Abstract

Metamaterials have been engineered to achieve electromagnetically induced transparency (EIT)-like behavior, analogous to those in quantum optical systems. These meta-devices are opening new paradigms in terahertz communication, ultra-sensitive sensing and EIT-like anti-reflection. The controlled coupling between a sub-radiant and a super-radiant particle in the unit cells of these metamaterial can enable multiple narrow plasmon induced transparency (PIT) windows over a broad band, with considerable group delay of electromagnetic field (slow light effect). Phase coherence between these PIT windows is highly desired for next-generation multichannel communication network. Herein, we numerically and experimentally validate a controllable frequency hopping mechanism between “slow light” windows in the terahertz (THz) regime. The effective media are composed of plasmonic “molecules” in which an asymmetric split-ring resonator (ASRR) or Fano resonator is displaced on the side of a cut-wire (Lorentz oscillator). Two metasurfaces where ASRR is on opposite side of the cut-wire are investigated. In these two cases, the proximity of the cut-wire to the gap on the ASRR having asymmetry is different. On one side, when the gap is nearer to the cut wire, displacing the ASRR along the cut-wire, produces only one narrow transparency window at 0.8 THz, corresponding to 20 ps group delay. When the ASRR is positioned on the opposite side, such that the gap is further, two transparency windows are observed when the ASRR is displaced along the cut-wire. That is, the transparency window hops from 0.8 THz to 1.2 THz. This corresponds to an increase from 20 to 30 ps in slow light effect. Numerical simulations suggest these single or multiple PIT windows occur if the couplings between the plasmonic modes in the different arrangements are either in-phase or out-of-phase, respectively.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Shapiro and P. Brumer, Quantum Control of Molecular Processes (WILEY-VCH Verlag, 2012).
  2. W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6(5), 850–857 (2005).
    [Crossref]
  3. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16(24), 19504–19511 (2008).
    [Crossref]
  4. B. Kang, E. Choi, H.-H. Lee, E. S. Kim, J. H. Woo, J. Kim, T. Y. Hong, J. H. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18(11), 11552–11561 (2010).
    [Crossref]
  5. X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light: Sci. Appl. 4, e292 (2015).
    [Crossref]
  6. T. J. Davis, D. E. Gómez, and F. Eftekhari, “All-optical modulation and switching by a metamaterial of plasmonic circuits,” Opt. Lett. 39(16), 4938–4941 (2014).
    [Crossref]
  7. H. Sattari and M. Sahrai, “Refractive index switching based on loss controlling in a doped metamaterial slab,” J. Opt. Soc. Am. B 31(6), 1240–1247 (2014).
    [Crossref]
  8. S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977–9877-11 (2015).
    [Crossref]
  9. L. Kang, Z. H. Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
    [Crossref]
  10. A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
    [Crossref]
  11. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref]
  12. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  13. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref]
  14. M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
    [Crossref]
  15. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
    [Crossref]
  16. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref]
  17. Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
    [Crossref]
  18. J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
    [Crossref]
  19. M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
    [Crossref]
  20. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref]
  21. M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
    [Crossref]
  22. X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
    [Crossref]
  23. H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2016).
    [Crossref]
  24. P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
    [Crossref]
  25. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref]
  26. Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
    [Crossref]
  27. X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
    [Crossref]
  28. Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule,” Opt. Express 25(20), 24410–24424 (2017).
    [Crossref]
  29. Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetric broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
    [Crossref]
  30. Z. Zhao, Y. Chen, Z. Gu, and W. Shi, “Maximization of terahertz slow light by tuning the spoof localized surface plasmon induced transparency,” Opt. Mater. Express 8(8), 2345–2354 (2018).
    [Crossref]
  31. Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
    [Crossref]
  32. J. A. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Eigenmode hybridization enable lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications,” Opt. Lett. 44(11), 2705–2708 (2019).
    [Crossref]
  33. Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
    [Crossref]
  34. S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nat. Electron. 3(1), 20–29 (2020).
    [Crossref]
  35. C. Sun, J. Si, Z. Dong, and X. Deng, “Tunable multispectral plasmon induced transparency based on grapheme metamaterials,” Opt. Express 24(11), 11466–11474 (2016).
    [Crossref]
  36. K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
    [Crossref]
  37. R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
    [Crossref]
  38. H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled grapheme structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
    [Crossref]
  39. N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
    [Crossref]
  40. R. Singh, I. A. I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
    [Crossref]
  41. R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
    [Crossref]
  42. I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
    [Crossref]
  43. C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
    [Crossref]
  44. I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
    [Crossref]
  45. R. Singh, W. Cao, I. A. I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  46. I. A. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2014).
    [Crossref]
  47. K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
    [Crossref]
  48. M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
    [Crossref]
  49. D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, 2013).
  50. F. Ulaby, Fundamentals of Applied Electromagnetics (Prentice Hall, 2007).

