Abstract

A monolithically integrated dual-channel optical frequency comb source is demonstrated in this paper. Three lasers are integrated on a single chip using a regrowth-free fabrication process in a master-slave-slave configuration. The master laser’s power is split equally using a 1x2 multimode interference coupler and injection locks the two slave lasers. The slave lasers are gain-switched to produce dual optical frequency combs at 4.1 GHz and 5 GHz. To the best of our knowledge, this is the first demonstration of a dual optical frequency comb source with all light sources monolithically integrated in a photonic integrated circuit (PIC).

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol. 24(7), 2701–2719 (2006).
    [Crossref]
  2. P. Anandarajah, R. Zhou, R. Maher, D. M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible Optical Comb Source for Super Channel Systems,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, OTh3I.8 (2013).
  3. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414 (2016).
    [Crossref]
  4. I. Coddington, W. Swann, and N. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref]
  5. S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and P. M. Anandarajah, “Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm,” Sensors 19(23), 5217 (2019).
    [Crossref]
  6. S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124(4), 63 (2018).
    [Crossref]
  7. J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “On-Chip Investigation of Phase Noise in Monolithically Integrated Gain-Switched Lasers,” IEEE Photonics Technol. Lett. 29(9), 731–734 (2017).
    [Crossref]
  8. P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
    [Crossref]
  9. R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically Integrated 2-Section Lasers for Injection Locked Gain Switched Comb Generation,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, 1–3 (2014).
  10. J. K. Alexander, P. E. Morrissey, H. Yang, M. Yang, P. J. Marraccini, B. Corbett, and F. H. Peters, “Monolithically integrated low linewidth comb source using gain switched slotted Fabry-Perot lasers,” Opt. Express 24(8), 7960–7965 (2016).
    [Crossref]
  11. B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, “Gain-switching injection-locked dual optical frequency combs: characterization and optimization,” Opt. Lett. 41(18), 4293–4296 (2016).
    [Crossref]
  12. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
    [Crossref]
  13. P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
    [Crossref]
  14. J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “Integratable Optical Comb Source for Coherent Communications Systems,” in Conference on Lasers and Electro-Optics, (OSA, Washington, D.C., 2017), p. SW1O.3.
  15. L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
    [Crossref]
  16. M. Dernaika, N. P. Kelly, L. Caro, and F. H. Peters, “Single mode semiconductor laser based on coupled cavities of an active ring laser and Fabry Perot,” IET Optoelectron. 12(3), 118–121 (2018).
    [Crossref]
  17. D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
    [Crossref]
  18. R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
    [Crossref]
  19. D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).
  20. P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21(14), 17315 (2013).
    [Crossref]

2019 (1)

S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and P. M. Anandarajah, “Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm,” Sensors 19(23), 5217 (2019).
[Crossref]

2018 (3)

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124(4), 63 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

M. Dernaika, N. P. Kelly, L. Caro, and F. H. Peters, “Single mode semiconductor laser based on coupled cavities of an active ring laser and Fabry Perot,” IET Optoelectron. 12(3), 118–121 (2018).
[Crossref]

2017 (2)

L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “On-Chip Investigation of Phase Noise in Monolithically Integrated Gain-Switched Lasers,” IEEE Photonics Technol. Lett. 29(9), 731–734 (2017).
[Crossref]

2016 (4)

2013 (1)

2011 (1)

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

2009 (1)

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

2008 (2)

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

2006 (1)

Acedo, P.

Alexander, J. K.

S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and P. M. Anandarajah, “Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm,” Sensors 19(23), 5217 (2019).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “On-Chip Investigation of Phase Noise in Monolithically Integrated Gain-Switched Lasers,” IEEE Photonics Technol. Lett. 29(9), 731–734 (2017).
[Crossref]

L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
[Crossref]

J. K. Alexander, P. E. Morrissey, H. Yang, M. Yang, P. J. Marraccini, B. Corbett, and F. H. Peters, “Monolithically integrated low linewidth comb source using gain switched slotted Fabry-Perot lasers,” Opt. Express 24(8), 7960–7965 (2016).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “Integratable Optical Comb Source for Coherent Communications Systems,” in Conference on Lasers and Electro-Optics, (OSA, Washington, D.C., 2017), p. SW1O.3.

Anandarajah, P.

