Abstract

Being able to image chemical bonds with high sensitivity and speed, stimulated Raman scattering (SRS) microscopy has made a major impact in biomedical optics. However, it is well known that the standard SRS microscopy suffers from various backgrounds, limiting the achievable contrast, quantification and sensitivity. While many frequency-modulation (FM) SRS schemes have been demonstrated to retrieve the sharp vibrational contrast, they often require customized laser systems and/or complicated laser pulse shaping or introduce additional noise, thereby hindering wide adoption. Herein we report a simple but robust strategy for FM-SRS microscopy based on a popular commercial laser system and regular optics. Harnessing self-phase modulation induced self-balanced spectral splitting of picosecond Stokes beam propagating in standard single-mode silica fibers, a high-performance FM-SRS system is constructed without introducing any additional signal noise. Our strategy enables adaptive spectral resolution for background-free SRS imaging of Raman modes with different linewidths. The generality of our method is demonstrated on a variety of Raman modes with effective suppressing of backgrounds including non-resonant cross phase modulation and electronic background from two-photon absorption or pump-probe process. As such, our method is promising to be adopted by the SRS microscopy community for background-free chemical imaging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy

Marco Andreana, Marie-Andrée Houle, Douglas J. Moffatt, Andrew Ridsdale, Edlef Buettner, François Légaré, and Albert Stolow
Opt. Express 23(22) 28119-28131 (2015)

Background-suppressed SRS fingerprint imaging with a fully integrated system using a single optical parametric oscillator

Alberto Lombardini, Pascal Berto, Julien Duboisset, Esben Ravn Andresen, Sandro Heuke, Edlef Büttner, Ingo Rimke, Sébastien Vergnole, Vasyl Shinkar, Philippe de Bettignies, and Hervé Rigneault
Opt. Express 28(10) 14490-14502 (2020)

Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper

Delong Zhang, Mikhail N. Slipchenko, Daniel E. Leaird, Andrew M. Weiner, and Ji-Xin Cheng
Opt. Express 21(11) 13864-13874 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
    [Crossref]
  2. R. C. Prince, R. R. Frontiera, and E. O. Potma, “Stimulated Raman scattering: from bulk to nano,” Chem. Rev. 117(7), 5070–5094 (2017).
    [Crossref]
  3. C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  4. L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang, and W. Min, “Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes,” Acc. Chem. Res. 49(8), 1494–1502 (2016).
    [Crossref]
  5. Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
    [Crossref]
  6. Y. Shen, F. Hu, and W. Min, “Raman Imaging of Small Biomolecules,” Annu. Rev. Biophys. 48(1), 347–369 (2019).
    [Crossref]
  7. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref]
  8. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [Crossref]
  9. P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
    [Crossref]
  10. D. Fu, W. Yang, and X. S. Xie, “Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering,” J. Am. Chem. Soc. 139(2), 583–586 (2017).
    [Crossref]
  11. L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
    [Crossref]
  12. L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei, and W. Min, “Electronic resonant stimulated raman scattering micro-spectroscopy,” J. Phys. Chem. B 122(39), 9218–9224 (2018).
    [Crossref]
  13. D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, and J.-X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21(11), 13864–13874 (2013).
    [Crossref]
  14. K. Popov, A. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium,” Opt. Lett. 37(4), 473–475 (2012).
    [Crossref]
  15. B. Levine and C. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett. 36(4), 245–247 (1980).
    [Crossref]
  16. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
    [Crossref]
  17. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
    [Crossref]
  18. B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).
  19. W. Yang, A. Li, Y. Suo, F.-K. Lu, and X. S. Xie, “Simultaneous two-color stimulated Raman scattering microscopy by adding a fiber amplifier to a 2 ps OPO-based SRS microscope,” Opt. Lett. 42(3), 523–526 (2017).
    [Crossref]
  20. B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
    [Crossref]
  21. A. H. Hill, E. Munger, A. T. Francis, B. Manifold, and D. Fu, “Frequency Modulation Stimulated Raman Scattering Microscopy through Polarization Encoding,” J. Phys. Chem. B 123(40), 8397–8404 (2019).
    [Crossref]
  22. H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
    [Crossref]
  23. L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
    [Crossref]
  24. F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
    [Crossref]
  25. G. P. Agrawal, Nonlinear fiber optics (Springer, 2013).
  26. R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]
  27. J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, 2010).
  28. W. Tomlinson, R. Stolen, and C. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
    [Crossref]
  29. L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
    [Crossref]
  30. Z. Zhao, Y. Shen, F. Hu, and W. Min, “Applications of vibrational tags in biological imaging by Raman microscopy,” Analyst 142(21), 4018–4029 (2017).
    [Crossref]
  31. Y. Shen, “Distinction between resonance Raman scattering and hot luminescence,” Phys. Rev. B 9(2), 622–626 (1974).
    [Crossref]
  32. R. R. Frontiera, S. Shim, and R. A. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129(6), 064507 (2008).
    [Crossref]
  33. S. Shim, C. M. Stuart, and R. A. Mathies, “Resonance Raman Cross-Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy,” ChemPhysChem 9(5), 697–699 (2008).
    [Crossref]
  34. L. Wei and W. Min, “Electronic Pre-resonance Stimulated Raman Scattering Microscopy,” J. Phys. Chem. Lett. 9(15), 4294–4301 (2018).
    [Crossref]
  35. Y. Miao, L. Shi, F. Hu, and W. Min, “Probe design for super-multiplexed vibrational imaging,” Phys. Biol. 16(4), 041003 (2019).
    [Crossref]
  36. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
    [Crossref]
  37. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
    [Crossref]
  38. C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377–1380 (2016).
    [Crossref]
  39. H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
    [Crossref]
  40. H. Xiong, N. Qian, Y. Miao, Z. Zhao, and W. Min, “Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes,” J. Phys. Chem. Lett. 10(13), 3563–3570 (2019).
    [Crossref]

