Abstract

We experimentally investigate the spectro-temporal characteristics of coherent supercontinuum (SC) pulses generated in several implementations of silica and soft-glass all-normal dispersion (ANDi) photonic crystal fibers optimized for pumping with Erbium (Er):fiber femtosecond laser technology. We characterize the resulting SC using time-domain ptychography, which is especially suitable for the measurement of complex, spectrally broadband ultrashort pulses. The measurements of the ANDi SC pulses reveal intricate pulse shapes, considerable temporal fine structure, and oscillations on time scales of < 25 femtoseconds, which differ from the smoothness and simplicity of temporal profiles obtained in numerical simulations and observed in previous experiments. We link the measured complex features to temporal sub-structures of the pump pulse, such as pre- and post-pulses and low-level pedestals, which are common in high pulse energy ultrafast Er:fiber systems. We also observe spectro-temporal structures consistent with incoherent noise amplification in weakly birefringent fiber samples. Our results highlight the importance of the pump source and polarization-maintaining (PM) fibers for high-quality SC generation and have practical relevance for many ultrafast photonics applications employing ANDi fiber-based SC sources.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
    [Crossref]
  2. A. M. Heidt, A. Hartung, and H. Bartelt, “The Supercontinuum Laser Source: The Ultimate White Light,” in (Springer, New York, 2016), pp. 247–280.
  3. A. M. Heidt, J. S. Feehan, J. H. v. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
    [Crossref]
  4. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
    [Crossref]
  5. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775 (2011).
    [Crossref]
  6. S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19(21), 20151 (2011).
    [Crossref]
  7. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870 (2012).
    [Crossref]
  8. J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert, “High Average Power Near-Infrared Few-Cycle Lasers,” Laser Photonics Rev. 11(4), 1700043 (2017).
    [Crossref]
  9. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
    [Crossref]
  10. H. Tu and S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J. Biophotonics 7(1-2), 9–22 (2014).
    [Crossref]
  11. N. Nishizawa, “Wideband ultrafast fiber laser sources for OCT and metrology,” J. Phys. B: At., Mol. Opt. Phys. 49(18), 182003 (2016).
    [Crossref]
  12. N. M. Kearns, A. C. Jones, M. B. Kunz, R. T. Allen, J. T. Flach, and M. T. Zanni, “Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator,” J. Phys. Chem. A 123(13), 3046–3055 (2019).
    [Crossref]
  13. Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4–7.2 µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458–3461 (2017).
    [Crossref]
  14. N. Zhang, X. Peng, Y. Wang, S. Dai, Y. Yuan, J. Su, G. Li, P. Zhang, P. Yang, and X. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27(7), 10311–10319 (2019).
    [Crossref]
  15. S. Rao D. S., S. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216 (2019).
    [Crossref]
  16. K. Tarnowski, T. Martynkien, P. Mergo, J. Sotor, and G. Soboń, “Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber,” Sci. Rep. 9(1), 12313 (2019).
    [Crossref]
  17. J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (Optical Society of America, 2017), p. CJ_P_7.
  18. A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).
  19. A. Rampur, Y. Stepanenko, G. Stępniewski, T. Kardaś, D. Dobrakowski, D.-M. Spangenberg, T. Feurer, A. Heidt, and M. Klimczak, “Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier,” Opt. Express 27(24), 35041 (2019).
    [Crossref]
  20. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [Crossref]
  21. A. Hartung, A. M. Heidt, and H. Bartelt, “Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths,” Opt. Express 20(13), 13777–13788 (2012).
    [Crossref]
  22. T. S. Saini, N. P. T. Hoa, T. H. Tuan, X. Luo, T. Suzuki, and Y. Ohishi, “Tapered tellurite step-index optical fiber for coherent near-to-mid-IR supercontinuum generation: experiment and modeling,” Appl. Opt. 58(2), 415–421 (2019).
    [Crossref]
