Abstract

We report and characterize sub-kHz linewidth operation of an AlGaInP-based VECSEL system suitable for addressing the narrow cooling transition of neutral strontium atoms at 689 nm. When frequency-stabilized to a standard air-spaced Fabry-Perot cavity (finesse 1000) via the Pound-Drever-Hall (PDH) technique, it delivers output power >150 mW in a circularly-symmetric single transverse mode with low frequency and intensity noise. The optical field was reconstructed from the frequency noise error signal via autocorrelation and the Wiener-Khintchine theorem, leading to an estimated linewidth of (125 ± 2) Hz. Optical beat note measurements were performed against a commercial locked laser system and a second, almost identical, VECSEL system resulting in linewidths of 200 Hz and 160 Hz FWHM, respectively. To the best of our knowledge, this is the first demonstration of a VECSEL compatible with the narrowest of lines (few hundred Hz) used for cooling and trapping atoms and ions.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
    [Crossref]
  2. B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J Geod 86(12), 1083–1095 (2012).
    [Crossref]
  3. S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
    [Crossref]
  4. E. Nieves, N. Xi, X. Li, C. Martinez, and G. Zhang, “Laser beam multi-position alignment approach for an automated industrial robot calibration,” in The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, 2014), 359–364.
  5. X. D. Gao, D. Y. You, and S. Katayama, “The high frequency characteristics of laser reflection and visible light during solid state disk laser welding,” Laser Phys. Lett. 12(2015).
  6. S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
    [Crossref]
  7. L. Fallani and A. Kastberg, “Cold atoms: A field enabled by light,” Europhys. Lett. 110 (2015).
  8. Y. Shevy and H. Deng, “Frequency-stable and ultranarrow-linewidth semiconductor laser locked directly to an atomic-cesium transition,” Opt. Lett. 23(6), 472–474 (1998).
    [Crossref]
  9. H. Stoehr, E. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31(6), 736–738 (2006).
    [Crossref]
  10. F. Schmid, J. Weitenberg, T. W. Hansch, T. Udem, and A. Ozawa, “Simple phase noise measurement scheme for cavity-stabilized laser systems,” Opt. Lett. 44(11), 2709–2712 (2019).
    [Crossref]
  11. A. C. Wilson, J. C. Sharpe, C. R. McKenzie, P. J. Manson, and D. M. Warrington, “Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier,” Appl. Opt. 37(21), 4871–4875 (1998).
    [Crossref]
  12. K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
    [Crossref]
  13. I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” 8th Symposium on Frequency Standards and Metrology2015 723 (2016).
  14. S. A. Webster, M. Oxborrow, and P. Gill, “Subhertz-linewidth Nd : YAG laser,” Opt. Lett. 29(13), 1497–1499 (2004).
    [Crossref]
  15. S. S. Sane, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915–8919 (2012).
    [Crossref]
  16. M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
    [Crossref]
  17. M. A. Holm, D. B. A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photonics Technol. Lett. 11(12), 1551–1553 (1999).
    [Crossref]
  18. A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).
  19. M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
    [Crossref]
  20. R. L. R. Celis and M. Martinelli, “Reducing the phase noise in diode lasers,” Opt. Lett. 44(13), 3394–3397 (2019).
    [Crossref]
  21. S. Field, M. Finander, G. Niven, and W. Mackenzie, “Latest achievements of NECSEL visible extended cavity surface emitting lasers,” SPIE LASE - VECSELs V 9349 (2015).
  22. A. L. Schawlow and C. H. Townes, “Infrared and Optical Masers,” Phys. Rev. 112(6), 1940–1949 (1958).
    [Crossref]
  23. C. H. Henry, “Theory of the Linewidth of Semiconductor-Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  24. S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48(36), 6961–6966 (2009).
    [Crossref]
  25. B. Cocquelin, G. Lucas-Leclin, P. Georges, I. Sagnes, and A. Garnache, “Design of a low-threshold VECSEL emitting at 852 nm for Cesium atomic clocks,” Opt. Quantum Electron. 40(2-4), 167–173 (2008).
    [Crossref]
  26. J. L. Hall, T. Baer, L. Hollberg, and H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V30 (Springer Berlin Heidelberg, 1981), 15–24.
    [Crossref]
  27. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]
  28. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801–4807 (2010).
    [Crossref]
  29. K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48(2), 618–621 (1999).
    [Crossref]
  30. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82(6), 1116–1119 (1999).
    [Crossref]
  31. T. Ido, T. H. Loftus, M. M. Boyd, A. D. Ludlow, K. W. Holman, and J. Ye, “Precision spectroscopy and density-dependent frequency shifts in ultracold Sr,” Phys. Rev. Lett. 94 (2005).
  32. J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13(1), 77–81 (2005).
    [Crossref]
  33. D. Paboeuf and J. E. Hastie, “Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications,” Appl. Opt. 55(19), 4980–4984 (2016).
    [Crossref]
  34. E. Ponslet, “Piezo-Electric Actuator Initial Performance Tests,” LIGO project report HYTEC-TN-LIGO 30, 15p (1998).
  35. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  36. M. Tröbs and G. Heinzel, “Improved spectrum estimation from digitized time series on a logarithmic frequency axis,” Measurement 39(2), 120–129 (2006).
    [Crossref]
  37. S. V. Kashanian, A. Eloy, W. Guerin, M. Lintz, M. Fouche, and R. Kaiser, “Noise spectroscopy with large clouds of cold atoms,” Phys. Rev. A, 94 (2016).
  38. N. Jornod, K. Gurel, V. J. Wittwer, P. Brochard, S. Hakobyan, S. Schilt, D. Waldburger, U. Keller, and T. Sudmeyer, “Carrier-envelope offset frequency stabilization of a gigahertz semiconductor disk laser,” Optica 4(12), 1482–1487 (2017).
    [Crossref]
  39. M. Myara, M. Sellahi, A. Laurain, A. Michon, I. Sagnes, and A. Garnache, “Noise properties of NIR and MIR VECSELs,” SPIE LASE - VECSEL III 8606 (2013).
  40. G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
    [Crossref]
  41. P. H. Moriya and J. E. Hastie, “Sub-kHz linewidth VECSEL for cold atom experiments,” in Laser Congress 2018 (ASSL), OSA Technical Digest (Optical Society of America, 2018), ATh5A.4.
  42. P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-Noise Dual-Frequency Laser for Compact Cs Atomic Clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
    [Crossref]
  43. S. C. Burd, D. T. C. Allcock, T. Leinonen, J. P. Penttinen, D. H. Slichter, R. Srinivas, A. C. Wilson, R. Jrdens, M. Guina, D. Leibfried, and D. J. Wineland, “VECSEL systems for the generation and manipulation of trapped magnesium ions,” Optica 3(12), 1294–1299 (2016).
    [Crossref]
  44. E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83(4), 043101 (2012).
    [Crossref]
  45. R. Schwarz, S. Dorscher, A. Al-Masoudi, S. Vogt, Y. Li, and C. Lisdat, “A compact and robust cooling laser system for an optical strontium lattice clock,” Rev. Sci. Instrum. 90(2), 023109 (2019).
    [Crossref]
  46. D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F. L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
    [Crossref]
  47. O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
    [Crossref]
  48. A. Smith, J. E. Hastie, H. D. Foreman, T. Leinonen, M. Guina, and M. D. Dawson, “GaN diode-pumping of red semiconductor disk laser,” Electron. Lett. 44(20), 1195–1196 (2008).
    [Crossref]
  49. R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),
  50. A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 mu m,” IEEE Photonics Technol. Lett. 17(10), 2020–2022 (2005).
    [Crossref]
  51. N. Poli, G. Ferrari, M. Prevedelli, F. Sorrentino, R. E. Drullinger, and G. M. Tino, “Laser sources for precision spectroscopy on atomic strontium,” Spectrochim. Acta, Part A 63(5), 981–986 (2006).
    [Crossref]
  52. P. H. Moriya, “Data for: “Sub-kHz-linewidth VECSELs for cold atom experiments”,” University of Strathclyde (2020). DOI: https://10.15129/6a8ad2c5-9bec-41e7-bec4-38976ad1c590 .