2019 (5)

Y. Shen, F. Hu, and W. Min, “Raman Imaging of Small Biomolecules,” Annu. Rev. Biophys. 48(1), 347–369 (2019).
[Crossref]

A. H. Hill, E. Munger, A. T. Francis, B. Manifold, and D. Fu, “Frequency Modulation Stimulated Raman Scattering Microscopy through Polarization Encoding,” J. Phys. Chem. B 123(40), 8397–8404 (2019).
[Crossref]

Y. Miao, L. Shi, F. Hu, and W. Min, “Probe design for super-multiplexed vibrational imaging,” Phys. Biol. 16(4), 041003 (2019).
[Crossref]

H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
[Crossref]

H. Xiong, N. Qian, Y. Miao, Z. Zhao, and W. Min, “Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes,” J. Phys. Chem. Lett. 10(13), 3563–3570 (2019).
[Crossref]

2018 (5)

L. Wei and W. Min, “Electronic Pre-resonance Stimulated Raman Scattering Microscopy,” J. Phys. Chem. Lett. 9(15), 4294–4301 (2018).
[Crossref]

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
[Crossref]

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei, and W. Min, “Electronic resonant stimulated raman scattering micro-spectroscopy,” J. Phys. Chem. B 122(39), 9218–9224 (2018).
[Crossref]

2017 (5)

D. Fu, W. Yang, and X. S. Xie, “Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering,” J. Am. Chem. Soc. 139(2), 583–586 (2017).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

R. C. Prince, R. R. Frontiera, and E. O. Potma, “Stimulated Raman scattering: from bulk to nano,” Chem. Rev. 117(7), 5070–5094 (2017).
[Crossref]

W. Yang, A. Li, Y. Suo, F.-K. Lu, and X. S. Xie, “Simultaneous two-color stimulated Raman scattering microscopy by adding a fiber amplifier to a 2 ps OPO-based SRS microscope,” Opt. Lett. 42(3), 523–526 (2017).
[Crossref]

Z. Zhao, Y. Shen, F. Hu, and W. Min, “Applications of vibrational tags in biological imaging by Raman microscopy,” Analyst 142(21), 4018–4029 (2017).
[Crossref]

2016 (2)

L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang, and W. Min, “Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes,” Acc. Chem. Res. 49(8), 1494–1502 (2016).
[Crossref]

C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377–1380 (2016).
[Crossref]

2015 (2)

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

2014 (2)

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

2013 (2)

D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, and J.-X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21(11), 13864–13874 (2013).
[Crossref]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref]

2012 (3)

K. Popov, A. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium,” Opt. Lett. 37(4), 473–475 (2012).
[Crossref]

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

2011 (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

2010 (1)

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref]

