Abstract

Nominal dopant-free zinc blende twinning superlattice InP nanowires have been grown with high crystal-quality and taper-free morphology. Here, we demonstrate its superior optical performance and clarify the different carrier recombination mechanisms at different temperatures using a time resolved photoluminescence study. The existence of regular twin planes and lateral overgrowth do not significantly increase the defect density. At room temperature, the as-grown InP nanowires have a strong emission at 1.348 eV and long minority carrier lifetime (∼3 ns). The carrier recombination dynamics is mainly dominated by nonradiative recombination due to surface trapping states; a wet chemical etch to reduce the surface trapping density thus boosts the emission intensity and increases the carrier lifetime to 7.1 ns. This nonradiative recombination mechanism dominates for temperatures above 155 K, and the carrier lifetime decreases with increasing temperature. However, radiative recombination dominates the carrier dynamics at temperature below ∼75 K, and a strong donor-bound exciton emission with a narrow emission linewidth of 4.5 meV is observed. Consequently, carrier lifetime increases with temperature. By revealing carrier recombination mechanisms over the temperature range 10-300 K, we demonstrate the attraction of using InP nanostructure for photonics and optoelectronic applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Güniat, P. Caroff, and A. F. i. Morral, “Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions,” Chem. Rev. 119(15), 8958–8971 (2019).
    [Crossref]
  2. H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
    [Crossref]
  3. K. Oda, “Toxicity of a Low Level of Indium Phosphide (InP) in Rats after Intratracheal Instillation,” Ind. Health 35(1), 61–68 (1997).
    [Crossref]
  4. Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
    [Crossref]
  5. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref]
  6. M. Yoshimura, E. Nakai, K. Tomioka, and T. Fukui, “Indium Phosphide Core–Shell Nanowire Array Solar Cells with Lattice-Mismatched Window Layer,” Appl. Phys. Express 6(5), 052301 (2013).
    [Crossref]
  7. N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
    [Crossref]
  8. S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
    [Crossref]
  9. K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
    [Crossref]
  10. D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
    [Crossref]
  11. G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5(2), eaat8896 (2019).
    [Crossref]
  12. V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
    [Crossref]
  13. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
    [Crossref]
  14. M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
    [Crossref]
  15. P. Mohan, J. Motohisa, and T. Fukui, “Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays,” Nanotechnology 16(12), 2903–2907 (2005).
    [Crossref]
  16. R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
    [Crossref]
  17. X. Yuan, Y. Guo, P. Caroff, J. He, H. H. Tan, and C. Jagadish, “Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires,” Phys. Status Solidi RRL 11(11), 1700310 (2017).
    [Crossref]
  18. Q. Xiong, J. Wang, and P. C. Eklund, “Coherent Twinning Phenomena:  Towards Twinning Superlattices in III−V Semiconducting Nanowires,,” Nano Lett. 6(12), 2736–2742 (2006).
    [Crossref]
  19. T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
    [Crossref]
  20. R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
    [Crossref]
  21. Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
    [Crossref]
  22. L. E. Black, A. Cavalli, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, and W. M. M. Kessels, “Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer,” Nano Lett. 17(10), 6287–6294 (2017).
    [Crossref]
  23. W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
    [Crossref]
  24. T. L. Atallah, A. V. Sica, A. J. Shin, H. C. Friedman, Y. K. Kahrobai, and J. R. Caram, “Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra,” J. Phys. Chem. A 123(31), 6792–6798 (2019).
    [Crossref]
  25. J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
    [Crossref]
  26. C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
    [Crossref]
  27. X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
    [Crossref]
  28. C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
    [Crossref]
  29. S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
    [Crossref]
  30. X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
    [Crossref]
  31. M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
    [Crossref]
  32. A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
    [Crossref]
  33. P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
    [Crossref]
  34. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  35. P. J. Dean and M. S. Skolnick, “Donor discrimination and bound exciton spectra in InP,” J. Appl. Phys. 54(1), 346–359 (1983).
    [Crossref]
  36. J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
    [Crossref]
  37. N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, “Crystal phase quantum dots,” Nano Lett. 10(4), 1198–1201 (2010).
    [Crossref]
  38. T. Onuma, K. Hazu, A. Uedono, T. Sota, and S. F. Chichibu, “Identification of extremely radiative nature of AlN by time-resolved photoluminescence,” Appl. Phys. Lett. 96(6), 061906 (2010).
    [Crossref]
  39. U. Heim, “Lifetimes of bound excitons in InP,” Phys. Status Solidi B 48(2), 629–633 (1971).
    [Crossref]
  40. S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
    [Crossref]
  41. H. Kim, A. Murayama, J. Kim, and J. Song, “Temperature dependence of the radiative recombination time in laterally coupled GaAs quantum dots,” Appl. Surf. Sci. 457, 497–500 (2018).
    [Crossref]
  42. W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
    [Crossref]
  43. R. Roßbach, W. M. Schulz, M. Reischle, G. J. Beirne, M. Jetter, and P. Michler, “Red to green photoluminescence of InP-quantum dots in AlxGa1-xInP,” J. Cryst. Growth 298, 595–598 (2007).
    [Crossref]