2019 (4)

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

F. Schmid, J. Weitenberg, T. W. Hansch, T. Udem, and A. Ozawa, “Simple phase noise measurement scheme for cavity-stabilized laser systems,” Opt. Lett. 44(11), 2709–2712 (2019).
[Crossref]

R. L. R. Celis and M. Martinelli, “Reducing the phase noise in diode lasers,” Opt. Lett. 44(13), 3394–3397 (2019).
[Crossref]

R. Schwarz, S. Dorscher, A. Al-Masoudi, S. Vogt, Y. Li, and C. Lisdat, “A compact and robust cooling laser system for an optical strontium lattice clock,” Rev. Sci. Instrum. 90(2), 023109 (2019).
[Crossref]

2017 (4)

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

N. Jornod, K. Gurel, V. J. Wittwer, P. Brochard, S. Hakobyan, S. Schilt, D. Waldburger, U. Keller, and T. Sudmeyer, “Carrier-envelope offset frequency stabilization of a gigahertz semiconductor disk laser,” Optica 4(12), 1482–1487 (2017).
[Crossref]

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
[Crossref]

2016 (2)

2015 (1)

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

2014 (1)

2012 (4)

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J Geod 86(12), 1083–1095 (2012).
[Crossref]

S. S. Sane, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915–8919 (2012).
[Crossref]

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83(4), 043101 (2012).
[Crossref]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F. L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

B. Cocquelin, G. Lucas-Leclin, P. Georges, I. Sagnes, and A. Garnache, “Design of a low-threshold VECSEL emitting at 852 nm for Cesium atomic clocks,” Opt. Quantum Electron. 40(2-4), 167–173 (2008).
[Crossref]

A. Smith, J. E. Hastie, H. D. Foreman, T. Leinonen, M. Guina, and M. D. Dawson, “GaN diode-pumping of red semiconductor disk laser,” Electron. Lett. 44(20), 1195–1196 (2008).
[Crossref]

2006 (3)

M. Tröbs and G. Heinzel, “Improved spectrum estimation from digitized time series on a logarithmic frequency axis,” Measurement 39(2), 120–129 (2006).
[Crossref]

H. Stoehr, E. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31(6), 736–738 (2006).
[Crossref]

N. Poli, G. Ferrari, M. Prevedelli, F. Sorrentino, R. E. Drullinger, and G. M. Tino, “Laser sources for precision spectroscopy on atomic strontium,” Spectrochim. Acta, Part A 63(5), 981–986 (2006).
[Crossref]

2005 (4)

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13(1), 77–81 (2005).
[Crossref]

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 mu m,” IEEE Photonics Technol. Lett. 17(10), 2020–2022 (2005).
[Crossref]

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

2004 (1)

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

1999 (3)

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48(2), 618–621 (1999).
[Crossref]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82(6), 1116–1119 (1999).
[Crossref]

M. A. Holm, D. B. A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photonics Technol. Lett. 11(12), 1551–1553 (1999).
[Crossref]

1998 (3)

1989 (1)

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

1982 (1)

C. H. Henry, “Theory of the Linewidth of Semiconductor-Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and Optical Masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Akamatsu, D.

Alighanbari, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Allcock, D. T. C.

Al-Masoudi, A.