2009 (1)

2008 (3)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

R. R. Frontiera, S. Shim, and R. A. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129(6), 064507 (2008).
[Crossref]

S. Shim, C. M. Stuart, and R. A. Mathies, “Resonance Raman Cross-Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy,” ChemPhysChem 9(5), 697–699 (2008).
[Crossref]

2006 (1)

1984 (1)

1980 (1)

B. Levine and C. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett. 36(4), 245–247 (1980).
[Crossref]

1978 (1)

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

1974 (1)

Y. Shen, “Distinction between resonance Raman scattering and hot luminescence,” Phys. Rev. B 9(2), 622–626 (1974).
[Crossref]

Ackermann, C.

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics (Springer, 2013).

Ando, J.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
[Crossref]

Andresen, E. R.

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

Anzalone, A. V.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Audier, X.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Berto, P.

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

Bethea, C.

B. Levine and C. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett. 36(4), 245–247 (1980).
[Crossref]

Cador, C.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Caillol, F.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Camp Jr, C. H.

C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Canonge, R.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Chen, A. J.

Chen, B.-C.

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref]

Chen, L.-Q.

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Chen, M.

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Chen, Z.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang, and W. Min, “Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes,” Acc. Chem. Res. 49(8), 1494–1502 (2016).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Cheng, J.-X.

Cheng, Q.

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Cicerone, M. T.

C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Cornish, V. W.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

de Sena-Tomas, C.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Dodo, K.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
[Crossref]

Dudley, J. M.

J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, 2010).

Eakins, G.

Evans, C. L.

Francis, A. T.

A. H. Hill, E. Munger, A. T. Francis, B. Manifold, and D. Fu, “Frequency Modulation Stimulated Raman Scattering Microscopy through Polarization Encoding,” J. Phys. Chem. B 123(40), 8397–8404 (2019).
[Crossref]

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref]

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

Frontiera, R. R.

R. C. Prince, R. R. Frontiera, and E. O. Potma, “Stimulated Raman scattering: from bulk to nano,” Chem. Rev. 117(7), 5070–5094 (2017).
[Crossref]

R. R. Frontiera, S. Shim, and R. A. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129(6), 064507 (2008).
[Crossref]

Fu, D.

A. H. Hill, E. Munger, A. T. Francis, B. Manifold, and D. Fu, “Frequency Modulation Stimulated Raman Scattering Microscopy through Polarization Encoding,” J. Phys. Chem. B 123(40), 8397–8404 (2019).
[Crossref]

D. Fu, W. Yang, and X. S. Xie, “Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering,” J. Am. Chem. Soc. 139(2), 583–586 (2017).
[Crossref]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref]

Fujita, K.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
[Crossref]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Ganikhanov, F.

Giovannini, M.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

Hill, A. H.

A. H. Hill, E. Munger, A. T. Francis, B. Manifold, and D. Fu, “Frequency Modulation Stimulated Raman Scattering Microscopy through Polarization Encoding,” J. Phys. Chem. B 123(40), 8397–8404 (2019).
[Crossref]

Hill, W.

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref]

Holtom, G. R.

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

Hong, W.

Hu, F.

Y. Miao, L. Shi, F. Hu, and W. Min, “Probe design for super-multiplexed vibrational imaging,” Phys. Biol. 16(4), 041003 (2019).
[Crossref]

Y. Shen, F. Hu, and W. Min, “Raman Imaging of Small Biomolecules,” Annu. Rev. Biophys. 48(1), 347–369 (2019).
[Crossref]

F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Z. Zhao, Y. Shen, F. Hu, and W. Min, “Applications of vibrational tags in biological imaging by Raman microscopy,” Analyst 142(21), 4018–4029 (2017).
[Crossref]

L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang, and W. Min, “Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes,” Acc. Chem. Res. 49(8), 1494–1502 (2016).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Huang, K.-C.

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

Karanja, C.

Kawata, S.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
[Crossref]

Leaird, D. E.

Levine, B.

B. Levine and C. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett. 36(4), 245–247 (1980).
[Crossref]

Li, A.

Liao, C.-S.

Lim, S.-H.

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref]

Lin, C.

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Lin, C.-C.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Liu, C.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Liu, Z.

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Long, R.