  23. E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161 (2019).
    [Crossref]
  24. J. Szczepanek, T. M. Kardaś, and Y. Stepanenko, “Group delay measurements of ultra-broadband pulses generated in highly nonlinear fibers,” Photonics Lett. Pol. 8(4), 107–109 (2016).
    [Crossref]
  25. A. Okamura, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Experimental analysis of coherent supercontinuum generation and ultrashort pulse generation using cross-correlation frequency resolved optical gating (X-FROG),” J. Opt. Soc. Am. B 32(3), 400–406 (2015).
    [Crossref]
  26. K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2 µm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24(26), 30523 (2016).
    [Crossref]
  27. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10(21), 1215 (2002).
    [Crossref]
  28. S. Dupont, P. M. Moselund, L. Leick, J. Ramsay, and S. R. Keiding, “Up-conversion of a megahertz mid-IR supercontinuum,” J. Opt. Soc. Am. B 30(10), 2570–2575 (2013).
    [Crossref]
  29. J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17(3), 1502 (2009).
    [Crossref]
  30. Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
    [Crossref]
  31. J. Vengelis, V. Jarutis, and V. Sirutkaitis, “Estimation of photonic crystal fiber dispersion by means of supercontinuum generation,” Opt. Lett. 42(9), 1844 (2017).
    [Crossref]
  32. T. C. Wong, M. Rhodes, and R. Trebino, “Single-shot measurement of the complete temporal intensity and phase of supercontinuum,” Optica 1(2), 119 (2014).
    [Crossref]
  33. D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91(2), 021803 (2015).
    [Crossref]
  34. M. Lucchini, M. H. Brügmann, A. Ludwig, L. Gallmann, U. Keller, and T. Feurer, “Ptychographic reconstruction of attosecond pulses,” Opt. Express 23(23), 29502–29513 (2015).
    [Crossref]
  35. A. M. Heidt, D.-M. Spangenberg, M. Brügmann, E. G. Rohwer, and T. Feurer, “Improved retrieval of complex supercontinuum pulses from XFROG traces using a ptychographic algorithm,” Opt. Lett. 41(21), 4903 (2016).
    [Crossref]
  36. T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. P. Marangos, and J. W. G. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. Lett. 41(18), 4218–4221 (2016).
    [Crossref]
  37. D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er: fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
    [Crossref]
  38. I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
    [Crossref]
  39. P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
    [Crossref]
  40. P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” JEOS:RP 7, 12017 (2012).
    [Crossref]
  41. M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers,” Opt. Express 24(26), 29406 (2016).
    [Crossref]
  42. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
    [Crossref]
  43. D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
    [Crossref]
  44. K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Béjot, F. Billard, O. Faucher, B. Kibler, and W. Urbanczyk, “Polarized all-normal dispersion supercontinuum reaching 2.5 µm generated in a birefringent microstructured silica fiber,” Opt. Express 25(22), 27452 (2017).
    [Crossref]
  45. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
    [Crossref]
  46. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science & Business Media, 2012).
  47. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
    [Crossref]
  48. G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
    [Crossref]
  49. K. W. DeLong and R. Trebino, “Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating,” J. Opt. Soc. Am. A 11(9), 2429–2437 (1994).
    [Crossref]
  50. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  51. A. A. Rieznik, A. M. Heidt, P. G. Konig, V. A. Bettachini, and D. F. Grosz, “Optimum Integration Procedures for Supercontinuum Simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
    [Crossref]
  52. G. Millot, E. Seve, S. Wabnitz, and M. Haelterman, “Observation of induced modulational polarization instabilities and pulse-train generation in the normal-dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B 15(4), 1266 (1998).
    [Crossref]
  53. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