2019 (7)

L. Güniat, P. Caroff, and A. F. i. Morral, “Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions,” Chem. Rev. 119(15), 8958–8971 (2019).
[Crossref]

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5(2), eaat8896 (2019).
[Crossref]

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

T. L. Atallah, A. V. Sica, A. J. Shin, H. C. Friedman, Y. K. Kahrobai, and J. R. Caram, “Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra,” J. Phys. Chem. A 123(31), 6792–6798 (2019).
[Crossref]

X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
[Crossref]

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

2018 (1)

H. Kim, A. Murayama, J. Kim, and J. Song, “Temperature dependence of the radiative recombination time in laterally coupled GaAs quantum dots,” Appl. Surf. Sci. 457, 497–500 (2018).
[Crossref]

2017 (5)

L. E. Black, A. Cavalli, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, and W. M. M. Kessels, “Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer,” Nano Lett. 17(10), 6287–6294 (2017).
[Crossref]

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

X. Yuan, Y. Guo, P. Caroff, J. He, H. H. Tan, and C. Jagadish, “Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires,” Phys. Status Solidi RRL 11(11), 1700310 (2017).
[Crossref]

2016 (3)

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

2015 (3)

W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
[Crossref]

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

2014 (3)

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

2013 (4)

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

M. Yoshimura, E. Nakai, K. Tomioka, and T. Fukui, “Indium Phosphide Core–Shell Nanowire Array Solar Cells with Lattice-Mismatched Window Layer,” Appl. Phys. Express 6(5), 052301 (2013).
[Crossref]

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

2012 (3)

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

2011 (1)

S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref]

2010 (2)

N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, “Crystal phase quantum dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

T. Onuma, K. Hazu, A. Uedono, T. Sota, and S. F. Chichibu, “Identification of extremely radiative nature of AlN by time-resolved photoluminescence,” Appl. Phys. Lett. 96(6), 061906 (2010).
[Crossref]

2009 (1)

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

2008 (3)

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref]

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

2007 (1)

R. Roßbach, W. M. Schulz, M. Reischle, G. J. Beirne, M. Jetter, and P. Michler, “Red to green photoluminescence of InP-quantum dots in AlxGa1-xInP,” J. Cryst. Growth 298, 595–598 (2007).
[Crossref]

2006 (1)

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent Twinning Phenomena:  Towards Twinning Superlattices in III−V Semiconducting Nanowires,,” Nano Lett. 6(12), 2736–2742 (2006).
[Crossref]

2005 (1)

P. Mohan, J. Motohisa, and T. Fukui, “Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays,” Nanotechnology 16(12), 2903–2907 (2005).
[Crossref]

1997 (1)

K. Oda, “Toxicity of a Low Level of Indium Phosphide (InP) in Rats after Intratracheal Instillation,” Ind. Health 35(1), 61–68 (1997).
[Crossref]

1983 (1)

P. J. Dean and M. S. Skolnick, “Donor discrimination and bound exciton spectra in InP,” J. Appl. Phys. 54(1), 346–359 (1983).
[Crossref]

1971 (1)

U. Heim, “Lifetimes of bound excitons in InP,” Phys. Status Solidi B 48(2), 629–633 (1971).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Åberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Akopian, N.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, “Crystal phase quantum dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

Algra, R. E.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

Aloni, S.

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

Andersen, J. N.

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Atallah, T. L.

T. L. Atallah, A. V. Sica, A. J. Shin, H. C. Friedman, Y. K. Kahrobai, and J. R. Caram, “Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra,” J. Phys. Chem. A 123(31), 6792–6798 (2019).
[Crossref]

Bakkers, E.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

Bakkers, E. P.

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref]

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

Bakkers, E. P. A. M.

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

L. E. Black, A. Cavalli, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, and W. M. M. Kessels, “Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer,” Nano Lett. 17(10), 6287–6294 (2017).
[Crossref]

Bao, J.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref]

Bavinck, M. B.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

Beirne, G. J.

R. Roßbach, W. M. Schulz, M. Reischle, G. J. Beirne, M. Jetter, and P. Michler, “Red to green photoluminescence of InP-quantum dots in AlxGa1-xInP,” J. Cryst. Growth 298, 595–598 (2007).
[Crossref]

Bell, D. C.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref]

Birindelli, S.