H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
[Crossref]

L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei, and W. Min, “Electronic resonant stimulated raman scattering micro-spectroscopy,” J. Phys. Chem. B 122(39), 9218–9224 (2018).
[Crossref]

F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Lu, F.-K.

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

Manifold, B.

A. H. Hill, E. Munger, A. T. Francis, B. Manifold, and D. Fu, “Frequency Modulation Stimulated Raman Scattering Microscopy through Polarization Encoding,” J. Phys. Chem. B 123(40), 8397–8404 (2019).
[Crossref]

Marguet, D.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Mathies, R. A.

R. R. Frontiera, S. Shim, and R. A. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129(6), 064507 (2008).
[Crossref]

S. Shim, C. M. Stuart, and R. A. Mathies, “Resonance Raman Cross-Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy,” ChemPhysChem 9(5), 697–699 (2008).
[Crossref]

Miao, Y.

Y. Miao, L. Shi, F. Hu, and W. Min, “Probe design for super-multiplexed vibrational imaging,” Phys. Biol. 16(4), 041003 (2019).
[Crossref]

H. Xiong, N. Qian, Y. Miao, Z. Zhao, and W. Min, “Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes,” J. Phys. Chem. Lett. 10(13), 3563–3570 (2019).
[Crossref]

F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
[Crossref]

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Min, W.

Y. Shen, F. Hu, and W. Min, “Raman Imaging of Small Biomolecules,” Annu. Rev. Biophys. 48(1), 347–369 (2019).
[Crossref]

H. Xiong, N. Qian, Y. Miao, Z. Zhao, and W. Min, “Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes,” J. Phys. Chem. Lett. 10(13), 3563–3570 (2019).
[Crossref]

H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
[Crossref]

Y. Miao, L. Shi, F. Hu, and W. Min, “Probe design for super-multiplexed vibrational imaging,” Phys. Biol. 16(4), 041003 (2019).
[Crossref]

L. Wei and W. Min, “Electronic Pre-resonance Stimulated Raman Scattering Microscopy,” J. Phys. Chem. Lett. 9(15), 4294–4301 (2018).
[Crossref]

L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei, and W. Min, “Electronic resonant stimulated raman scattering micro-spectroscopy,” J. Phys. Chem. B 122(39), 9218–9224 (2018).
[Crossref]

F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Z. Zhao, Y. Shen, F. Hu, and W. Min, “Applications of vibrational tags in biological imaging by Raman microscopy,” Analyst 142(21), 4018–4029 (2017).
[Crossref]

L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang, and W. Min, “Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes,” Acc. Chem. Res. 49(8), 1494–1502 (2016).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

Munger, E.

A. H. Hill, E. Munger, A. T. Francis, B. Manifold, and D. Fu, “Frequency Modulation Stimulated Raman Scattering Microscopy through Polarization Encoding,” J. Phys. Chem. B 123(40), 8397–8404 (2019).
[Crossref]

Ni, N.

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Palonpon, A.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
[Crossref]

Pegoraro, A.

Poizat, F.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Popov, K.

Potma, E. O.

R. C. Prince, R. R. Frontiera, and E. O. Potma, “Stimulated Raman scattering: from bulk to nano,” Chem. Rev. 117(7), 5070–5094 (2017).
[Crossref]

Prince, R. C.

R. C. Prince, R. R. Frontiera, and E. O. Potma, “Stimulated Raman scattering: from bulk to nano,” Chem. Rev. 117(7), 5070–5094 (2017).
[Crossref]

Qian, N.

H. Xiong, N. Qian, Y. Miao, Z. Zhao, and W. Min, “Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes,” J. Phys. Chem. Lett. 10(13), 3563–3570 (2019).
[Crossref]

Ramunno, L.

Rigneault, H.

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

Saar, B. G.

Sang, Z.

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Sarri, B.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Shank, C.

Shen, Y.

Y. Shen, F. Hu, and W. Min, “Raman Imaging of Small Biomolecules,” Annu. Rev. Biophys. 48(1), 347–369 (2019).
[Crossref]

H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
[Crossref]

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei, and W. Min, “Electronic resonant stimulated raman scattering micro-spectroscopy,” J. Phys. Chem. B 122(39), 9218–9224 (2018).
[Crossref]

Z. Zhao, Y. Shen, F. Hu, and W. Min, “Applications of vibrational tags in biological imaging by Raman microscopy,” Analyst 142(21), 4018–4029 (2017).
[Crossref]

L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang, and W. Min, “Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes,” Acc. Chem. Res. 49(8), 1494–1502 (2016).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Y. Shen, “Distinction between resonance Raman scattering and hot luminescence,” Phys. Rev. B 9(2), 622–626 (1974).
[Crossref]

Shi, L.