2019 (8)

N. M. Kearns, A. C. Jones, M. B. Kunz, R. T. Allen, J. T. Flach, and M. T. Zanni, “Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator,” J. Phys. Chem. A 123(13), 3046–3055 (2019).
[Crossref]

N. Zhang, X. Peng, Y. Wang, S. Dai, Y. Yuan, J. Su, G. Li, P. Zhang, P. Yang, and X. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27(7), 10311–10319 (2019).
[Crossref]

S. Rao D. S., S. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216 (2019).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, J. Sotor, and G. Soboń, “Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber,” Sci. Rep. 9(1), 12313 (2019).
[Crossref]

A. Rampur, Y. Stepanenko, G. Stępniewski, T. Kardaś, D. Dobrakowski, D.-M. Spangenberg, T. Feurer, A. Heidt, and M. Klimczak, “Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier,” Opt. Express 27(24), 35041 (2019).
[Crossref]

T. S. Saini, N. P. T. Hoa, T. H. Tuan, X. Luo, T. Suzuki, and Y. Ohishi, “Tapered tellurite step-index optical fiber for coherent near-to-mid-IR supercontinuum generation: experiment and modeling,” Appl. Opt. 58(2), 415–421 (2019).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161 (2019).
[Crossref]

D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
[Crossref]

2018 (3)

Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
[Crossref]

2017 (5)

2016 (6)

2015 (3)

2014 (4)

2013 (2)

2012 (4)

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” JEOS:RP 7, 12017 (2012).
[Crossref]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870 (2012).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths,” Opt. Express 20(13), 13777–13788 (2012).
[Crossref]

A. A. Rieznik, A. M. Heidt, P. G. Konig, V. A. Bettachini, and D. F. Grosz, “Optimum Integration Procedures for Supercontinuum Simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

2008 (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

2003 (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

2002 (2)

1998 (1)

1996 (1)

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

1994 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Allen, R. T.

N. M. Kearns, A. C. Jones, M. B. Kunz, R. T. Allen, J. T. Flach, and M. T. Zanni, “Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator,” J. Phys. Chem. A 123(13), 3046–3055 (2019).
[Crossref]

Anuszkiewicz, A.

D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Béjot, F. Billard, O. Faucher, B. Kibler, and W. Urbanczyk, “Polarized all-normal dispersion supercontinuum reaching 2.5 µm generated in a birefringent microstructured silica fiber,” Opt. Express 25(22), 27452 (2017).
[Crossref]

Bache, M.

Bang, O.

Barillot, T.

Bartelt, H.

Béjot, P.

Bettachini, V. A.

A. A. Rieznik, A. M. Heidt, P. G. Konig, V. A. Bettachini, and D. F. Grosz, “Optimum Integration Procedures for Supercontinuum Simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

Billard, F.

Boppart, S. A.

H. Tu and S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J. Biophotonics 7(1-2), 9–22 (2014).
[Crossref]

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref]

Bosman, G. W.

Bowen, P.

Brida, D.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er: fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Brügmann, M.

Brügmann, M. H.

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91(2), 021803 (2015).
[Crossref]

M. Lucchini, M. H. Brügmann, A. Ludwig, L. Gallmann, U. Keller, and T. Feurer, “Ptychographic reconstruction of attosecond pulses,” Opt. Express 23(23), 29502–29513 (2015).
[Crossref]

Buczynski, R.

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Christov, I. P.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

Ciacka, P.

Ciprian, D.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” JEOS:RP 7, 12017 (2012).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10(21), 1215 (2002).
[Crossref]

Cormier, E.

J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert, “High Average Power Near-Infrared Few-Cycle Lasers,” Laser Photonics Rev. 11(4), 1700043 (2017).
[Crossref]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

Dai, S.

Delagnes, J. C.

J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert, “High Average Power Near-Infrared Few-Cycle Lasers,” Laser Photonics Rev. 11(4), 1700043 (2017).
[Crossref]

DeLong, K. W.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

K. W. DeLong and R. Trebino, “Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating,” J. Opt. Soc. Am. A 11(9), 2429–2437 (1994).
[Crossref]

Demmler, S.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

Dobrakowski, D.

A. Rampur, Y. Stepanenko, G. Stępniewski, T. Kardaś, D. Dobrakowski, D.-M. Spangenberg, T. Feurer, A. Heidt, and M. Klimczak, “Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier,” Opt. Express 27(24), 35041 (2019).
[Crossref]

D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
[Crossref]

Dudley, J. M.

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161 (2019).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10(21), 1215 (2002).
[Crossref]

Dupont, S.

Engelsholm, R. D.

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Engelsholm, S. D.

Faucher, O.

Feehan, J. S.

Feurer, T.

A. Rampur, Y. Stepanenko, G. Stępniewski, T. Kardaś, D. Dobrakowski, D.-M. Spangenberg, T. Feurer, A. Heidt, and M. Klimczak, “Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier,” Opt. Express 27(24), 35041 (2019).
[Crossref]

P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
[Crossref]

A. M. Heidt, J. S. Feehan, J. H. v. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

A. M. Heidt, D.-M. Spangenberg, M. Brügmann, E. G. Rohwer, and T. Feurer, “Improved retrieval of complex supercontinuum pulses from XFROG traces using a ptychographic algorithm,” Opt. Lett. 41(21), 4903 (2016).
[Crossref]

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91(2), 021803 (2015).
[Crossref]

M. Lucchini, M. H. Brügmann, A. Ludwig, L. Gallmann, U. Keller, and T. Feurer, “Ptychographic reconstruction of attosecond pulses,” Opt. Express 23(23), 29502–29513 (2015).
[Crossref]

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (Optical Society of America, 2017), p. CJ_P_7.