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

Black, L. E.

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

L. E. Black, A. Cavalli, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, and W. M. M. Kessels, “Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer,” Nano Lett. 17(10), 6287–6294 (2017).
[Crossref]

Boland, J. L.

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Borgstrom, M. T.

X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
[Crossref]

W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
[Crossref]

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

Brandt, O.

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref]

Breuer, S.

S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref]

Bulgarini, G.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

Capasso, F.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref]

Caram, J. R.

T. L. Atallah, A. V. Sica, A. J. Shin, H. C. Friedman, Y. K. Kahrobai, and J. R. Caram, “Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra,” J. Phys. Chem. A 123(31), 6792–6798 (2019).
[Crossref]

Caroff, P.

L. Güniat, P. Caroff, and A. F. i. Morral, “Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions,” Chem. Rev. 119(15), 8958–8971 (2019).
[Crossref]

X. Yuan, Y. Guo, P. Caroff, J. He, H. H. Tan, and C. Jagadish, “Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires,” Phys. Status Solidi RRL 11(11), 1700310 (2017).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

Castillo-Rodrígueza, M.

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

Cavalli, A.

L. E. Black, A. Cavalli, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, and W. M. M. Kessels, “Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer,” Nano Lett. 17(10), 6287–6294 (2017).
[Crossref]

Chauvin, N.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

Chen, H.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Chen, X.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Chichibu, S. F.

T. Onuma, K. Hazu, A. Uedono, T. Sota, and S. F. Chichibu, “Identification of extremely radiative nature of AlN by time-resolved photoluminescence,” Appl. Phys. Lett. 96(6), 061906 (2010).
[Crossref]

Collin, S.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

Corfdir, P.

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

Cui, Y.

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

Dalacu, D.

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

Daria, V. R.

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

Davies, C. L.

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Dean, P. J.

P. J. Dean and M. S. Skolnick, “Donor discrimination and bound exciton spectra in InP,” J. Appl. Phys. 54(1), 346–359 (1983).
[Crossref]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Dick, K. A.

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Docherty, C. J.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

Eaton, S. W.

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

Eklund, P. C.

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent Twinning Phenomena:  Towards Twinning Superlattices in III−V Semiconducting Nanowires,,” Nano Lett. 6(12), 2736–2742 (2006).
[Crossref]

Esteban-Manzanares, G.

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

Fan, Z.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Fang, H.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Feiner, L. F.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

Fernández-Garrido, S.

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

Fiore, A.

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

Flissikowski, T.

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref]

Friedman, H. C.

T. L. Atallah, A. V. Sica, A. J. Shin, H. C. Friedman, Y. K. Kahrobai, and J. R. Caram, “Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra,” J. Phys. Chem. A 123(31), 6792–6798 (2019).
[Crossref]

Fu, L.

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

Fukui, T.

M. Yoshimura, E. Nakai, K. Tomioka, and T. Fukui, “Indium Phosphide Core–Shell Nanowire Array Solar Cells with Lattice-Mismatched Window Layer,” Appl. Phys. Express 6(5), 052301 (2013).
[Crossref]

P. Mohan, J. Motohisa, and T. Fukui, “Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays,” Nanotechnology 16(12), 2903–2907 (2005).
[Crossref]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Gao, L.

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

Gao, Q.

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Gautam, V.

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

Geelhaar, L.

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref]

Gibson, N. A.

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

Gibson, S. J.

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

Giudice, A.

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

Goel, N.

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

Gong, F.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Gotoh, H.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5(2), eaat8896 (2019).
[Crossref]

Grahn, H. T.

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref]

Gulinatti, A.

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

Güniat, L.

L. Güniat, P. Caroff, and A. F. i. Morral, “Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions,” Chem. Rev. 119(15), 8958–8971 (2019).
[Crossref]

Guo, N.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Guo, Y.

X. Yuan, Y. Guo, P. Caroff, J. He, H. H. Tan, and C. Jagadish, “Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires,” Phys. Status Solidi RRL 11(11), 1700310 (2017).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

Håkanson, U.

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

Harmand, J. C.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, “Crystal phase quantum dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

Hauswald, C.

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

Haverkort, J. E.

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref]

Haverkort, J. E. M.

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

L. E. Black, A. Cavalli, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, and W. M. M. Kessels, “Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer,” Nano Lett. 17(10), 6287–6294 (2017).
[Crossref]

Hazu, K.

T. Onuma, K. Hazu, A. Uedono, T. Sota, and S. F. Chichibu, “Identification of extremely radiative nature of AlN by time-resolved photoluminescence,” Appl. Phys. Lett. 96(6), 061906 (2010).
[Crossref]

He, J.