R. Schwarz, S. Dorscher, A. Al-Masoudi, S. Vogt, Y. Li, and C. Lisdat, “A compact and robust cooling laser system for an optical strontium lattice clock,” Rev. Sci. Instrum. 90(2), 023109 (2019).
[Crossref]

Altin, P. A.

Baer, T.

J. L. Hall, T. Baer, L. Hollberg, and H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V30 (Springer Berlin Heidelberg, 1981), 15–24.
[Crossref]

Baili, G.

Barwood, G. P.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Beaudoin, G.

P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-Noise Dual-Frequency Laser for Compact Cs Atomic Clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
[Crossref]

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

Behunin, R.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Belotelov, G. S.

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

Bennetts, S.

Berdasov, O. I.

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

Besnard, P.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Bize, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Blin, S.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Blumenthal, D. J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Bongs, K.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Bose, D.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Bowden, W.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” 8th Symposium on Frequency Standards and Metrology2015 723 (2016).

Boyd, M. M.

T. Ido, T. H. Loftus, M. M. Boyd, A. D. Ludlow, K. W. Holman, and J. Ye, “Precision spectroscopy and density-dependent frequency shifts in ultracold Sr,” Phys. Rev. Lett. 94 (2005).

Brennan, T. M.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Bridge, E. M.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” 8th Symposium on Frequency Standards and Metrology2015 723 (2016).

Brochard, P.

Brodnik, G. M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Brown-Heft, T. L.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83(4), 043101 (2012).
[Crossref]

Brueck, S. R. J.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Burd, S. C.

Calvez, S.

Camargo, F.

Casula, R.

R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),

Celis, R. L. R.

Cermak, P.

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

Cerutti, L.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 mu m,” IEEE Photonics Technol. Lett. 17(10), 2020–2022 (2005).
[Crossref]

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

Chappell, G. A.

R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),

Chauhan, N.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Cip, O.

S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
[Crossref]

Cizek, M.

S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
[Crossref]

Close, J. D.

Cocquelin, B.

B. Cocquelin, G. Lucas-Leclin, P. Georges, I. Sagnes, and A. Garnache, “Design of a low-threshold VECSEL emitting at 852 nm for Cesium atomic clocks,” Opt. Quantum Electron. 40(2-4), 167–173 (2008).
[Crossref]

Cook, E. C.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83(4), 043101 (2012).
[Crossref]

Curtis, E. A.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” 8th Symposium on Frequency Standards and Metrology2015 723 (2016).

Danet, J. M.

Danzmann, K.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J Geod 86(12), 1083–1095 (2012).
[Crossref]

Dawson, M. D.

A. Smith, J. E. Hastie, H. D. Foreman, T. Leinonen, M. Guina, and M. D. Dawson, “GaN diode-pumping of red semiconductor disk laser,” Electron. Lett. 44(20), 1195–1196 (2008).
[Crossref]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13(1), 77–81 (2005).
[Crossref]

M. A. Holm, D. B. A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photonics Technol. Lett. 11(12), 1551–1553 (1999).
[Crossref]

Debs, J. E.

Deng, H.

Di Domenico, G.

Dinneen, T. P.

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48(2), 618–621 (1999).
[Crossref]

Dolfi, D.

Donnellan, S.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” 8th Symposium on Frequency Standards and Metrology2015 723 (2016).

Dorscher, S.

R. Schwarz, S. Dorscher, A. Al-Masoudi, S. Vogt, Y. Li, and C. Lisdat, “A compact and robust cooling laser system for an optical strontium lattice clock,” Rev. Sci. Instrum. 90(2), 023109 (2019).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Drullinger, R. E.

N. Poli, G. Ferrari, M. Prevedelli, F. Sorrentino, R. E. Drullinger, and G. M. Tino, “Laser sources for precision spectroscopy on atomic strontium,” Spectrochim. Acta, Part A 63(5), 981–986 (2006).
[Crossref]

Dumont, P.

Eloy, A.

S. V. Kashanian, A. Eloy, W. Guerin, M. Lintz, M. Fouche, and R. Kaiser, “Noise spectroscopy with large clouds of cold atoms,” Phys. Rev. A, 94 (2016).

Fallani, L.

L. Fallani and A. Kastberg, “Cold atoms: A field enabled by light,” Europhys. Lett. 110 (2015).

Ferguson, D. B. A. I.

M. A. Holm, D. B. A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photonics Technol. Lett. 11(12), 1551–1553 (1999).
[Crossref]

Ferrari, G.

N. Poli, G. Ferrari, M. Prevedelli, F. Sorrentino, R. E. Drullinger, and G. M. Tino, “Laser sources for precision spectroscopy on atomic strontium,” Spectrochim. Acta, Part A 63(5), 981–986 (2006).
[Crossref]

Field, S.

S. Field, M. Finander, G. Niven, and W. Mackenzie, “Latest achievements of NECSEL visible extended cavity surface emitting lasers,” SPIE LASE - VECSELs V 9349 (2015).

Finander, M.

S. Field, M. Finander, G. Niven, and W. Mackenzie, “Latest achievements of NECSEL visible extended cavity surface emitting lasers,” SPIE LASE - VECSELs V 9349 (2015).

Folkner, W. M.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J Geod 86(12), 1083–1095 (2012).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Foreman, H. D.

A. Smith, J. E. Hastie, H. D. Foreman, T. Leinonen, M. Guina, and M. D. Dawson, “GaN diode-pumping of red semiconductor disk laser,” Electron. Lett. 44(20), 1195–1196 (2008).
[Crossref]

Fouche, M.

S. V. Kashanian, A. Eloy, W. Guerin, M. Lintz, M. Fouche, and R. Kaiser, “Noise spectroscopy with large clouds of cold atoms,” Phys. Rev. A, 94 (2016).