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Fittinghoff, D. N.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

Flach, J. T.

N. M. Kearns, A. C. Jones, M. B. Kunz, R. T. Allen, J. T. Flach, and M. T. Zanni, “Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator,” J. Phys. Chem. A 123(13), 3046–3055 (2019).
[Crossref]

Gallmann, L.

Genier, E.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gonzalo, I. B.

S. Rao D. S., S. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216 (2019).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Greening, D.

Grosz, D. F.

A. A. Rieznik, A. M. Heidt, P. G. Konig, V. A. Bettachini, and D. F. Grosz, “Optimum Integration Procedures for Supercontinuum Simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

Gu, X.

Hädrich, S.

J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert, “High Average Power Near-Infrared Few-Cycle Lasers,” Laser Photonics Rev. 11(4), 1700043 (2017).
[Crossref]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870 (2012).
[Crossref]

Haelterman, M.

Han, X.

Hartung, A.

Heidt, A.

Heidt, A. M.

A. M. Heidt, J. S. Feehan, J. H. v. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

A. M. Heidt, D.-M. Spangenberg, M. Brügmann, E. G. Rohwer, and T. Feurer, “Improved retrieval of complex supercontinuum pulses from XFROG traces using a ptychographic algorithm,” Opt. Lett. 41(21), 4903 (2016).
[Crossref]

A. A. Rieznik, A. M. Heidt, P. G. Konig, V. A. Bettachini, and D. F. Grosz, “Optimum Integration Procedures for Supercontinuum Simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths,” Opt. Express 20(13), 13777–13788 (2012).
[Crossref]

S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19(21), 20151 (2011).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775 (2011).
[Crossref]

A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
[Crossref]

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

A. M. Heidt, A. Hartung, and H. Bartelt, “The Supercontinuum Laser Source: The Ultimate White Light,” in (Springer, New York, 2016), pp. 247–280.

Hlubina, P.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” JEOS:RP 7, 12017 (2012).
[Crossref]

Hoa, N. P. T.

Hodasi, J. M.

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (Optical Society of America, 2017), p. CJ_P_7.

Jarutis, V.

Jones, A. C.

N. M. Kearns, A. C. Jones, M. B. Kunz, R. T. Allen, J. T. Flach, and M. T. Zanni, “Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator,” J. Phys. Chem. A 123(13), 3046–3055 (2019).
[Crossref]

Kadulová, M.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” JEOS:RP 7, 12017 (2012).
[Crossref]

Kapteyn, H. C.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

Kardas, T.

Kardas, T. M.

J. Szczepanek, T. M. Kardaś, and Y. Stepanenko, “Group delay measurements of ultra-broadband pulses generated in highly nonlinear fibers,” Photonics Lett. Pol. 8(4), 107–109 (2016).
[Crossref]

Kasztelanic, R.

D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
[Crossref]

Kataura, H.

Kearns, N. M.

N. M. Kearns, A. C. Jones, M. B. Kunz, R. T. Allen, J. T. Flach, and M. T. Zanni, “Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator,” J. Phys. Chem. A 123(13), 3046–3055 (2019).
[Crossref]

Keiding, S. R.

Keller, U.

Kibler, B.

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Béjot, F. Billard, O. Faucher, B. Kibler, and W. Urbanczyk, “Polarized all-normal dispersion supercontinuum reaching 2.5 µm generated in a birefringent microstructured silica fiber,” Opt. Express 25(22), 27452 (2017).
[Crossref]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

Kimmel, M.

Klimczak, M.

A. Rampur, Y. Stepanenko, G. Stępniewski, T. Kardaś, D. Dobrakowski, D.-M. Spangenberg, T. Feurer, A. Heidt, and M. Klimczak, “Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier,” Opt. Express 27(24), 35041 (2019).
[Crossref]

D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
[Crossref]

P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
[Crossref]

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers,” Opt. Express 24(26), 29406 (2016).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref]

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (Optical Society of America, 2017), p. CJ_P_7.

Konig, P. G.

A. A. Rieznik, A. M. Heidt, P. G. Konig, V. A. Bettachini, and D. F. Grosz, “Optimum Integration Procedures for Supercontinuum Simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

Krauss, G.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er: fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Krok, P.