P. Anandarajah, R. Zhou, R. Maher, D. M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible Optical Comb Source for Super Channel Systems,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, OTh3I.8 (2013).

Anandarajah, P. M.

S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and P. M. Anandarajah, “Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm,” Sensors 19(23), 5217 (2019).
[Crossref]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically Integrated 2-Section Lasers for Injection Locked Gain Switched Comb Generation,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, 1–3 (2014).

Barry, L.

P. Anandarajah, R. Zhou, R. Maher, D. M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible Optical Comb Source for Super Channel Systems,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, OTh3I.8 (2013).

Barry, L. P.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically Integrated 2-Section Lasers for Injection Locked Gain Switched Comb Generation,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, 1–3 (2014).

Braddell, J.

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124(4), 63 (2018).
[Crossref]

Byrne, D.

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

Cardenas, J.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Caro, L.

M. Dernaika, N. P. Kelly, L. Caro, and F. H. Peters, “Single mode semiconductor laser based on coupled cavities of an active ring laser and Fabry Perot,” IET Optoelectron. 12(3), 118–121 (2018).
[Crossref]

L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “On-Chip Investigation of Phase Noise in Monolithically Integrated Gain-Switched Lasers,” IEEE Photonics Technol. Lett. 29(9), 731–734 (2017).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “Integratable Optical Comb Source for Coherent Communications Systems,” in Conference on Lasers and Electro-Optics, (OSA, Washington, D.C., 2017), p. SW1O.3.

Carroll, J. O

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically Integrated 2-Section Lasers for Injection Locked Gain Switched Comb Generation,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, 1–3 (2014).

Chandran, S.

S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and P. M. Anandarajah, “Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm,” Sensors 19(23), 5217 (2019).
[Crossref]

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124(4), 63 (2018).
[Crossref]

Choi, M.-T.

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414 (2016).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Corbett, B.

J. K. Alexander, P. E. Morrissey, H. Yang, M. Yang, P. J. Marraccini, B. Corbett, and F. H. Peters, “Monolithically integrated low linewidth comb source using gain switched slotted Fabry-Perot lasers,” Opt. Express 24(8), 7960–7965 (2016).
[Crossref]

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21(14), 17315 (2013).
[Crossref]

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

Cotter, W.

de Dios, C.

Delfyett, P.

Dernaika, M.

M. Dernaika, N. P. Kelly, L. Caro, and F. H. Peters, “Single mode semiconductor laser based on coupled cavities of an active ring laser and Fabry Perot,” IET Optoelectron. 12(3), 118–121 (2018).
[Crossref]

L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “On-Chip Investigation of Phase Noise in Monolithically Integrated Gain-Switched Lasers,” IEEE Photonics Technol. Lett. 29(9), 731–734 (2017).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “Integratable Optical Comb Source for Coherent Communications Systems,” in Conference on Lasers and Electro-Optics, (OSA, Washington, D.C., 2017), p. SW1O.3.

Donegan, J.

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Donegan, J. F.

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

Dutt, A.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Engelstaedter, J.

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Engelstaedter, J. P.

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

Gaeta, A. L.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Gee, S.

Goulding, D.

Guo, W. H.

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

Guo, W.-H.

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Gutiérrez, M. D.

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124(4), 63 (2018).
[Crossref]

Gutierrez Pascual, D. M.

P. Anandarajah, R. Zhou, R. Maher, D. M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible Optical Comb Source for Super Channel Systems,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, OTh3I.8 (2013).

Horne, S.

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[Crossref]

Izadpanah, H.

Jerez, B.

Ji, X.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Joshi, C.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Kelleher, B.

Kelly, B.

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically Integrated 2-Section Lasers for Injection Locked Gain Switched Comb Generation,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, 1–3 (2014).

Kelly, N.

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

Kelly, N. P.

M. Dernaika, N. P. Kelly, L. Caro, and F. H. Peters, “Single mode semiconductor laser based on coupled cavities of an active ring laser and Fabry Perot,” IET Optoelectron. 12(3), 118–121 (2018).
[Crossref]

L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “On-Chip Investigation of Phase Noise in Monolithically Integrated Gain-Switched Lasers,” IEEE Photonics Technol. Lett. 29(9), 731–734 (2017).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “Integratable Optical Comb Source for Coherent Communications Systems,” in Conference on Lasers and Electro-Optics, (OSA, Washington, D.C., 2017), p. SW1O.3.