2020 (1)

S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nat. Electron. 3(1), 20–29 (2020).
[Crossref]

2019 (3)

2018 (2)

Z. Zhao, Y. Chen, Z. Gu, and W. Shi, “Maximization of terahertz slow light by tuning the spoof localized surface plasmon induced transparency,” Opt. Mater. Express 8(8), 2345–2354 (2018).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

2017 (7)

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled grapheme structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule,” Opt. Express 25(20), 24410–24424 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetric broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

2016 (7)

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
[Crossref]

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

C. Sun, J. Si, Z. Dong, and X. Deng, “Tunable multispectral plasmon induced transparency based on grapheme metamaterials,” Opt. Express 24(11), 11466–11474 (2016).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

2015 (6)

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977–9877-11 (2015).
[Crossref]

L. Kang, Z. H. Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light: Sci. Appl. 4, e292 (2015).
[Crossref]

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref]

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

2014 (5)

R. Singh, W. Cao, I. A. I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

I. A. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2014).
[Crossref]

T. J. Davis, D. E. Gómez, and F. Eftekhari, “All-optical modulation and switching by a metamaterial of plasmonic circuits,” Opt. Lett. 39(16), 4938–4941 (2014).
[Crossref]

H. Sattari and M. Sahrai, “Refractive index switching based on loss controlling in a doped metamaterial slab,” J. Opt. Soc. Am. B 31(6), 1240–1247 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

2013 (1)

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

2012 (3)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

2011 (7)

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

2010 (1)

2008 (3)

S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16(24), 19504–19511 (2008).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

2005 (1)

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6(5), 850–857 (2005).
[Crossref]

Agha, I.

J. A. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Eigenmode hybridization enable lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications,” Opt. Lett. 44(11), 2705–2708 (2019).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Ako, R. T.

Al-Naib, I. A. I.

R. Singh, W. Cao, I. A. I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

I. A. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Alouini, M.-S.

S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nat. Electron. 3(1), 20–29 (2020).
[Crossref]

Altug, H.

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

Amin, O.

S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nat. Electron. 3(1), 20–29 (2020).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Bettiol, A. A.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Born, N.

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

Boyd, R. W.

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

Brumer, P.

M. Shapiro and P. Brumer, Quantum Control of Molecular Processes (WILEY-VCH Verlag, 2012).

Buckup, T.

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6(5), 850–857 (2005).
[Crossref]

Burrow, J. A.

J. A. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Eigenmode hybridization enable lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications,” Opt. Lett. 44(11), 2705–2708 (2019).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Cao, W.

R. Singh, W. Cao, I. A. I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Chaker, M.

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Chakrabarti, S.

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Chen, Y.

Chen, Z.

Chiam, S.-Y.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Choi, E.

Choi, H.

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2016).
[Crossref]

Chowdhury, D. R.

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

R. Singh, I. A. I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Cong, L.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Singh, I. A. I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, W. Cao, I. A. I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Dang, S.

S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nat. Electron. 3(1), 20–29 (2020).
[Crossref]

Davis, T. J.

Delprat, S.

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Deng, X.