Krumbugel, M. A.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

Kunz, M. B.

N. M. Kearns, A. C. Jones, M. B. Kunz, R. T. Allen, J. T. Flach, and M. T. Zanni, “Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator,” J. Phys. Chem. A 123(13), 3046–3055 (2019).
[Crossref]

Leick, L.

Leitenstorfer, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er: fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Li, G.

Limpert, J.

Lisowska, J.

D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
[Crossref]

Lucchini, M.

Ludwig, A.

Luo, X.

Marangos, J. P.

Martynkien, T.

Matia-Hernando, P.

Mergo, P.

Millot, G.

Modupeh Hodasi, J.

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Moselund, P.

Moselund, P. M.

Murnane, M. M.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

Neethling, P.

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91(2), 021803 (2015).
[Crossref]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

Nishizawa, N.

O’Connor, S. P.

Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
[Crossref]

O’Shea, P.

Ohishi, Y.

Okamura, A.

Omoda, E.

Peng, X.

Poturaj, K.

Price, J. H. v.

Pysz, D.

Radzewicz, C.

Rampur, A.

D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
[Crossref]

A. Rampur, Y. Stepanenko, G. Stępniewski, T. Kardaś, D. Dobrakowski, D.-M. Spangenberg, T. Feurer, A. Heidt, and M. Klimczak, “Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier,” Opt. Express 27(24), 35041 (2019).
[Crossref]

P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
[Crossref]

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Ramsay, J.

Rao D. S., S.

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Rhodes, M.

Rieznik, A. A.

A. A. Rieznik, A. M. Heidt, P. G. Konig, V. A. Bettachini, and D. F. Grosz, “Optimum Integration Procedures for Supercontinuum Simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

Rohwer, E.

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91(2), 021803 (2015).
[Crossref]

Rohwer, E. G.

Rothhardt, J.

Rundquist, A.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

Ryser, M.

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Saini, T. S.

Sakakibara, Y.

Schwoerer, H.

Scully, M. O.

Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
[Crossref]

Sell, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er: fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Seve, E.

Shen, Y.

Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
[Crossref]

Shreenath, A. P.

Sirutkaitis, V.

Siwicki, B.

Skibinski, P.

Sobon, G.

K. Tarnowski, T. Martynkien, P. Mergo, J. Sotor, and G. Soboń, “Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber,” Sci. Rep. 9(1), 12313 (2019).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2 µm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24(26), 30523 (2016).
[Crossref]

Sokolov, A. v.

Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
[Crossref]

Sørensen, M. P.

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Sotor, J.

K. Tarnowski, T. Martynkien, P. Mergo, J. Sotor, and G. Soboń, “Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber,” Sci. Rep. 9(1), 12313 (2019).
[Crossref]

Spangenberg, D.

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91(2), 021803 (2015).
[Crossref]

Spangenberg, D.-M.

St?pniewski, G.

D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
[Crossref]

Stepanenko, Y.

Stepien, R.

Stepniewski, G.

Su, J.

Suzuki, T.

Sweetser, J. N.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

Sylvestre, T.

Szczepanek, J.

J. Szczepanek, T. M. Kardaś, and Y. Stepanenko, “Group delay measurements of ultra-broadband pulses generated in highly nonlinear fibers,” Photonics Lett. Pol. 8(4), 107–109 (2016).
[Crossref]

Taft, G.

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

Tarnowski, K.

Tisch, J. W. G.

Travers, J. C.

Trebino, R.

Tu, H.

H. Tu and S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J. Biophotonics 7(1-2), 9–22 (2014).
[Crossref]

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref]

Tuan, T. H.

Tünnermann, A.

Urbanczyk, W.

Vengelis, J.

Voronin, A. A.

Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
[Crossref]

Wabnitz, S.

Walke, D.

Wang, X.

Wang, Y.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

Windeler, R. S.

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Witting, T.

Wong, T. C.

Xu, D.

Xu, L.

Xu, P.

Yakovlev, V. v.

Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
[Crossref]

Yang, P.

You, C.

Yuan, Y.

Zanni, M. T.

N. M. Kearns, A. C. Jones, M. B. Kunz, R. T. Allen, J. T. Flach, and M. T. Zanni, “Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator,” J. Phys. Chem. A 123(13), 3046–3055 (2019).
[Crossref]

Zeek, E.

Zhang, N.