Y. Miao, L. Shi, F. Hu, and W. Min, “Probe design for super-multiplexed vibrational imaging,” Phys. Biol. 16(4), 041003 (2019).
[Crossref]

H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
[Crossref]

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei, and W. Min, “Electronic resonant stimulated raman scattering micro-spectroscopy,” J. Phys. Chem. B 122(39), 9218–9224 (2018).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Shim, S.

S. Shim, C. M. Stuart, and R. A. Mathies, “Resonance Raman Cross-Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy,” ChemPhysChem 9(5), 697–699 (2008).
[Crossref]

R. R. Frontiera, S. Shim, and R. A. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129(6), 064507 (2008).
[Crossref]

Silveira, E. S.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Simon, E.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Slipchenko, M. N.

Sodeoka, M.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
[Crossref]

Stolen, R.

Stolow, A.

Stuart, C. M.

S. Shim, C. M. Stuart, and R. A. Mathies, “Resonance Raman Cross-Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy,” ChemPhysChem 9(5), 697–699 (2008).
[Crossref]

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Sung, J.

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref]

Suo, Y.

Targoff, K.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, 2010).

Tomlinson, W.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Wang, M. C.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Wang, P.

Wei, L.

H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
[Crossref]

L. Wei and W. Min, “Electronic Pre-resonance Stimulated Raman Scattering Microscopy,” J. Phys. Chem. Lett. 9(15), 4294–4301 (2018).
[Crossref]

F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
[Crossref]

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei, and W. Min, “Electronic resonant stimulated raman scattering micro-spectroscopy,” J. Phys. Chem. B 122(39), 9218–9224 (2018).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang, and W. Min, “Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes,” Acc. Chem. Res. 49(8), 1494–1502 (2016).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Wei, M.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Weiner, A. M.

Wojak, J.

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Xie, X. S.

W. Yang, A. Li, Y. Suo, F.-K. Lu, and X. S. Xie, “Simultaneous two-color stimulated Raman scattering microscopy by adding a fiber amplifier to a 2 ps OPO-based SRS microscope,” Opt. Lett. 42(3), 523–526 (2017).
[Crossref]

D. Fu, W. Yang, and X. S. Xie, “Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering,” J. Am. Chem. Soc. 139(2), 583–586 (2017).
[Crossref]

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[Crossref]

Xiong, H.

H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
[Crossref]

H. Xiong, N. Qian, Y. Miao, Z. Zhao, and W. Min, “Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes,” J. Phys. Chem. Lett. 10(13), 3563–3570 (2019).
[Crossref]

L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei, and W. Min, “Electronic resonant stimulated raman scattering micro-spectroscopy,” J. Phys. Chem. B 122(39), 9218–9224 (2018).
[Crossref]

Xu, Q.

F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
[Crossref]

Xu, W.

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Yamakoshi, H.

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
[Crossref]

Yang, W.

W. Yang, A. Li, Y. Suo, F.-K. Lu, and X. S. Xie, “Simultaneous two-color stimulated Raman scattering microscopy by adding a fiber amplifier to a 2 ps OPO-based SRS microscope,” Opt. Lett. 42(3), 523–526 (2017).
[Crossref]

D. Fu, W. Yang, and X. S. Xie, “Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering,” J. Am. Chem. Soc. 139(2), 583–586 (2017).
[Crossref]

Yu, Y.

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

Yuste, R.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Zeng, C.

F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
[Crossref]

Zhang, D.

Zhang, L.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang, and W. Min, “Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes,” Acc. Chem. Res. 49(8), 1494–1502 (2016).
[Crossref]

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref]

Zhao, Z.

H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
[Crossref]

H. Xiong, N. Qian, Y. Miao, Z. Zhao, and W. Min, “Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes,” J. Phys. Chem. Lett. 10(13), 3563–3570 (2019).
[Crossref]

Z. Zhao, Y. Shen, F. Hu, and W. Min, “Applications of vibrational tags in biological imaging by Raman microscopy,” Analyst 142(21), 4018–4029 (2017).
[Crossref]

Zheng, C.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Zhu, B.