Gallagher, A.

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48(2), 618–621 (1999).
[Crossref]

Gao, X. D.

X. D. Gao, D. Y. You, and S. Katayama, “The high frequency characteristics of laser reflection and visible light during solid state disk laser welding,” Laser Phys. Lett. 12(2015).

Garman, J. C.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83(4), 043101 (2012).
[Crossref]

Garnache, A.

B. Cocquelin, G. Lucas-Leclin, P. Georges, I. Sagnes, and A. Garnache, “Design of a low-threshold VECSEL emitting at 852 nm for Cesium atomic clocks,” Opt. Quantum Electron. 40(2-4), 167–173 (2008).
[Crossref]

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 mu m,” IEEE Photonics Technol. Lett. 17(10), 2020–2022 (2005).
[Crossref]

M. Myara, M. Sellahi, A. Laurain, A. Michon, I. Sagnes, and A. Garnache, “Noise properties of NIR and MIR VECSELs,” SPIE LASE - VECSEL III 8606 (2013).

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

Genty, F.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 mu m,” IEEE Photonics Technol. Lett. 17(10), 2020–2022 (2005).
[Crossref]

Georges, P.

Gill, P.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

S. A. Webster, M. Oxborrow, and P. Gill, “Subhertz-linewidth Nd : YAG laser,” Opt. Lett. 29(13), 1497–1499 (2004).
[Crossref]

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” 8th Symposium on Frequency Standards and Metrology2015 723 (2016).

Gozhyk, I.

Gribov, A. Y.

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

Guerandel, S.

Guerin, W.

S. V. Kashanian, A. Eloy, W. Guerin, M. Lintz, M. Fouche, and R. Kaiser, “Noise spectroscopy with large clouds of cold atoms,” Phys. Rev. A, 94 (2016).

Guina, M.

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

S. C. Burd, D. T. C. Allcock, T. Leinonen, J. P. Penttinen, D. H. Slichter, R. Srinivas, A. C. Wilson, R. Jrdens, M. Guina, D. Leibfried, and D. J. Wineland, “VECSEL systems for the generation and manipulation of trapped magnesium ions,” Optica 3(12), 1294–1299 (2016).
[Crossref]

A. Smith, J. E. Hastie, H. D. Foreman, T. Leinonen, M. Guina, and M. D. Dawson, “GaN diode-pumping of red semiconductor disk laser,” Electron. Lett. 44(20), 1195–1196 (2008).
[Crossref]

R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),

Gundavarapu, S.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Gurel, K.

Hakobyan, S.

Hall, J. L.

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48(2), 618–621 (1999).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

J. L. Hall, T. Baer, L. Hollberg, and H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V30 (Springer Berlin Heidelberg, 1981), 15–24.
[Crossref]

Hammons, B. E.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Hansch, T. W.

Harkonen, A.

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

Hastie, J. E.

D. Paboeuf and J. E. Hastie, “Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications,” Appl. Opt. 55(19), 4980–4984 (2016).
[Crossref]

A. Smith, J. E. Hastie, H. D. Foreman, T. Leinonen, M. Guina, and M. D. Dawson, “GaN diode-pumping of red semiconductor disk laser,” Electron. Lett. 44(20), 1195–1196 (2008).
[Crossref]

J. E. Hastie, S. Calvez, M. D. Dawson, T. Leinonen, A. Laakso, J. Lyytikainen, and M. Pessa, “High power CW red VECSEL with linearly polarized TEM00 output beam,” Opt. Express 13(1), 77–81 (2005).
[Crossref]

P. H. Moriya and J. E. Hastie, “Sub-kHz linewidth VECSEL for cold atom experiments,” in Laser Congress 2018 (ASSL), OSA Technical Digest (Optical Society of America, 2018), ATh5A.4.

R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),

He, W.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Heinzel, G.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J Geod 86(12), 1083–1095 (2012).
[Crossref]

M. Tröbs and G. Heinzel, “Improved spectrum estimation from digitized time series on a logarithmic frequency axis,” Measurement 39(2), 120–129 (2006).
[Crossref]

Helmcke, J.

Henry, C. H.

C. H. Henry, “Theory of the Linewidth of Semiconductor-Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Higashi, R.

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref]

Hill, I. R.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” 8th Symposium on Frequency Standards and Metrology2015 723 (2016).

Hobson, R.

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” 8th Symposium on Frequency Standards and Metrology2015 723 (2016).

Hollberg, L.

J. L. Hall, T. Baer, L. Hollberg, and H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V30 (Springer Berlin Heidelberg, 1981), 15–24.
[Crossref]

Holleville, D.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-Noise Dual-Frequency Laser for Compact Cs Atomic Clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
[Crossref]

Holm, M. A.

M. A. Holm, D. B. A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photonics Technol. Lett. 11(12), 1551–1553 (1999).
[Crossref]

Holman, K. W.

T. Ido, T. H. Loftus, M. M. Boyd, A. D. Ludlow, K. W. Holman, and J. Ye, “Precision spectroscopy and density-dependent frequency shifts in ultracold Sr,” Phys. Rev. Lett. 94 (2005).

Hong, F. L.

Hosaka, K.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Hucl, V.

S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
[Crossref]

Huffman, T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Hughes, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Ido, T.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82(6), 1116–1119 (1999).
[Crossref]

T. Ido, T. H. Loftus, M. M. Boyd, A. D. Ludlow, K. W. Holman, and J. Ye, “Precision spectroscopy and density-dependent frequency shifts in ultracold Sr,” Phys. Rev. Lett. 94 (2005).

Inaba, H.

Isoya, Y.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82(6), 1116–1119 (1999).
[Crossref]

Jornod, N.