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

X. Yuan, Y. Guo, P. Caroff, J. He, H. H. Tan, and C. Jagadish, “Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires,” Phys. Status Solidi RRL 11(11), 1700310 (2017).
[Crossref]

Heim, U.

U. Heim, “Lifetimes of bound excitons in InP,” Phys. Status Solidi B 48(2), 629–633 (1971).
[Crossref]

Herz, L. M.

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

Hicks, R. F.

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

Higuera-Rodriguez, A.

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

Himwas, C.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

Hjort, M.

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

Hocevar, M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

Hu, W.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Huang, P.-K.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Hudait, M. K.

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Immink, G.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

Immink, G. W.

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref]

Jackson, H. E.

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Jagadish, C.

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

X. Yuan, Y. Guo, P. Caroff, J. He, H. H. Tan, and C. Jagadish, “Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires,” Phys. Status Solidi RRL 11(11), 1700310 (2017).
[Crossref]

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Jetter, M.

R. Roßbach, W. M. Schulz, M. Reischle, G. J. Beirne, M. Jetter, and P. Michler, “Red to green photoluminescence of InP-quantum dots in AlxGa1-xInP,” J. Cryst. Growth 298, 595–598 (2007).
[Crossref]

Johnston, M. B.

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

Jöns, K. D.

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

Joyce, H. J.

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

Julien, F. H.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

Kahrobai, Y. K.

T. L. Atallah, A. V. Sica, A. J. Shin, H. C. Friedman, Y. K. Kahrobai, and J. R. Caram, “Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra,” J. Phys. Chem. A 123(31), 6792–6798 (2019).
[Crossref]

Kang, J.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Kessels, W. M.

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

Kessels, W. M. M.

L. E. Black, A. Cavalli, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, and W. M. M. Kessels, “Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer,” Nano Lett. 17(10), 6287–6294 (2017).
[Crossref]

Kim, H.

H. Kim, A. Murayama, J. Kim, and J. Song, “Temperature dependence of the radiative recombination time in laterally coupled GaAs quantum dots,” Appl. Surf. Sci. 457, 497–500 (2018).
[Crossref]

Kim, J.

H. Kim, A. Murayama, J. Kim, and J. Song, “Temperature dependence of the radiative recombination time in laterally coupled GaAs quantum dots,” Appl. Surf. Sci. 457, 497–500 (2018).
[Crossref]

Knutsson, J. V.

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

Kobayashi, Y.

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

Kornienko, N.

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

Kouwenhoven, L. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

Kuo, H.-C.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Lähnemann, J.

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

Lehmann, S.

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
[Crossref]

Leone, S. R.

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

Li, J.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Li, L.

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

Li, S.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Li, Z.

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Liao, L.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Liu, D.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Liu, L.

N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, “Crystal phase quantum dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

Liu, Z.

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

Llorca, J.

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

Lloyd-Hughes, J.

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

Lu, T.-C.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Lu, W.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Lundgren, E.

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Mallouk, T. E.

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

Mårtensson, T.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref]

Meng, X.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Mergenthaler, K.

W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
[Crossref]

Michler, P.

R. Roßbach, W. M. Schulz, M. Reischle, G. J. Beirne, M. Jetter, and P. Michler, “Red to green photoluminescence of InP-quantum dots in AlxGa1-xInP,” J. Cryst. Growth 298, 595–598 (2007).
[Crossref]

Mikkelsen, A.

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

Mohan, P.

P. Mohan, J. Motohisa, and T. Fukui, “Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays,” Nanotechnology 16(12), 2903–2907 (2005).
[Crossref]

Mokkapati, S.

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

Molina-Aldareguía, J. M.

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

Montazeri, M.

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Morral, A. F. i.

L. Güniat, P. Caroff, and A. F. i. Morral, “Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions,” Chem. Rev. 119(15), 8958–8971 (2019).
[Crossref]

Motohisa, J.

P. Mohan, J. Motohisa, and T. Fukui, “Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays,” Nanotechnology 16(12), 2903–2907 (2005).
[Crossref]

Murayama, A.

H. Kim, A. Murayama, J. Kim, and J. Song, “Temperature dependence of the radiative recombination time in laterally coupled GaAs quantum dots,” Appl. Surf. Sci. 457, 497–500 (2018).
[Crossref]

Nakai, E.

M. Yoshimura, E. Nakai, K. Tomioka, and T. Fukui, “Indium Phosphide Core–Shell Nanowire Array Solar Cells with Lattice-Mismatched Window Layer,” Appl. Phys. Express 6(5), 052301 (2013).
[Crossref]

Naureen, S.