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Acc. Chem. Res. (1)

L. Wei, F. Hu, Z. Chen, Y. Shen, L. Zhang, and W. Min, “Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes,” Acc. Chem. Res. 49(8), 1494–1502 (2016).
[Crossref]

Analyst (1)

Z. Zhao, Y. Shen, F. Hu, and W. Min, “Applications of vibrational tags in biological imaging by Raman microscopy,” Analyst 142(21), 4018–4029 (2017).
[Crossref]

Annu. Rev. Biophys. (1)

Y. Shen, F. Hu, and W. Min, “Raman Imaging of Small Biomolecules,” Annu. Rev. Biophys. 48(1), 347–369 (2019).
[Crossref]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

Appl. Phys. Lett. (1)

B. Levine and C. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett. 36(4), 245–247 (1980).
[Crossref]

Chem. Rev. (1)

R. C. Prince, R. R. Frontiera, and E. O. Potma, “Stimulated Raman scattering: from bulk to nano,” Chem. Rev. 117(7), 5070–5094 (2017).
[Crossref]

ChemPhysChem (1)

S. Shim, C. M. Stuart, and R. A. Mathies, “Resonance Raman Cross-Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy,” ChemPhysChem 9(5), 697–699 (2008).
[Crossref]

J. Am. Chem. Soc. (2)

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134(51), 20681–20689 (2012).
[Crossref]

D. Fu, W. Yang, and X. S. Xie, “Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering,” J. Am. Chem. Soc. 139(2), 583–586 (2017).
[Crossref]

J. Chem. Phys. (1)

R. R. Frontiera, S. Shim, and R. A. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129(6), 064507 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (4)

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B 114(50), 16871–16880 (2010).
[Crossref]

A. H. Hill, E. Munger, A. T. Francis, B. Manifold, and D. Fu, “Frequency Modulation Stimulated Raman Scattering Microscopy through Polarization Encoding,” J. Phys. Chem. B 123(40), 8397–8404 (2019).
[Crossref]

L. Shi, H. Xiong, Y. Shen, R. Long, L. Wei, and W. Min, “Electronic resonant stimulated raman scattering micro-spectroscopy,” J. Phys. Chem. B 122(39), 9218–9224 (2018).
[Crossref]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral Imaging with Stimulated Raman Scattering by Chirped Femtosecond Lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref]

J. Phys. Chem. Lett. (2)

H. Xiong, N. Qian, Y. Miao, Z. Zhao, and W. Min, “Stimulated Raman Excited Fluorescence Spectroscopy of Visible Dyes,” J. Phys. Chem. Lett. 10(13), 3563–3570 (2019).
[Crossref]

L. Wei and W. Min, “Electronic Pre-resonance Stimulated Raman Scattering Microscopy,” J. Phys. Chem. Lett. 9(15), 4294–4301 (2018).
[Crossref]

Nat. Commun. (2)

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, and K. Targoff, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref]

Q. Cheng, L. Wei, Z. Liu, N. Ni, Z. Sang, B. Zhu, W. Xu, M. Chen, Y. Miao, and L.-Q. Chen, “Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,” Nat. Commun. 9(1), 2942 (2018).
[Crossref]

Nat. Methods (2)

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11(4), 410–412 (2014).
[Crossref]

F. Hu, C. Zeng, R. Long, Y. Miao, L. Wei, Q. Xu, and W. Min, “Supermultiplexed optical imaging and barcoding with engineered polyynes,” Nat. Methods 15(3), 194–200 (2018).
[Crossref]

Nat. Photonics (3)

C. H. Camp Jr and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

H. Xiong, L. Shi, L. Wei, Y. Shen, R. Long, Z. Zhao, and W. Min, “Stimulated Raman excited fluorescence spectroscopy and imaging,” Nat. Photonics 13(6), 412–417 (2019).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Nature (1)

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Phys. Biol. (1)

Y. Miao, L. Shi, F. Hu, and W. Min, “Probe design for super-multiplexed vibrational imaging,” Phys. Biol. 16(4), 041003 (2019).
[Crossref]

Phys. Rev. A (1)

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Phys. Rev. B (1)

Y. Shen, “Distinction between resonance Raman scattering and hot luminescence,” Phys. Rev. B 9(2), 622–626 (1974).
[Crossref]

Phys. Rev. Lett. (1)

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

Other (3)

G. P. Agrawal, Nonlinear fiber optics (Springer, 2013).

J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, 2010).