Jrdens, R.

Kaenders, W.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Kahle, H.

R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),

Kaiser, R.

S. V. Kashanian, A. Eloy, W. Guerin, M. Lintz, M. Fouche, and R. Kaiser, “Noise spectroscopy with large clouds of cold atoms,” Phys. Rev. A, 94 (2016).

Kashanian, S. V.

S. V. Kashanian, A. Eloy, W. Guerin, M. Lintz, M. Fouche, and R. Kaiser, “Noise spectroscopy with large clouds of cold atoms,” Phys. Rev. A, 94 (2016).

Kastberg, A.

L. Fallani and A. Kastberg, “Cold atoms: A field enabled by light,” Europhys. Lett. 110 (2015).

Katayama, S.

X. D. Gao, D. Y. You, and S. Katayama, “The high frequency characteristics of laser reflection and visible light during solid state disk laser welding,” Laser Phys. Lett. 12(2015).

Katori, H.

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82(6), 1116–1119 (1999).
[Crossref]

Keller, U.

Khabarova, K. Y.

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

Klipstein, W. M.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J Geod 86(12), 1083–1095 (2012).
[Crossref]

Kock, O.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Kolachevsky, N. N.

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Kuhn, C. C. N.

Kuwata-Gonokami, M.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82(6), 1116–1119 (1999).
[Crossref]

Laakso, A.

Laurain, A.

M. Myara, M. Sellahi, A. Laurain, A. Michon, I. Sagnes, and A. Garnache, “Noise properties of NIR and MIR VECSELs,” SPIE LASE - VECSEL III 8606 (2013).

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

Lazar, J.

S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
[Crossref]

Le Targat, R.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Leibfried, D.

Leinonen, T.

Li, X.

E. Nieves, N. Xi, X. Li, C. Martinez, and G. Zhang, “Laser beam multi-position alignment approach for an automated industrial robot calibration,” in The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, 2014), 359–364.

Li, Y.

R. Schwarz, S. Dorscher, A. Al-Masoudi, S. Vogt, Y. Li, and C. Lisdat, “A compact and robust cooling laser system for an optical strontium lattice clock,” Rev. Sci. Instrum. 90(2), 023109 (2019).
[Crossref]

Lintz, M.

S. V. Kashanian, A. Eloy, W. Guerin, M. Lintz, M. Fouche, and R. Kaiser, “Noise spectroscopy with large clouds of cold atoms,” Phys. Rev. A, 94 (2016).

Lisdat, C.

R. Schwarz, S. Dorscher, A. Al-Masoudi, S. Vogt, Y. Li, and C. Lisdat, “A compact and robust cooling laser system for an optical strontium lattice clock,” Rev. Sci. Instrum. 90(2), 023109 (2019).
[Crossref]

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Lodewyck, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Loftus, T. H.

T. Ido, T. H. Loftus, M. M. Boyd, A. D. Ludlow, K. W. Holman, and J. Ye, “Precision spectroscopy and density-dependent frequency shifts in ultracold Sr,” Phys. Rev. Lett. 94 (2005).

Lucas-Leclin, G.

Ludlow, A. D.

T. Ido, T. H. Loftus, M. M. Boyd, A. D. Ludlow, K. W. Holman, and J. Ye, “Precision spectroscopy and density-dependent frequency shifts in ultracold Sr,” Phys. Rev. Lett. 94 (2005).

Lyytikainen, J.

Mackenzie, W.

S. Field, M. Finander, G. Niven, and W. Mackenzie, “Latest achievements of NECSEL visible extended cavity surface emitting lasers,” SPIE LASE - VECSELs V 9349 (2015).

Manson, P. J.

Martin, P. J.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83(4), 043101 (2012).
[Crossref]

Martinelli, M.

Martinez, C.

E. Nieves, N. Xi, X. Li, C. Martinez, and G. Zhang, “Laser beam multi-position alignment approach for an automated industrial robot calibration,” in The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, 2014), 359–364.

McDonald, G. D.

Mcinerney, J. G.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

McKenzie, C. R.

Mensing, E.

Michon, A.

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

M. Myara, M. Sellahi, A. Laurain, A. Michon, I. Sagnes, and A. Garnache, “Noise properties of NIR and MIR VECSELs,” SPIE LASE - VECSEL III 8606 (2013).

Moriya, P. H.

P. H. Moriya and J. E. Hastie, “Sub-kHz linewidth VECSEL for cold atom experiments,” in Laser Congress 2018 (ASSL), OSA Technical Digest (Optical Society of America, 2018), ATh5A.4.

R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),

P. H. Moriya, “Data for: “Sub-kHz-linewidth VECSELs for cold atom experiments”,” University of Strathclyde (2020). DOI: https://10.15129/6a8ad2c5-9bec-41e7-bec4-38976ad1c590 .

Morvan, L.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Myara, M.

M. Myara, M. Sellahi, A. Laurain, A. Michon, I. Sagnes, and A. Garnache, “Noise properties of NIR and MIR VECSELs,” SPIE LASE - VECSEL III 8606 (2013).

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

Nakajima, Y.

Nelson, K. D.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Nieves, E.

E. Nieves, N. Xi, X. Li, C. Martinez, and G. Zhang, “Laser beam multi-position alignment approach for an automated industrial robot calibration,” in The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, 2014), 359–364.

Niven, G.

S. Field, M. Finander, G. Niven, and W. Mackenzie, “Latest achievements of NECSEL visible extended cavity surface emitting lasers,” SPIE LASE - VECSELs V 9349 (2015).

Nohava, J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Onae, A.

Origlia, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Osinski, M.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Ouvrard, A.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 mu m,” IEEE Photonics Technol. Lett. 17(10), 2020–2022 (2005).
[Crossref]

Ovchinnikov, Y. B.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Oxborrow, M.