Lambkin, P.

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

Latkowski, S.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Lee, W.

Lipson, M.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Lu, Q.

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

Luke, K.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Maher, R.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

P. Anandarajah, R. Zhou, R. Maher, D. M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible Optical Comb Source for Super Channel Systems,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, OTh3I.8 (2013).

Mahon, S.

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124(4), 63 (2018).
[Crossref]

Marraccini, P. J.

Martin, E. P.

S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and P. M. Anandarajah, “Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm,” Sensors 19(23), 5217 (2019).
[Crossref]

Martín-Mateos, P.

Morrissey, P. E.

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “On-Chip Investigation of Phase Noise in Monolithically Integrated Gain-Switched Lasers,” IEEE Photonics Technol. Lett. 29(9), 731–734 (2017).
[Crossref]

L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

J. K. Alexander, P. E. Morrissey, H. Yang, M. Yang, P. J. Marraccini, B. Corbett, and F. H. Peters, “Monolithically integrated low linewidth comb source using gain switched slotted Fabry-Perot lasers,” Opt. Express 24(8), 7960–7965 (2016).
[Crossref]

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21(14), 17315 (2013).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “Integratable Optical Comb Source for Coherent Communications Systems,” in Conference on Lasers and Electro-Optics, (OSA, Washington, D.C., 2017), p. SW1O.3.

Murdoch, S. G.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Newbury, N.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414 (2016).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

O’Callaghan, J.

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21(14), 17315 (2013).
[Crossref]

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

O’Carroll, J.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

O’Gorman, J.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Okawachi, Y.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Osborne, S.

Ozharar, S.

Pascual, D. G.

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically Integrated 2-Section Lasers for Injection Locked Gain Switched Comb Generation,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, 1–3 (2014).

Peters, F.

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

Peters, F. H.

S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and P. M. Anandarajah, “Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm,” Sensors 19(23), 5217 (2019).
[Crossref]

M. Dernaika, N. P. Kelly, L. Caro, and F. H. Peters, “Single mode semiconductor laser based on coupled cavities of an active ring laser and Fabry Perot,” IET Optoelectron. 12(3), 118–121 (2018).
[Crossref]

L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “On-Chip Investigation of Phase Noise in Monolithically Integrated Gain-Switched Lasers,” IEEE Photonics Technol. Lett. 29(9), 731–734 (2017).
[Crossref]

J. K. Alexander, P. E. Morrissey, H. Yang, M. Yang, P. J. Marraccini, B. Corbett, and F. H. Peters, “Monolithically integrated low linewidth comb source using gain switched slotted Fabry-Perot lasers,” Opt. Express 24(8), 7960–7965 (2016).
[Crossref]

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21(14), 17315 (2013).
[Crossref]

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “Integratable Optical Comb Source for Coherent Communications Systems,” in Conference on Lasers and Electro-Optics, (OSA, Washington, D.C., 2017), p. SW1O.3.

Phelan, R.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically Integrated 2-Section Lasers for Injection Locked Gain Switched Comb Generation,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, 1–3 (2014).

Prior, E.

Quinlan, F.

Roycroft, B.

P. E. Morrissey, W. Cotter, D. Goulding, B. Kelleher, S. Osborne, H. Yang, J. O’Callaghan, B. Roycroft, B. Corbett, and F. H. Peters, “On-chip optical phase locking of single growth monolithically integrated slotted fabry perot lasers,” Opt. Express 21(14), 17315 (2013).
[Crossref]

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

Ruth, A. A.

S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and P. M. Anandarajah, “Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm,” Sensors 19(23), 5217 (2019).
[Crossref]

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124(4), 63 (2018).
[Crossref]

Shayesteh, M.

L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
[Crossref]

Sheehan, R. N.

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[Crossref]

Smyth, F.

P. Anandarajah, R. Zhou, R. Maher, D. M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible Optical Comb Source for Super Channel Systems,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, OTh3I.8 (2013).

Swann, W.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414 (2016).
[Crossref]

I. Coddington, W. Swann, and N. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Vujicic, V.

P. Anandarajah, R. Zhou, R. Maher, D. M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible Optical Comb Source for Super Channel Systems,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, OTh3I.8 (2013).

Xu, Y. Q.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Yang, H.

Yang, M.

Yilmaz, T.