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

Nemec, H.

X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
[Crossref]

Nisbet, D.

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

Notomi, M.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5(2), eaat8896 (2019).
[Crossref]

Oda, K.

K. Oda, “Toxicity of a Low Level of Indium Phosphide (InP) in Rats after Intratracheal Instillation,” Ind. Health 35(1), 61–68 (1997).
[Crossref]

Oehler, F.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

Onuma, T.

T. Onuma, K. Hazu, A. Uedono, T. Sota, and S. F. Chichibu, “Identification of extremely radiative nature of AlN by time-resolved photoluminescence,” Appl. Phys. Lett. 96(6), 061906 (2010).
[Crossref]

Paiman, S.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Papadimitriou, I.

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

Parkinson, P.

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Patriarche, G.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, “Crystal phase quantum dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

Pemasiri, K.

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Peng, K.

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Pfuller, C.

S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref]

Pistol, M. E.

W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
[Crossref]

Plissard, S. R.

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref]

Poole, P. J.

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

Rale, P.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

Reimer, M. E.

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

Reinke, P.

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

Reischle, M.

R. Roßbach, W. M. Schulz, M. Reischle, G. J. Beirne, M. Jetter, and P. Michler, “Red to green photoluminescence of InP-quantum dots in AlxGa1-xInP,” J. Cryst. Growth 298, 595–598 (2007).
[Crossref]

Riechert, H.

S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref]

Romeira, B.

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

Roßbach, R.

R. Roßbach, W. M. Schulz, M. Reischle, G. J. Beirne, M. Jetter, and P. Michler, “Red to green photoluminescence of InP-quantum dots in AlxGa1-xInP,” J. Cryst. Growth 298, 595–598 (2007).
[Crossref]

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref]

Saxena, D.

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

Schulz, W. M.

R. Roßbach, W. M. Schulz, M. Reischle, G. J. Beirne, M. Jetter, and P. Michler, “Red to green photoluminescence of InP-quantum dots in AlxGa1-xInP,” J. Cryst. Growth 298, 595–598 (2007).
[Crossref]

Shahid, N.

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

Shin, A. J.

T. L. Atallah, A. V. Sica, A. J. Shin, H. C. Friedman, Y. K. Kahrobai, and J. R. Caram, “Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra,” J. Phys. Chem. A 123(31), 6792–6798 (2019).
[Crossref]

Sica, A. V.

T. L. Atallah, A. V. Sica, A. J. Shin, H. C. Friedman, Y. K. Kahrobai, and J. R. Caram, “Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra,” J. Phys. Chem. A 123(31), 6792–6798 (2019).
[Crossref]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Skolnick, M. S.

P. J. Dean and M. S. Skolnick, “Donor discrimination and bound exciton spectra in InP,” J. Appl. Phys. 54(1), 346–359 (1983).
[Crossref]

Smalbrugge, E.

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

Smit, M. K.

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

Smith, L. M.

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Song, J.

H. Kim, A. Murayama, J. Kim, and J. Song, “Temperature dependence of the radiative recombination time in laterally coupled GaAs quantum dots,” Appl. Surf. Sci. 457, 497–500 (2018).
[Crossref]

Sota, T.

T. Onuma, K. Hazu, A. Uedono, T. Sota, and S. F. Chichibu, “Identification of extremely radiative nature of AlN by time-resolved photoluminescence,” Appl. Phys. Lett. 96(6), 061906 (2010).
[Crossref]

Su, X.

X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
[Crossref]

Takiguchi, M.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5(2), eaat8896 (2019).
[Crossref]

Tan, H. H.

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

X. Yuan, Y. Guo, P. Caroff, J. He, H. H. Tan, and C. Jagadish, “Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires,” Phys. Status Solidi RRL 11(11), 1700310 (2017).
[Crossref]

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Tateno, K.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5(2), eaat8896 (2019).
[Crossref]

Tawara, T.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5(2), eaat8896 (2019).
[Crossref]

Tchernycheva, M.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

Tekcan, B.

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

Timm, R.

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

Tomioka, K.

M. Yoshimura, E. Nakai, K. Tomioka, and T. Fukui, “Indium Phosphide Core–Shell Nanowire Array Solar Cells with Lattice-Mismatched Window Layer,” Appl. Phys. Express 6(5), 052301 (2013).
[Crossref]

Trägårdh, J.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref]

Travers, L.

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

Uedono, A.

T. Onuma, K. Hazu, A. Uedono, T. Sota, and S. F. Chichibu, “Identification of extremely radiative nature of AlN by time-resolved photoluminescence,” Appl. Phys. Lett. 96(6), 061906 (2010).
[Crossref]

van Dam, D.