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

C. Sun, J. Si, Z. Dong, and X. Deng, “Tunable multispectral plasmon induced transparency based on grapheme metamaterials,” Opt. Express 24(11), 11466–11474 (2016).
[Crossref]

Devi, K. M.

Dhillon, S. S.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Dignam, M. M.

I. A. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2014).
[Crossref]

Dong, Z.

Eftekhari, F.

Faist, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Fang, X.

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light: Sci. Appl. 4, e292 (2015).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Fedyanin, A. A.

A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Gómez, D. E.

Griffiths, D. J.

D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, 2013).

Gu, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Gu, Z.

Haase, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Han, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

He, M.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

He, Z.

Helgert, C.

A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
[Crossref]

Herek, J. L.

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6(5), 850–857 (2005).
[Crossref]

Ho, C. P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Hong, T. Y.

Huang, R.

In, C.

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2016).
[Crossref]

Jansen, C.

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Jiang, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

Jiang, Z. H.

L. Kang, Z. H. Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref]

Jung, H.

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2016).
[Crossref]

Kang, B.

Kang, L.

L. Kang, Z. H. Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref]

Keller, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

Kim, E. S.

Kim, J.

Kim, J. H.

Koch, M.

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

Kumar, G.

Lederer, F.

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Lee, C.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Lee, H.

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2016).
[Crossref]

Lee, H.-H.

Li, H.

Li, Z.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Luo, Z.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

MacDonald, K. F.

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light: Sci. Appl. 4, e292 (2015).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Maissen, C.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Mangeney, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Manjappa, M.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Mathews, J.

J. A. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Eigenmode hybridization enable lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications,” Opt. Lett. 44(11), 2705–2708 (2019).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Mekonen, S. M.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Morandotti, R.

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Motzkus, M.

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6(5), 850–857 (2005).
[Crossref]

Mousavi, S. A.

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977–9877-11 (2015).
[Crossref]

Okhlopkov, K. I.

A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
[Crossref]

Ozaki, T.

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Palomo, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Paravicini-Bagliani, G. L.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Peng, W.

Pertsch, T.

A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
[Crossref]

Pitchappa, P.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Plum, E.

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977–9877-11 (2015).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Ramakrishna, S. A.

Reinhold, J.

A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
[Crossref]

Rocheleau, D.

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Roy Chowdhury, D.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Sahrai, M.

Sarangan, A.

J. A. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Eigenmode hybridization enable lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications,” Opt. Lett. 44(11), 2705–2708 (2019).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Sarma, A. K.

Sattari, H.

Scalari, G.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Schultz, S. A.

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

Searles, T. A.

J. A. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Eigenmode hybridization enable lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications,” Opt. Lett. 44(11), 2705–2708 (2019).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Shapiro, M.

M. Shapiro and P. Brumer, Quantum Control of Molecular Processes (WILEY-VCH Verlag, 2012).

Shcherbakov, M. R.

A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
[Crossref]

Shen, L.

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

Shi, J.

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977–9877-11 (2015).
[Crossref]

Shi, W.

Shihada, B.

S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nat. Electron. 3(1), 20–29 (2020).
[Crossref]

Shorokhov, A. S.

A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

Si, J.

Singh, N.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

Singh, R.

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Singh, I. A. I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, W. Cao, I. A. I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

I. A. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2014).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Song, Y.

Song, Z.

Sriram, S.

Srivastava, Y. K.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

Sun, C.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Tian, Z.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Tignon, J.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Tonouchi, M.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

Ulaby, F.

F. Ulaby, Fundamentals of Applied Electromagnetics (Prentice Hall, 2007).

Upham, J.

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

Vakakis, A. F.

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

Valmorra, F.

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

Wan, M.

Wanare, H.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Werner, D. H.

L. Kang, Z. H. Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. A. I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wohlleben, W.

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6(5), 850–857 (2005).
[Crossref]

Woo, J. H.

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

Wu, J. W.

Xu, H.

Xu, N.

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

Yahiaoui, R.

J. A. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Eigenmode hybridization enable lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications,” Opt. Lett. 44(11), 2705–2708 (2019).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Yang, X.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

Yang, Y.