Zhang, P.

Zheltikov, A. M.

Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
[Crossref]

Zhou, B.

Appl. Opt. (1)

Appl. Phys. B (1)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81(2-3), 337–342 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLong, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron. 2(3), 575–585 (1996).
[Crossref]

IEEE Photonics J. (1)

A. A. Rieznik, A. M. Heidt, P. G. Konig, V. A. Bettachini, and D. F. Grosz, “Optimum Integration Procedures for Supercontinuum Simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

J. Biophotonics (1)

H. Tu and S. A. Boppart, “Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation,” J. Biophotonics 7(1-2), 9–22 (2014).
[Crossref]

J. Opt. (1)

D. Dobrakowski, A. Rampur, G. Stȩpniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21, 015504 (2019).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (7)

G. Millot, E. Seve, S. Wabnitz, and M. Haelterman, “Observation of induced modulational polarization instabilities and pulse-train generation in the normal-dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B 15(4), 1266 (1998).
[Crossref]

A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
[Crossref]

A. Okamura, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Experimental analysis of coherent supercontinuum generation and ultrashort pulse generation using cross-correlation frequency resolved optical gating (X-FROG),” J. Opt. Soc. Am. B 32(3), 400–406 (2015).
[Crossref]

A. M. Heidt, J. S. Feehan, J. H. v. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

S. Dupont, P. M. Moselund, L. Leick, J. Ramsay, and S. R. Keiding, “Up-conversion of a megahertz mid-IR supercontinuum,” J. Opt. Soc. Am. B 30(10), 2570–2575 (2013).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161 (2019).
[Crossref]

P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
[Crossref]

J. Phys. B: At., Mol. Opt. Phys. (1)

N. Nishizawa, “Wideband ultrafast fiber laser sources for OCT and metrology,” J. Phys. B: At., Mol. Opt. Phys. 49(18), 182003 (2016).
[Crossref]

J. Phys. Chem. A (1)

N. M. Kearns, A. C. Jones, M. B. Kunz, R. T. Allen, J. T. Flach, and M. T. Zanni, “Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator,” J. Phys. Chem. A 123(13), 3046–3055 (2019).
[Crossref]

JEOS:RP (1)

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” JEOS:RP 7, 12017 (2012).
[Crossref]

Laser Photonics Rev. (4)

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er: fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert, “High Average Power Near-Infrared Few-Cycle Lasers,” Laser Photonics Rev. 11(4), 1700043 (2017).
[Crossref]

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Opt. Express (13)

M. Lucchini, M. H. Brügmann, A. Ludwig, L. Gallmann, U. Keller, and T. Feurer, “Ptychographic reconstruction of attosecond pulses,” Opt. Express 23(23), 29502–29513 (2015).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775 (2011).
[Crossref]

S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19(21), 20151 (2011).
[Crossref]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870 (2012).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Nanoscale all-normal dispersion optical fibers for coherent supercontinuum generation at ultraviolet wavelengths,” Opt. Express 20(13), 13777–13788 (2012).
[Crossref]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10(21), 1215 (2002).
[Crossref]

J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17(3), 1502 (2009).
[Crossref]

A. Rampur, Y. Stepanenko, G. Stępniewski, T. Kardaś, D. Dobrakowski, D.-M. Spangenberg, T. Feurer, A. Heidt, and M. Klimczak, “Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier,” Opt. Express 27(24), 35041 (2019).
[Crossref]

N. Zhang, X. Peng, Y. Wang, S. Dai, Y. Yuan, J. Su, G. Li, P. Zhang, P. Yang, and X. Wang, “Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion,” Opt. Express 27(7), 10311–10319 (2019).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref]

M. Klimczak, B. Siwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buczyński, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers,” Opt. Express 24(26), 29406 (2016).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Soboń, and W. Urbańczyk, “Coherent supercontinuum generation up to 2.2 µm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24(26), 30523 (2016).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Béjot, F. Billard, O. Faucher, B. Kibler, and W. Urbanczyk, “Polarized all-normal dispersion supercontinuum reaching 2.5 µm generated in a birefringent microstructured silica fiber,” Opt. Express 25(22), 27452 (2017).
[Crossref]

Opt. Lett. (6)

Optica (1)

Photonics Lett. Pol. (1)