Yin Lu, Q.

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

Zhou, R.

P. Anandarajah, R. Zhou, R. Maher, D. M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible Optical Comb Source for Super Channel Systems,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, OTh3I.8 (2013).

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically Integrated 2-Section Lasers for Injection Locked Gain Switched Comb Generation,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, 1–3 (2014).

Appl. Phys. B (1)

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124(4), 63 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Byrne, J. Engelstaedter, W.-H. Guo, Q. Yin Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. Peters, and J. Donegan, “Discretely Tunable Semiconductor Lasers Suitable for Photonic Integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[Crossref]

IEEE Photonics J. (1)

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (2)

P. E. Morrissey, N. Kelly, M. Dernaika, L. Caro, H. Yang, and F. H. Peters, “Coupled Cavity Single-Mode Laser Based on Regrowth-Free Integrated MMI Reflectors,” IEEE Photonics Technol. Lett. 28(12), 1313–1316 (2016).
[Crossref]

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “On-Chip Investigation of Phase Noise in Monolithically Integrated Gain-Switched Lasers,” IEEE Photonics Technol. Lett. 29(9), 731–734 (2017).
[Crossref]

IET Optoelectron. (1)

M. Dernaika, N. P. Kelly, L. Caro, and F. H. Peters, “Single mode semiconductor laser based on coupled cavities of an active ring laser and Fabry Perot,” IET Optoelectron. 12(3), 118–121 (2018).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Laser Technol. (1)

L. Caro, N. P. Kelly, M. Dernaika, M. Shayesteh, P. E. Morrissey, J. K. Alexander, and F. H. Peters, “A facetless regrowth-free single mode laser based on MMI couplers,” Opt. Laser Technol. 94, 159–164 (2017).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. N. Sheehan, S. Horne, and F. H. Peters, “The design of low-loss curved waveguides,” Opt. Quantum Electron. 40(14-15), 1211–1218 (2008).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

I. Coddington, W. Swann, and N. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Sci. Adv. (1)

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Sensors (1)

S. Chandran, A. A. Ruth, E. P. Martin, J. K. Alexander, F. H. Peters, and P. M. Anandarajah, “Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm,” Sensors 19(23), 5217 (2019).
[Crossref]

Other (4)

J. K. Alexander, P. E. Morrissey, L. Caro, M. Dernaika, N. P. Kelly, and F. H. Peters, “Integratable Optical Comb Source for Coherent Communications Systems,” in Conference on Lasers and Electro-Optics, (OSA, Washington, D.C., 2017), p. SW1O.3.

R. Zhou, P. M. Anandarajah, D. G. Pascual, J. O Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically Integrated 2-Section Lasers for Injection Locked Gain Switched Comb Generation,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, 1–3 (2014).

D. Byrne, Q. Lu, W. H. Guo, J. F. Donegan, B. Corbett, B. Roycroft, P. Lambkin, J. P. Engelstaedter, and F. Peters, “A facetless laser suitable for monolithic integration,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS pp. 2008–2010 (2008).

P. Anandarajah, R. Zhou, R. Maher, D. M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible Optical Comb Source for Super Channel Systems,” Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013 1, OTh3I.8 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of fabricated devices with sections labelled. (b) Microscope image of fabricated devices. The PIC size is $1650 \mu m$ long and $700 \mu m$ wide.
Fig. 2.
Fig. 2. (a) IVs for both slave lasers. (b) LIs for both slave lasers showing the threshold current of around 25 mA.
Fig. 3.
Fig. 3. (a) Emission spectra of the slave lasers biased at 50 mA. (b) Fourier analysis of optical spectra indicating the length of the cavity.
Fig. 4.
Fig. 4. (a) Master laser LIV. (b) Emission spectrum of the master laser with its gain and mirror sections biased at 75 mA and 60 mA respectively.
Fig. 5.
Fig. 5. (a) Optical spectra recorded from the slave lasers biased at 50 mA and injection-locked to the master laser. (b) Master laser spectrum with the master laser biased at 75 mA and 60 mA for the gain and mirror sections respectively.
Fig. 6.
Fig. 6. (a) Dual comb spectra. Slave L is the left slave laser modulated at 5 GHz. Slave R is the right slave laser modulated at 4.1 GHz. (b) Master laser spectrum while the slave lasers are gain-switched.

Metrics