B. Sarri, R. Canonge, X. Audier, E. Simon, J. Wojak, F. Caillol, C. Cador, D. Marguet, F. Poizat, and M. Giovannini, “Fast stimulated Raman imaging for intraoperative gastro-intestinal cancer detection,” arXiv preprint arXiv:1902.08859 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The principle of intensity modulation (IM) and frequency modulation (FM) for stimulated Raman loss (SRL) detection. (a) shows a typical narrowband Raman peak on top of broadband backgrounds. Yellow line and red line show the on and the off resonance of stimulated Raman excitation, respectively. The backgrounds could originate from non-resonant four-wave mixing, electronic-transition-related backgrounds (such as two-photon absorption and hot luminescent, etc.), and even broadband Raman background from the environments. For IM case (b), only the intensity-modulated Stoke beam at vibrational-on-resonance wavelength is applied; for FM cases (c), two Stokes beams, one at the vibrational-on-resonance wavelength and the other one at the vibrational-off-resonance wavelength, intensity modulated with a π-phase difference, are applied. In (b) and (c), left columns show the input pulse sequences for both Stokes beams and pump beams, right columns show the pulse sequences of output Pump beams after interaction with the sample, respectively.
Fig. 2.
Fig. 2. Propagation and spectral splitting of picosecond laser pulses in single-mode silica fiber. (a) and (b) show the simulation results of temporal (a) and spectral (b) profiles of non-chirped 2-ps sech2 pulses centered at 1031.2 nm after propagating in 0.2-m-long single-mode silica fiber as a function of the pulse power. All curves are normalized to the same pulse power. (c) The energy diagram of the self-phase modulation (SPM) process inside the fiber. (d) and (f) show the experiment results of 6.2-nJ (d) and 15.6-nJ (f) 2-ps pulses centered at 1031.2 nm after propagating through a 0.2-m polarization-maintained single-mode silica fiber. (e) shows the experiment result of 0.6-nJ 2-ps pulses centered at 1031.2 nm after propagating through a 2-m-long polarization-maintained single-mode silica fiber. For (d-f), red dash curves are spectra before fiber, solid curves are spectra output from the fiber, and all spectra are normalized to the same pulse power. The initial input pulse is not Fourier-transform-limited.
Fig. 3.
Fig. 3. Frequency-modulated (FM) stimulated Raman Scattering (SRS) microscopy achieved by self-phase modulation in silica fiber. (a) The systematic diagram. Gay dash boxes show the polarization of the Stokes pulses (red arrows for red-shifted Stokes beam, blue arrows for blue-shifted Stokes beam) at corresponding positions. (b) shows the SRL signal of O-D stretching mode of D2O as a function of time delay between the pump beam and each Stokes beams. Blue curve for excitation energy blue-shifted arm (corresponding to red-shifted Stokes beam); red curve for excitation energy red-shifted arm (corresponding to blue-shifted Stokes beam). HWP for half-wave plate; PBS for polarized beam splitter; DM for dichroic mirror; PMF for polarization-maintained single mode fiber, the length used in this research is 0.2 m; QWP for quarter-wave plate; EOM for electrooptic modulator; OPO for optical parametric oscillator; PD for photodiode; ADC for analog-to-digital converter. (c) shows the real-time fluctuations of the two Stokes beams recoded by photodetectors with 1.9-MHz bandwidth. Red curve for red-side Stokes beam; blue curve for blue-side stokes beam. (d) shows the correlation of the fluctuations of two Stokes beams in 1-s time window. (e) and (f) shows the fluctuations of SRL signals of the broadband O-D stretching mode of D2O excited by the conventional IM-SRS (e) and our FM-SRS (f) under the same configuration (46-mW pump beam at 820 nm, 15-mW stokes beams, and 1-kHz noise equivalent power (NEP) bandwidth). (g) shows the histograms of (e) and (f), respectively. (h) The noise as a function of the pump power for the conventional IM-SRS (blue dots) and our FM-SRS (red dots) under the same configuration (15-mW stokes beams, 1-kHz NEP bandwidth). Dots are measurements and the curve are fitting result. Scale bar: 10 µm.