J. Szczepanek, T. M. Kardaś, and Y. Stepanenko, “Group delay measurements of ultra-broadband pulses generated in highly nonlinear fibers,” Photonics Lett. Pol. 8(4), 107–109 (2016).
[Crossref]

Phys. Rev. A (1)

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91(2), 021803 (2015).
[Crossref]

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Sci. Rep. (3)

K. Tarnowski, T. Martynkien, P. Mergo, J. Sotor, and G. Soboń, “Compact all-fiber source of coherent linearly polarized octave-spanning supercontinuum based on normal dispersion silica fiber,” Sci. Rep. 9(1), 12313 (2019).
[Crossref]

Y. Shen, A. A. Voronin, A. M. Zheltikov, S. P. O’Connor, V. v. Yakovlev, A. v. Sokolov, and M. O. Scully, “Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy,” Sci. Rep. 8(1), 9526 (2018).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Other (5)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science & Business Media, 2012).

J. M. Hodasi, A. Heidt, M. Klimczak, B. Siwicki, and T. Feurer, “Femtosecond seeding of a Tm-Ho fiber amplifier by a broadband coherent supercontinuum pulse from an all-solid all-normal photonic crystal fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (Optical Society of America, 2017), p. CJ_P_7.

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

A. M. Heidt, A. Hartung, and H. Bartelt, “The Supercontinuum Laser Source: The Ultimate White Light,” in (Springer, New York, 2016), pp. 247–280.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Chromatic dispersion of PM and non-PM ANDi PCFs used in this work (left) along with scanning electron microscopy pictures (center) and respective typical supercontinuum spectrum (right) marked with arrows and labels.
Fig. 2.
Fig. 2. Experimental setup for ptychographic pulse characterization: femtosecond seed laser: 1560 nm, 100 MHz, 350 mW, 75 fs (Menlo Systems C-fiber HP); BS: beam splitter; F: 1580 nm bandpass filter; PCF: photonic crystal fiber; M: highly reflective mirror; HW: half-wave plate; L: aspheric lens; SM: spherical mirror; BBO: β- barium borate crystal.
Fig. 3.
Fig. 3. Characterization of the pump pulse using SHG FROG. (a) Measured FROG trace, (b) retrieved FROG trace, (c) retrieved spectrum (blue) and phase (orange), (d) retrieved pulse shape (blue) and phase (orange), and (e) temporal intensity in logarithmic scale.
Fig. 4.
Fig. 4. Characterization of the gate pulse after the bandpass filter using SHG FROG. (a) Measured FROG trace, (b) retrieved FROG trace, (c) retrieved spectrum (blue) and phase (orange), (d) retrieved pulse shape (blue) and phase (orange).
Fig. 5.
Fig. 5. Spectro-temporal characterization of SC pulses generated in the NL46 PCF. (a) Measured spectrogram. (b) retrieved spectrogram using e-PIE. (c) Error calculated by subtracting (a) from (b). (d) Retrieved spectrum compared to a SC spectrum independently measured with the OSA (linear scale). (e) Retrieved temporal pulse shape with marginal.
Fig. 6.
Fig. 6. Projected axes spectrograms of SC pulses generated in NL46 PCF. (a) Measured; (b) simulated considering full amplitude and phase of measured pump pulse; (c) simulated considering temporally filtered pump pulse without side-peaks or pedestal. The projected axes show the retrieved or simulated spectral and temporal profiles, respectively, both in linear scale. Top insets in (b) and (c) show the pump pulse shape considered in the respective simulations.
Fig. 7.
Fig. 7. Measured projected axes spectrograms of SC pulses generated in soft-glass PCF. (a) NL48 – polarization maintaining. (b) NL38 – non-polarization maintaining. The spectral projection displays the spectrum retrieved by e-PIE compared to an independent OSA measurement (linear scale). The temporal projection displays the marginal of the spectrogram as well as the intensity and phase retrieved by e-PIE.
Fig. 8.
Fig. 8. Measured projected axes spectrograms of SC pulses generated in polarization-maintaining silica PCF. (a) NLs1. (b) NLs2. The spectral projection displays the spectrum retrieved by e-PIE compared to an independent OSA measurement (linear scale). The temporal projection displays the marginal of the spectrogram as well as the intensity and phase retrieved by e-PIE. The inset in (b) shows a magnified section of the temporal intensity profile.

Tables (1)

Tables Icon

Table 1. Geometry, linear and nonlinear properties of the photonic crystal fibers used in this work.

Metrics