I. A. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2014).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Yue, T.

L. Kang, Z. H. Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref]

Yue, W.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, W.

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Singh, I. A. I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

I. A. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2014).
[Crossref]

R. Singh, W. Cao, I. A. I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhao, H.

Zhao, M.

Zhao, Z.

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
[Crossref]

Z. Zhao, Y. Chen, Z. Gu, and W. Shi, “Maximization of terahertz slow light by tuning the spoof localized surface plasmon induced transparency,” Opt. Mater. Express 8(8), 2345–2354 (2018).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetric broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule,” Opt. Express 25(20), 24410–24424 (2017).
[Crossref]

X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Zheludev, N. I.

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light: Sci. Appl. 4, e292 (2015).
[Crossref]

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977–9877-11 (2015).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

Zheng, M.

Zheng, X.

Zhou, F.

Zhu, J.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Zhu, Z.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

Adv. Opt. Mater. (4)

J. Keller, C. Maissen, J. Haase, G. L. Paravicini-Bagliani, F. Valmorra, J. Palomo, J. Mangeney, J. Tignon, S. S. Dhillon, G. Scalari, and J. Faist, “Coupling surface plasmon polariton modes to complementary THz metasurfaces tuned by inter meta-atom distance,” Adv. Opt. Mater. 5(6), 1600884 (2017).
[Crossref]

H. Jung, C. In, H. Choi, and H. Lee, “Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom,” Adv. Opt. Mater. 4(4), 627–633 (2016).
[Crossref]

P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, N. Singh, and C. Lee, “Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial,” Adv. Opt. Mater. 4(4), 541–547 (2016).
[Crossref]

N. Xu, M. Manjappa, R. Singh, and W. Zhang, “Tailoring the electromagnetically induced transparency and absorbance in coupled Fano–Lorentzian metasurfaces: A classical analog of a four-level tripod quantum system,” Adv. Opt. Mater. 4(8), 1179–1185 (2016).
[Crossref]

Appl. Phys. Lett. (9)

R. Singh, I. A. I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, “Polarization and angle independent terahertz metamaterials with high Q-factors,” Appl. Phys. Lett. 98(9), 091107 (2011).
[Crossref]

C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett. 98(5), 051109 (2011).
[Crossref]

I. A. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, “Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials,” Appl. Phys. Lett. 101(7), 071108 (2012).
[Crossref]

R. Singh, W. Cao, I. A. I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

I. A. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2014).
[Crossref]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

ChemPhysChem (1)

W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6(5), 850–857 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light: Sci. Appl. 4, e292 (2015).
[Crossref]

Nanotechnology (1)

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Nat. Electron. (1)

S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nat. Electron. 3(1), 20–29 (2020).
[Crossref]

Opt. Express (11)

S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16(24), 19504–19511 (2008).
[Crossref]

B. Kang, E. Choi, H.-H. Lee, E. S. Kim, J. H. Woo, J. Kim, T. Y. Hong, J. H. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18(11), 11552–11561 (2010).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref]

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref]

C. Sun, J. Si, Z. Dong, and X. Deng, “Tunable multispectral plasmon induced transparency based on grapheme metamaterials,” Opt. Express 24(11), 11466–11474 (2016).
[Crossref]

H. Xu, H. Li, Z. He, Z. Chen, M. Zheng, and M. Zhao, “Dual tunable plasmon-induced transparency based on silicon–air grating coupled grapheme structure in terahertz metamaterial,” Opt. Express 25(17), 20780–20790 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule,” Opt. Express 25(20), 24410–24424 (2017).
[Crossref]

Z. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and S. Sriram, “Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows,” Opt. Express 27(19), 26459–26470 (2019).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (5)

Phys. Rev. B (2)

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

Phys. Rev. Lett. (3)

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Sci. Rep. (4)

S. A. Mousavi, E. Plum, J. Shi, and N. I. Zheludev, “Coherent control of optical polarization effects in metamaterials,” Sci. Rep. 5(1), 8977–9877-11 (2015).
[Crossref]