Fig. 4.
Fig. 4. FM-SRS imaging of lipid in mouse brain tissue. (a) The excitation configuration of CH2 stretching mode. Blue curve for excitation energy blue-shifted arm (corresponding to red-shifted Stokes beam); red curve for excitation energy red-shifted arm (corresponding to blue-shifted Stokes beam); Yellow curve is the spontaneous Raman spectrum of brain tissue as a reference, the resonance peak of CH2 stretching mode is indicated. (b) and (e) show the conventional IM-SRS imaging results of the on (pump at 797.5 nm) and off resonance (pump at 805-nm) channels, respectively. (c) and (f) show our FM-SRS imaging results of the on (pump at 797.5 nm) and off resonance (pump at 805 nm) channels, respectively. (d) shows the signal distributions on the dash lines in (b) (blue curve) and (c) (red curve), respectively. All imaging acquired with 20-mW pump beam and 30-mW Stokes beams. (b) and (c) share the same color bar, (e) and (f) share the same color bar. Scale bar: 10 µm.
Fig. 5.
Fig. 5. FM-SRS imaging of polyyne-labeled lipid droplets in cells. (a) The excitation configuration for the lipid droplet marker. Blue curve for excitation energy blue-shifted arm (corresponding to red-shifted Stokes beam); red curve for excitation energy red-shifted arm (corresponding to blue-shifted Stokes beam); Yellow curve is the spontaneous Raman spectrum of the marker. (b) SRL spectra of the marker in 1-mM DMSO solution acquired by IM-SRS (blue curve) and our FM-SRS (red curve), respectively. (c) SRS imaging of the CH3 stretching mode as a reference for the cell location. (d) and (g) show the conventional IM-SRS imaging results of the lipid droplet marker at its on (pump at 841-nm) and off resonance (pump at 843-nm) channels, respectively. (e) and (h) show our FM-SRS imaging results of the lipid droplet marker at its on (pump at 841 nm) and off resonance (pump at 843 nm) channels, respectively. (f) shows the signal distributions on the dash lines in (d) (blue curve) and (e) (red curve), respectively. All imaging acquired with 20-mW pump beam and 15-mW Stokes beams. (d) and (e) share the same color bar, (g) and (h) share the same color bar. Scale bar: 1 µm.
Fig. 6.
Fig. 6. FM-SRS imaging of sebaceous gland in wild type (C57BL/6J) mouse skin. (a) and (c) show the conventional IM-SRS imaging results of the CH2 mode at its on resonance (pump at 797.5 nm) and off resonance (pump at 805 nm) channels, respectively. (b) and (d) show our FM-SRS imaging results of the CH2 mode at its on (pump at 797.5 nm) and off resonance (pump at 805 nm) channels, respectively. All imaging acquired with 14-mW pump beam and 30-mW Stokes beams. Scale bar: 10 µm.
Fig. 7.
Fig. 7. FM-SRS imaging of cells labeled by Raman dye under close electronic resonance. (a) the absorption spectrum (blue curve) of our newly synthesized dye. The laser lines for the nitrile mode on-resonance excitation are provided, with red line for Stokes beam and yellow line for pump beam. (b) SRL spectra of 1-mM the dye molecule in DMSO solution acquired by IM-SRS (blue curve) and FM-SRS (red curve). (c), (d) and (e) show the conventional IM-SRS imaging results of the dye labeled cell at the blue-side off (pump at 835 nm), on (pump at 839.5 nm) and red-side off resonance (pump at 843 nm) channels of the nitrile mode, respectively. (f), (g) and (h) show our FM-SRS imaging results of the dye labeled cell at the blue-side off (pump at 835 nm), on (pump at 839.5 nm) and red-side off resonance (pump at 843 nm) channels of nitrile mode, respectively. All imaging acquired with 12-mW pump beam and 15-mW Stokes beams, and share the same color bar. Scale bar: 10 µm.
Fig. 8.
Fig. 8. The simulation results of temporal (a) and spectral (b) profiles of 6.25-nJ non-chirped 2-ps sech2 pulses centered at 1031.2-nm as a function of propagation distance in single-mode silica fiber. all curves are normalized to the same pulse power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i U ξ = s g n ( β 2 ) 1 2 2 U τ 2 N 2 | U | 2 U
U ( 0 , τ ) = sech ( 1.76 τ )

Metrics