calculated from the COS and the ACF are normalized to the amplitudes of the measured spectra.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

e opt ( t ) = k = 0 N 1 E k e j [ ( ω 0 + k Ω ) t + φ k ]   ,   Ω = 2 π F   ,
p opt ( t ) | e opt ( t ) | 2 = ( k = 0 N 1 E k e j [ ( ω 0 + k Ω ) t + φ k ] ) ( l = 0 N 1 E l e j [ ( ω 0 + l Ω ) t + φ l ] ) = ( k = 0 N 1 E k e j [ k Ω t + φ k ] ) ( l = 0 N 1 E l e j [ l Ω t + φ l ] )   .
p opt ( t ) k = 0 N 1 E k 2   +   2 m = 1 N 1 k = m N 1 E k E k m cos ( m Ω t + φ k φ k m )   .
P opt ( ω ) 2 π m = 0 N 1 k = m N 1 E k E k m [ δ ( ω m Ω ) e j ( φ k φ k m ) + δ ( ω + m Ω ) e j ( φ k φ k m ) ]   ,
E THz ( ω ) j ω H Tx ( ω ) P opt ( ω ) j ω H Tx ( ω )   2 π m = 0 N 1 k = m N 1 E k E k m [ δ ( ω m Ω ) e j ( φ k φ k m ) + δ ( ω + m Ω ) e j ( φ k φ k m ) ]   ,
E THz ( ω ) = H path ( ω ) E THz ( ω ) j ω H Tx ( ω ) H path ( ω )   2 π m = 0 N 1 k = m N 1 E k E k m [ δ ( ω m Ω ) e j ( φ k φ k m ) + δ ( ω + m Ω ) e j ( φ k φ k m ) ]   .
i det ( τ ) F 1 ( F { p opt ( t τ ) F 1 [ H Rx ( ω ) E THz ( ω ) ] ( t ) } ( ω ) | ω = 0 ) = F 1 { 1 2 π [ P opt ( ω ) e j ω τ ] [ H Rx ( ω ) E THz ( ω ) ] | ω = 0 }   .
i det ( τ ) 2 m = 1 N 1 { | H THz ( m Ω ) | k = m N 1 l = m N 1 E k E k m E l E l m sin [ m Ω τ + H THz ( m Ω ) + ( φ k φ k m ) ( φ l φ l m ) ] }   ,
H THz ( m Ω ) = m Ω H Tx ( m Ω ) H path ( m Ω ) H Rx ( m Ω )   ,   m = 1 N 1   ,
i det ( τ ) 2 m = 1 N 1 { | H THz ( m Ω ) | sin [ m Ω τ + H THz ( m Ω ) ] k = m N 1 l = m N 1 E k E k m E l E l m cos [ ( φ k φ k m ) ( φ l φ l m ) ] }   .
A m = k = m N 1 l = m N 1 E k E k m E l E l m cos [ ( φ k φ k m ) ( φ l φ l m ) ]   ,   m = 0 N 1   ,
i det ( τ ) 2 m = 1 N 1 | H THz ( m Ω ) | sin [ m Ω τ + H THz ( m Ω ) ] A m   .
R p p ( τ ) = p opt ( τ ) p opt ( τ )   .
S p p ( 2 π ν ) = P opt ( 2 π ν ) P opt ( 2 π ν )   ,
δ ( x x 0 ) δ ( x x 1 ) { δ ( x x 0 ) ,   x 0 = x 1 0 ,   x 0 x 1   ,
S p p ( 2 π ν ) ( 2 π ) 2 m = 0 N 1 k = m N 1 l = m N 1 E k E k m E l E l m { δ ( 2 π ν m Ω ) e j [ ( φ k φ k m ) ( φ l φ l m ) ] + δ ( 2 π ν + m Ω ) e j [ ( φ k φ k m ) ( φ l φ l m ) ] }   .
R p p ( τ ) m = 0 N 1 k = m N 1 l = m N 1 E k E k m E l E l m cos [ m Ω τ + ( φ k φ k m ) ( φ l φ l m ) ]   .
R p p ( τ ) m = 0 N 1 { cos ( m Ω τ ) k = m N 1 l = m N 1 E k E k m E l E l m cos [ ( φ k φ k m ) ( φ l φ l m ) ] }   .
R p p ( τ ) m = 0 N 1 cos ( m Ω τ ) A m   .
φ k = 1 2 B [ 2 π ( f k f 0 ) ] 2 = 1 2 B ( 2 π k F ) 2 = 1 2 b ( 2 π k ) 2   ,
E k = E 0   ,   m = 0 N 1   ,
A m = k = m N 1 l = m N 1 E 0 4 cos [ b ( 2 π ) 2 m ( k l ) ]   ,   m = 0 N 1   .
A m = E 0 4 { sin [ 1 2 b ( 2 π ) 2 m ( m N ) ] sin [ 1 2 b ( 2 π ) 2 m ] } 2   ,   m = 0 N 1   ,
B MLL = ( 2 π f 10 dB F ) 1   ,
B MLL = ( 2 π N F 2 ) 1   .
b MLL = ( 2 π N ) 1
φ k = 1 2 c b MLL ( 2 π k ) 2   ,   c = 0 1   ,

Metrics