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

van Enckevort, W. J.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

van Kasteren, B.

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

van Veldhoven, P. J.

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Verheijen, M. A.

L. E. Black, A. Cavalli, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, and W. M. M. Kessels, “Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer,” Nano Lett. 17(10), 6287–6294 (2017).
[Crossref]

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

Versteegh, M. A. M.

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

Vlieg, E.

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

Vu, T. T.

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref]

Wagner, J. B.

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref]

Wallentin, J.

W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

Wang, C.

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

Wang, F.

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

Wang, J.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent Twinning Phenomena:  Towards Twinning Superlattices in III−V Semiconducting Nanowires,,” Nano Lett. 6(12), 2736–2742 (2006).
[Crossref]

Wang, N.

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

Wang, P.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Wang, X.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Wang, Y.

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

Wenas, Y. C.

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Wong-Leung, J.

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

Woo, R. L.

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

Wu, X.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Xiao, R.

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

Xiong, Q.

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent Twinning Phenomena:  Towards Twinning Superlattices in III−V Semiconducting Nanowires,,” Nano Lett. 6(12), 2736–2742 (2006).
[Crossref]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Yang, P.

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

Yang, W.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Yang, X.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Yarrison-Rice, J. M.

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Yartsev, A.

X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
[Crossref]

W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
[Crossref]

Yong, C. K.

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

Yong, C.-K.

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

Yoshimura, M.

M. Yoshimura, E. Nakai, K. Tomioka, and T. Fukui, “Indium Phosphide Core–Shell Nanowire Array Solar Cells with Lattice-Mismatched Window Layer,” Appl. Phys. Express 6(5), 052301 (2013).
[Crossref]

Yu, Y.

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

Yuan, X.

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

X. Yuan, Y. Guo, P. Caroff, J. He, H. H. Tan, and C. Jagadish, “Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires,” Phys. Status Solidi RRL 11(11), 1700310 (2017).
[Crossref]

Zakharov, A. A.

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

Zehender, T.

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref]

Zeng, X.

X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
[Crossref]

Zettler, J. K.

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

Zhang, G.

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5(2), eaat8896 (2019).
[Crossref]

Zhang, H.

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

Zhang, W.

X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
[Crossref]

W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
[Crossref]

Zhang, X.

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Zhang, Y.

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Zheng, D.

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

Zou, J.

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

Zou, X.

X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
[Crossref]

Zwiller, V.

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, “Crystal phase quantum dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. V. Knutsson, S. Lehmann, M. Hjort, P. Reinke, E. Lundgren, K. A. Dick, R. Timm, and A. Mikkelsen, “Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth,” ACS Appl. Mater. Interfaces 7(10), 5748–5755 (2015).
[Crossref]

ACS Nano (2)

M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström, and A. Mikkelsen, “Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires,” ACS Nano 6(11), 9679–9689 (2012).
[Crossref]

N. Kornienko, N. A. Gibson, H. Zhang, S. W. Eaton, Y. Yu, S. Aloni, S. R. Leone, and P. Yang, “Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays,” ACS Nano 10(5), 5525–5535 (2016).
[Crossref]

Appl. Phys. Express (1)

M. Yoshimura, E. Nakai, K. Tomioka, and T. Fukui, “Indium Phosphide Core–Shell Nanowire Array Solar Cells with Lattice-Mismatched Window Layer,” Appl. Phys. Express 6(5), 052301 (2013).
[Crossref]

Appl. Phys. Lett. (1)

T. Onuma, K. Hazu, A. Uedono, T. Sota, and S. F. Chichibu, “Identification of extremely radiative nature of AlN by time-resolved photoluminescence,” Appl. Phys. Lett. 96(6), 061906 (2010).
[Crossref]

Appl. Surf. Sci. (1)

H. Kim, A. Murayama, J. Kim, and J. Song, “Temperature dependence of the radiative recombination time in laterally coupled GaAs quantum dots,” Appl. Surf. Sci. 457, 497–500 (2018).
[Crossref]

Chem. Rev. (1)

L. Güniat, P. Caroff, and A. F. i. Morral, “Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions,” Chem. Rev. 119(15), 8958–8971 (2019).
[Crossref]

Ind. Health (1)

K. Oda, “Toxicity of a Low Level of Indium Phosphide (InP) in Rats after Intratracheal Instillation,” Ind. Health 35(1), 61–68 (1997).
[Crossref]

J. Appl. Phys. (1)

P. J. Dean and M. S. Skolnick, “Donor discrimination and bound exciton spectra in InP,” J. Appl. Phys. 54(1), 346–359 (1983).
[Crossref]