Ozawa, A.

Paboeuf, D.

Pal’chikov, V. G.

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

Parrotta, D. C.

R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),

Penttinen, J. P.

Perez, J. P.

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

Pessa, M.

Pham, T. M.

S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
[Crossref]

Pillet, G.

Pinho, C.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Poli, N.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

N. Poli, G. Ferrari, M. Prevedelli, F. Sorrentino, R. E. Drullinger, and G. M. Tino, “Laser sources for precision spectroscopy on atomic strontium,” Spectrochim. Acta, Part A 63(5), 981–986 (2006).
[Crossref]

Ponslet, E.

E. Ponslet, “Piezo-Electric Actuator Initial Performance Tests,” LIGO project report HYTEC-TN-LIGO 30, 15p (1998).

Prevedelli, M.

N. Poli, G. Ferrari, M. Prevedelli, F. Sorrentino, R. E. Drullinger, and G. M. Tino, “Laser sources for precision spectroscopy on atomic strontium,” Spectrochim. Acta, Part A 63(5), 981–986 (2006).
[Crossref]

Puckett, M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Qiu, T. Q.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Raja, M. Y. A.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Rakich, P. T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Ranta, S.

R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),

Rantamaki, A.

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

Rerucha, S.

S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
[Crossref]

Robins, N. P.

Robinson, H. G.

J. L. Hall, T. Baer, L. Hollberg, and H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V30 (Springer Berlin Heidelberg, 1981), 15–24.
[Crossref]

Romanini, D.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 mu m,” IEEE Photonics Technol. Lett. 17(10), 2020–2022 (2005).
[Crossref]

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

Sagnes, I.

P. Dumont, F. Camargo, J. M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-Noise Dual-Frequency Laser for Compact Cs Atomic Clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
[Crossref]

B. Cocquelin, G. Lucas-Leclin, P. Georges, I. Sagnes, and A. Garnache, “Design of a low-threshold VECSEL emitting at 852 nm for Cesium atomic clocks,” Opt. Quantum Electron. 40(2-4), 167–173 (2008).
[Crossref]

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

M. Myara, M. Sellahi, A. Laurain, A. Michon, I. Sagnes, and A. Garnache, “Noise properties of NIR and MIR VECSELs,” SPIE LASE - VECSEL III 8606 (2013).

Saliba, S. D.

Salit, M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Sane, S. S.

Schaus, C. F.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and Optical Masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Schiller, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Schilt, S.

Schmid, F.

Scholten, R. E.

Schwarz, R.

R. Schwarz, S. Dorscher, A. Al-Masoudi, S. Vogt, Y. Li, and C. Lisdat, “A compact and robust cooling laser system for an optical strontium lattice clock,” Rev. Sci. Instrum. 90(2), 023109 (2019).
[Crossref]

Sellahi, M.

M. Myara, M. Sellahi, A. Laurain, A. Michon, I. Sagnes, and A. Garnache, “Noise properties of NIR and MIR VECSELs,” SPIE LASE - VECSEL III 8606 (2013).

Shaddock, D. A.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J Geod 86(12), 1083–1095 (2012).
[Crossref]

Sharpe, J. C.

Sheard, B. S.

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J Geod 86(12), 1083–1095 (2012).
[Crossref]

Shevy, Y.

Singh, Y.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Slichter, D. H.

Slyusarev, S. N.

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

Smith, A.

A. Smith, J. E. Hastie, H. D. Foreman, T. Leinonen, M. Guina, and M. D. Dawson, “GaN diode-pumping of red semiconductor disk laser,” Electron. Lett. 44(20), 1195–1196 (2008).
[Crossref]

Smith, L.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Sorrentino, F.

N. Poli, G. Ferrari, M. Prevedelli, F. Sorrentino, R. E. Drullinger, and G. M. Tino, “Laser sources for precision spectroscopy on atomic strontium,” Spectrochim. Acta, Part A 63(5), 981–986 (2006).
[Crossref]

Srinivas, R.

Steck, D. A.

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83(4), 043101 (2012).
[Crossref]

Stéphan, G. M.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Sterr, O.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Sterr, U.

Stoehr, H.

Strelkin, S. A.

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

Stuhler, J.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Sudmeyer, T.

Swierad, D.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Takamoto, M.

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref]

Tam, T. T.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Team, S.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Têtu, M.

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Thomann, P.

Tino, G. M.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

N. Poli, G. Ferrari, M. Prevedelli, F. Sorrentino, R. E. Drullinger, and G. M. Tino, “Laser sources for precision spectroscopy on atomic strontium,” Spectrochim. Acta, Part A 63(5), 981–986 (2006).
[Crossref]

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and Optical Masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Tröbs, M.

M. Tröbs and G. Heinzel, “Improved spectrum estimation from digitized time series on a logarithmic frequency axis,” Measurement 39(2), 120–129 (2006).
[Crossref]

Udem, T.

Venon, B.

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Vogel, K. R.

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48(2), 618–621 (1999).
[Crossref]

Vogt, S.

R. Schwarz, S. Dorscher, A. Al-Masoudi, S. Vogt, Y. Li, and C. Lisdat, “A compact and robust cooling laser system for an optical strontium lattice clock,” Rev. Sci. Instrum. 90(2), 023109 (2019).
[Crossref]

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Waldburger, D.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Warrington, D. M.

Webster, S. A.

Weitenberg, J.

Wilson, A. C.

Wineland, D. J.

Wittwer, V. J.

Wu, J. F.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Xi, N.

E. Nieves, N. Xi, X. Li, C. Martinez, and G. Zhang, “Laser beam multi-position alignment approach for an automated industrial robot calibration,” in The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, 2014), 359–364.

Yacoot, A.

S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
[Crossref]

Yasuda, M.

Ye, J.

T. Ido, T. H. Loftus, M. M. Boyd, A. D. Ludlow, K. W. Holman, and J. Ye, “Precision spectroscopy and density-dependent frequency shifts in ultracold Sr,” Phys. Rev. Lett. 94 (2005).

You, D. Y.

X. D. Gao, D. Y. You, and S. Katayama, “The high frequency characteristics of laser reflection and visible light during solid state disk laser welding,” Laser Phys. Lett. 12(2015).

Zhang, G.

E. Nieves, N. Xi, X. Li, C. Martinez, and G. Zhang, “Laser beam multi-position alignment approach for an automated industrial robot calibration,” in The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, 2014), 359–364.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical-Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

C. R. Phys. (1)

K. Bongs, Y. Singh, L. Smith, W. He, O. Kock, D. Swierad, J. Hughes, S. Schiller, S. Alighanbari, S. Origlia, S. Vogt, O. Sterr, C. Lisdat, R. Le Targat, J. Lodewyck, D. Holleville, B. Venon, S. Bize, G. P. Barwood, P. Gill, I. R. Hill, Y. B. Ovchinnikov, N. Poli, G. M. Tino, J. Stuhler, W. Kaenders, and S. Team, “Development of a strontium optical lattice clock for the SOC mission on the ISS,” C. R. Phys. 16(5), 553–564 (2015).
[Crossref]

Electron. Lett. (1)

A. Smith, J. E. Hastie, H. D. Foreman, T. Leinonen, M. Guina, and M. D. Dawson, “GaN diode-pumping of red semiconductor disk laser,” Electron. Lett. 44(20), 1195–1196 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. Mcinerney, T. M. Brennan, and B. E. Hammons, “Resonant Periodic Gain Surface-Emitting Semiconductor-Lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

C. H. Henry, “Theory of the Linewidth of Semiconductor-Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. A. Holm, D. B. A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photonics Technol. Lett. 11(12), 1551–1553 (1999).
[Crossref]

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 mu m,” IEEE Photonics Technol. Lett. 17(10), 2020–2022 (2005).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

K. R. Vogel, T. P. Dinneen, A. Gallagher, and J. L. Hall, “Narrow-line Doppler cooling of strontium to the recoil limit,” IEEE Trans. Instrum. Meas. 48(2), 618–621 (1999).
[Crossref]

J Geod (1)

B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, and W. M. Folkner, “Intersatellite laser ranging instrument for the GRACE follow-on mission,” J Geod 86(12), 1083–1095 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D: Appl. Phys. (1)

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs: review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

LIGO project report HYTEC-TN-LIGO (1)

E. Ponslet, “Piezo-Electric Actuator Initial Performance Tests,” LIGO project report HYTEC-TN-LIGO 30, 15p (1998).

Meas. Sci. Technol. (1)

S. Rerucha, A. Yacoot, T. M. Pham, M. Cizek, V. Hucl, J. Lazar, and O. Cip, “Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode,” Meas. Sci. Technol. 28(4), 045204 (2017).
[Crossref]

Measurement (1)

M. Tröbs and G. Heinzel, “Improved spectrum estimation from digitized time series on a logarithmic frequency axis,” Measurement 39(2), 120–129 (2006).
[Crossref]

Nat. Photonics (1)

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. F. Wu, T. Q. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Nature (1)

M. Takamoto, F. L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

B. Cocquelin, G. Lucas-Leclin, P. Georges, I. Sagnes, and A. Garnache, “Design of a low-threshold VECSEL emitting at 852 nm for Cesium atomic clocks,” Opt. Quantum Electron. 40(2-4), 167–173 (2008).
[Crossref]

Optica (2)

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and Optical Masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Phys. Rev. A (1)

G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu, “Laser line shape and spectral density of frequency noise,” Phys. Rev. A 71(4), 043809 (2005).
[Crossref]

Phys. Rev. Lett. (1)

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature,” Phys. Rev. Lett. 82(6), 1116–1119 (1999).
[Crossref]

Quantum Electron. (1)

O. I. Berdasov, A. Y. Gribov, G. S. Belotelov, V. G. Pal’chikov, S. A. Strelkin, K. Y. Khabarova, N. N. Kolachevsky, and S. N. Slyusarev, “Ultrastable laser system for spectroscopy of the S-1(0) - P-3(0) clock transition in Sr atoms,” Quantum Electron. 47(5), 400–405 (2017).
[Crossref]

Rev. Sci. Instrum. (2)

E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive-stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum. 83(4), 043101 (2012).
[Crossref]

R. Schwarz, S. Dorscher, A. Al-Masoudi, S. Vogt, Y. Li, and C. Lisdat, “A compact and robust cooling laser system for an optical strontium lattice clock,” Rev. Sci. Instrum. 90(2), 023109 (2019).
[Crossref]

Spectrochim. Acta, Part A (1)

N. Poli, G. Ferrari, M. Prevedelli, F. Sorrentino, R. E. Drullinger, and G. M. Tino, “Laser sources for precision spectroscopy on atomic strontium,” Spectrochim. Acta, Part A 63(5), 981–986 (2006).
[Crossref]

Other (13)

P. H. Moriya, “Data for: “Sub-kHz-linewidth VECSELs for cold atom experiments”,” University of Strathclyde (2020). DOI: https://10.15129/6a8ad2c5-9bec-41e7-bec4-38976ad1c590 .