J. Cryst. Growth (1)

R. Roßbach, W. M. Schulz, M. Reischle, G. J. Beirne, M. Jetter, and P. Michler, “Red to green photoluminescence of InP-quantum dots in AlxGa1-xInP,” J. Cryst. Growth 298, 595–598 (2007).
[Crossref]

J. Phys. Chem. A (1)

T. L. Atallah, A. V. Sica, A. J. Shin, H. C. Friedman, Y. K. Kahrobai, and J. R. Caram, “Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra,” J. Phys. Chem. A 123(31), 6792–6798 (2019).
[Crossref]

Nano Lett. (15)

Q. Xiong, J. Wang, and P. C. Eklund, “Coherent Twinning Phenomena:  Towards Twinning Superlattices in III−V Semiconducting Nanowires,,” Nano Lett. 6(12), 2736–2742 (2006).
[Crossref]

C. K. Yong, J. Wong-Leung, H. J. Joyce, J. Lloyd-Hughes, Q. Gao, H. H. Tan, C. Jagadish, M. B. Johnston, and L. M. Herz, “Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions,” Nano Lett. 13(9), 4280–4287 (2013).
[Crossref]

S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, “Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications,” Nano Lett. 11(3), 1276–1279 (2011).
[Crossref]

J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, “Optical Properties of Rotationally Twinned InP Nanowire Heterostructures,” Nano Lett. 8(3), 836–841 (2008).
[Crossref]

N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, “Crystal phase quantum dots,” Nano Lett. 10(4), 1198–1201 (2010).
[Crossref]

A. Higuera-Rodriguez, B. Romeira, S. Birindelli, L. E. Black, E. Smalbrugge, P. J. van Veldhoven, W. M. Kessels, M. K. Smit, and A. Fiore, “Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars,” Nano Lett. 17(4), 2627–2633 (2017).
[Crossref]

Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, and C. Jagadish, “Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing,” Nano Lett. 14(9), 5206–5211 (2014).
[Crossref]

H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Ultralow Surface Recombination Velocity in InP Nanowires Probed by Terahertz Spectroscopy,” Nano Lett. 12(10), 5325–5330 (2012).
[Crossref]

K. Peng, P. Parkinson, J. L. Boland, Q. Gao, Y. C. Wenas, C. L. Davies, Z. Li, L. Fu, M. B. Johnston, H. H. Tan, and C. Jagadish, “Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors,” Nano Lett. 16(8), 4925–4931 (2016).
[Crossref]

D. Zheng, J. Wang, W. Hu, L. Liao, H. Fang, N. Guo, P. Wang, F. Gong, X. Wang, Z. Fan, X. Wu, X. Meng, X. Chen, and W. Lu, “When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors,” Nano Lett. 16(4), 2548–2555 (2016).
[Crossref]

V. Gautam, S. Naureen, N. Shahid, Q. Gao, Y. Wang, D. Nisbet, C. Jagadish, and V. R. Daria, “Engineering Highly Interconnected Neuronal Networks on Nanowire Scaffolds,” Nano Lett. 17(6), 3369–3375 (2017).
[Crossref]

R. L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. K. Hudait, T. E. Mallouk, and R. F. Hicks, “Effect of Twinning on the Photoluminescence and Photoelectrochemical Properties of Indium Phosphide Nanowires Grown on Silicon (111),” Nano Lett. 8(12), 4664–4669 (2008).
[Crossref]

Z. Liu, I. Papadimitriou, M. Castillo-Rodrígueza, C. Wang, G. Esteban-Manzanares, X. Yuan, H. H. Tan, J. M. Molina-Aldareguía, and J. Llorca, “Mechanical behavior of InP twinning superlattice nanowires,” Nano Lett. 19(7), 4490–4497 (2019).
[Crossref]

L. E. Black, A. Cavalli, M. A. Verheijen, J. E. M. Haverkort, E. P. A. M. Bakkers, and W. M. M. Kessels, “Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer,” Nano Lett. 17(10), 6287–6294 (2017).
[Crossref]

W. Zhang, S. Lehmann, K. Mergenthaler, J. Wallentin, M. T. Borgstrom, M. E. Pistol, and A. Yartsev, “Carrier Recombination Dynamics in Sulfur-Doped InP Nanowires,” Nano Lett. 15(11), 7238–7244 (2015).
[Crossref]

Nanoscale (2)

X. Yuan, L. Li, Z. Li, F. Wang, N. Wang, L. Fu, J. He, H. H. Tan, and C. Jagadish, “Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires,” Nanoscale 11(18), 9207–9215 (2019).
[Crossref]

X. Su, X. Zeng, H. Nemec, X. Zou, W. Zhang, M. T. Borgstrom, and A. Yartsev, “Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires,” Nanoscale 11(40), 18550–18558 (2019).
[Crossref]