R. Casula, P. H. Moriya, G. A. Chappell, D. C. Parrotta, S. Ranta, H. Kahle, M. Guina, and J. E. Hastie, “GaN-diode-pumped AlGaInP VECSEL for strontium optical clocks,” in SPIE LASE - VECSELs IX, 2019),

P. H. Moriya and J. E. Hastie, “Sub-kHz linewidth VECSEL for cold atom experiments,” in Laser Congress 2018 (ASSL), OSA Technical Digest (Optical Society of America, 2018), ATh5A.4.

T. Ido, T. H. Loftus, M. M. Boyd, A. D. Ludlow, K. W. Holman, and J. Ye, “Precision spectroscopy and density-dependent frequency shifts in ultracold Sr,” Phys. Rev. Lett. 94 (2005).

S. V. Kashanian, A. Eloy, W. Guerin, M. Lintz, M. Fouche, and R. Kaiser, “Noise spectroscopy with large clouds of cold atoms,” Phys. Rev. A, 94 (2016).

M. Myara, M. Sellahi, A. Laurain, A. Michon, I. Sagnes, and A. Garnache, “Noise properties of NIR and MIR VECSELs,” SPIE LASE - VECSEL III 8606 (2013).

J. L. Hall, T. Baer, L. Hollberg, and H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V30 (Springer Berlin Heidelberg, 1981), 15–24.
[Crossref]

S. Field, M. Finander, G. Niven, and W. Mackenzie, “Latest achievements of NECSEL visible extended cavity surface emitting lasers,” SPIE LASE - VECSELs V 9349 (2015).

A. Garnache, A. Laurain, M. Myara, J. P. Perez, L. Cerutti, A. Michon, G. Beaudoin, I. Sagnes, P. Cermak, and D. Romanini, “Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications,” SPIE LASE - VECSELs I 7919 (2011).

E. Nieves, N. Xi, X. Li, C. Martinez, and G. Zhang, “Laser beam multi-position alignment approach for an automated industrial robot calibration,” in The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, 2014), 359–364.

X. D. Gao, D. Y. You, and S. Katayama, “The high frequency characteristics of laser reflection and visible light during solid state disk laser welding,” Laser Phys. Lett. 12(2015).

L. Fallani and A. Kastberg, “Cold atoms: A field enabled by light,” Europhys. Lett. 110 (2015).

I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan, E. A. Curtis, and P. Gill, “A low maintenance Sr optical lattice clock,” 8th Symposium on Frequency Standards and Metrology2015 723 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the VECSEL gain structure, and (b) laser cavity and frequency stabilization system. Highlighted at the top left corner is the two-mirror laser cavity with a total length of 10 cm, formed by the semiconductor gain mirror and a 2% transmission, plano-concave output coupler (OC). The laser linewidth is reduced by implementing active frequency stabilization via the Pound-Drever-Hall (PDH) technique. A fraction of the output laser beam (∼10%) is picked off by a beam splitter, phase-modulated by an electro-optic modulator (EOM), and coupled to a moderately-high-finesse reference cavity (confocal Fabry-Perot, finesse = 1000 and free spectral range = 300 MHz). The reflected spectrum is captured by a fast-photodetector (FPD) to create an error signal which is sent back to the laser cavity via a piezo electric transducer (PZT) on which the OC is mounted. DBR: distributed Bragg reflector; RPG: resonant periodic gain; QW: quantum wells; BRF: birefringent filter; HWP: half-wave plate; QWP: quarter-wave plate; OI: optical isolator; PhS: phase shifter; RFO: radio frequency oscillator; LPF: low-pass filter; HVA: high-voltage amplifier.
Fig. 2.
Fig. 2. (a) VECSEL system power transfer measurements with (single frequency, red circles) and without (green squares) an intracavity birefringent filter (BRF). Inset: VECSEL beam profile for single frequency operation at 170 mW output power (2.3 W pump), measured 10 cm after the output coupler. (b) Output wavelength tunability curve for 2.3 W pump power, achieved by rotating the BRF in its axis. The emission can be tuned between 686 and 695 nm. Green dotted line (vertical): wavelength of the narrow second cooling transition of 88Sr (1S0 - 3P1).
Fig. 3.
Fig. 3. Calculated power spectral density (PSD) from the residual error signal recorded over 2s. Noise reduction of >50 dB is observed when active frequency stabilization is switched on.
Fig. 4.
Fig. 4. Linewidth estimate for the locked VECSEL system. (a) Frequency noise power spectral density (PSD) calculated for an acquisition time of 100 s. (b) Power spectral density of the optical field reconstructed via autocorrelation and the Wiener-Khintchine theorem from the spectrum for the locked laser presented in (a). A linewidth of (125 ± 2) Hz was estimated from the Gaussian fit. Inset: RMS noise for a range of acquisition times together with the linewidths estimated via Gaussian fits of the optical fields reconstructed via autocorrelation and the Wiener-Khintchine theorem.
Fig. 5.
Fig. 5. Relative intensity noise graphs for the pump laser; the free-running VECSEL; and for the locked VECSEL system, measured with a detector bandwidth of 150 kHz. The most dominant peaks (f < 1 kHz) are related to thermal and mechanical noise. Pump intensity noise (f > 20 kHz) is transmitted to the free-running VECSEL output.
Fig. 6.
Fig. 6. Optical beat note measurement performed against (a) another VECSEL system locked to a different mode of the same reference cavity via the side-of-fringe technique (sweep time: 10 s; 100 measurements averaged), and (b) a commercial system locked to an ultra-stable, ultra-high-finesse cavity via the Pound-Drever-Hall technique (sweep time: 0.5 s; 10 measurements averaged). Linewidths, obtained via Voigt fits to the data [40], are (160 ± 5) Hz and (200 ± 2) Hz, respectively, at -3 dB (FWHM). RBW: resolution bandwidth of the spectrum analyzer used in each case.