Nanotechnology (4)

S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, and J. Zou, “The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires,” Nanotechnology 20(22), 225606 (2009).
[Crossref]

C. Himwas, S. Collin, P. Rale, N. Chauvin, G. Patriarche, F. Oehler, F. H. Julien, L. Travers, J. C. Harmand, and M. Tchernycheva, “In situ passivation of GaAsP nanowires,” Nanotechnology 28(49), 495707 (2017).
[Crossref]

T. T. Vu, T. Zehender, M. A. Verheijen, S. R. Plissard, G. W. Immink, J. E. Haverkort, and E. P. Bakkers, “High optical quality single crystal phase wurtzite and zincblende InP nanowires,” Nanotechnology 24(11), 115705 (2013).
[Crossref]

P. Mohan, J. Motohisa, and T. Fukui, “Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays,” Nanotechnology 16(12), 2903–2907 (2005).
[Crossref]

Nat. Commun. (2)

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3(1), 737 (2012).
[Crossref]

M. A. M. Versteegh, M. E. Reimer, K. D. Jöns, D. Dalacu, P. J. Poole, A. Gulinatti, A. Giudice, and V. Zwiller, “Observation of strongly entangled photon pairs from a nanowire quantum dot,” Nat. Commun. 5(1), 5298 (2014).
[Crossref]

Nat. Nanotechnol. (1)

S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. P. A. M. Bakkers, and M. E. Reimer, “Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection,” Nat. Nanotechnol. 14(5), 473–479 (2019).
[Crossref]

Nature (1)

R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg, and E. P. Bakkers, “Twinning superlattices in indium phosphide nanowires,” Nature 456(7220), 369–372 (2008).
[Crossref]

Phys. Rev. B (1)

P. Corfdir, C. Hauswald, J. K. Zettler, T. Flissikowski, J. Lähnemann, S. Fernández-Garrido, L. Geelhaar, H. T. Grahn, and O. Brandt, “Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency,” Phys. Rev. B 90(19), 195309 (2014).
[Crossref]

Phys. Status Solidi B (1)

U. Heim, “Lifetimes of bound excitons in InP,” Phys. Status Solidi B 48(2), 629–633 (1971).
[Crossref]

Phys. Status Solidi RRL (1)

X. Yuan, Y. Guo, P. Caroff, J. He, H. H. Tan, and C. Jagadish, “Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires,” Phys. Status Solidi RRL 11(11), 1700310 (2017).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Sci. Adv. (1)

G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi, and H. Gotoh, “Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature,” Sci. Adv. 5(2), eaat8896 (2019).
[Crossref]

Sci. Rep. (1)

W. Yang, J. Li, Y. Zhang, P.-K. Huang, T.-C. Lu, H.-C. Kuo, S. Li, X. Yang, H. Chen, D. Liu, and J. Kang, “High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability,” Sci. Rep. 4(1), 5166 (2015).
[Crossref]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Structural and optical properties of InP TSL nanowires. (a) Tilted SEM images of the InP TSL nanowires with (b) a magnified image showing the zigzag morphology. (c) Low magnification TEM image together with the corresponding SADP along the [1$\overline{1}$0] zone axis showing the ZB TSL structure. (d) Room temperature micro-PL spectra at different excitation powers together with (e) the corresponding carrier decay spectra.
Fig. 2.
Fig. 2. Effect of chemical etching on InP TSL nanowires. Structural comparison before (a) and after (b) HF etching for 50 s. The red arrows in a and b point out the surface status before and after wet etching. (c) PL emission, (d) carrier lifetime and (e) IQE comparison of the InP TSL nanowires, before and after chemical etching. τ1 and τ2 in (d) represent the extracted lifetime for fast and slow carrier decay processes, respectively.
Fig. 3.
Fig. 3. Single nanowire transient spectrum of InP TSL nanowires. (a) 2D time-energy emission map. At each time, the emission is fitted using a Gaussian, with the extracted center position shown in (b). (c) The integrated early (before 1.6 ns) and late (after 1.6 ns) spectra are shown.
Fig. 4.
Fig. 4. Temperature dependent PL and TRPL of a single InP TSL nanowire. (a) Normalized PL spectra taken in the temperature range of 10-300 K. (b) PL spectrum at 10 K showing the strong donor bounded exciton emission with a small emission shoulder of free exciton. (c) Temperature dependent TRPL and (d) extracted carrier lifetime, bandgap and FWHM as a function of temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( P ) n r a d = l o g ( 1 n 0 ) l o g ( 1 + n 0 n 0 ) + n 0 ,

Metrics