L. Kang, Z. H. Jiang, T. Yue, and D. H. Werner, “Handedness dependent electromagnetically induced transparency in hybrid chiral metamaterials,” Sci. Rep. 5, 12224 (2015).
[Crossref]

A. S. Shorokhov, K. I. Okhlopkov, J. Reinhold, C. Helgert, M. R. Shcherbakov, T. Pertsch, and A. A. Fedyanin, “Ultrafast control of third-order optical nonlinearities in fishnet metamaterials,” Sci. Rep. 6(1), 28440–28440-7 (2016).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard,” Sci. Rep. 9(1), 6205 (2019).
[Crossref]

Science (1)

K. L. Tsakmakidis, L. Shen, S. A. Schultz, X. Zheng, J. Upham, X. Deng, H. Altug, A. F. Vakakis, and R. W. Boyd, “Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering,” Science 356(6344), 1260–1264 (2017).
[Crossref]

Other (3)

D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, 2013).

F. Ulaby, Fundamentals of Applied Electromagnetics (Prentice Hall, 2007).

M. Shapiro and P. Brumer, Quantum Control of Molecular Processes (WILEY-VCH Verlag, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Unit cell of the proposed and fabricated metasurface. Three-dimensional (3D) view showing SRR and cut-wire resonators of (a)-i type I and (a)-ii type II metasurface. The direction of propagation of terahertz wave (KTH) indicated on the electric field coordinates shown. Microscopic images of the fabricated metasurfaces of (b)-i single cut-wire, (b)-ii ASRR, (b)-iii type-I metasurface, (b)-iv type-II metasurface, are shown. (c) A schematic illustration of the metasurface being excited by a normally incident terahertz pulse.
Fig. 2.
Fig. 2. Transmittance results for individual cut-wire and ASRR. Simulated (S) and experimental (E) transmittance of (a) only cut-wire and of (b) only ASRR under normally incident THz irradiation with vertical polarization. (c) The electric density Lorentian resonance modes of the cut-wire at 0.8 THz and (d) The Fano-resonance mode of the ASRR at 0.79 THz. (e) The surface current distribution Lorentian resonance modes of the cut-wire at 0.8 THz and (f) the Fano-resonance mode of the ASRR at 0.8 THz. Color bar: the relative strength of electrical field as well as the surface currents.
Fig. 3.
Fig. 3. Transmittance of metasurface I and II. The Simulated and experimental transmittance at different translation (δ) of ASRR along the cut-wire. (a) type-I metasurface and (b) type-II metasurface. Red solid-line: simulation, Blue solid-line: experiment.
Fig. 4.
Fig. 4. Simulated transmittance on different metasurfaces. The two-dimensional diagram of transmittance as a function of frequency and displacement δ. (a) type-I metasurface. (b) type-II metasurface. The step of displacement δ is 1 µm.
Fig. 5.
Fig. 5. Extracted group delays as a function of frequency. The slow light at transparency windows of (a) type-I and (b) type-II metasurfaces. Δτ is the group delay. Red solid-line: simulation, Blue solid-line: experiment. Subscript 1 and 2 refers to the first and the second transparency window, respectively.
Fig. 6.
Fig. 6. Simulated transmittance on different metasurfaces. The two-dimensional diagram of group delay as a function of frequency and displacement δ. (a) type-I metasurface. (b) type-II metasurface. The step of displacement δ is 1 µm.
Fig. 7.
Fig. 7. Distribution of currents at transparency windows. (a) Surface current of windows 1 (0.78 THz) in type-I metasurface. (b) Surface current of windows 1 (0.78 THz) and windows 2 (1.18 THz) in type-II metasurface at δ=0.0 µm, δ=21.0 µm, δ=42.0 µm, and δ=62.5 µm, correspondingly. The color bar refers to the relative strength of electrical field.
Fig. 8.
Fig. 8. Field distribution at transparency windows. Magnetic field at transparency windows of (a) type-I (0.78 THz) and (b) type-II metasurface (0.8 THz and 1.18 THz) at δ=0.0 µm, δ=21.0 µm, δ=42.0 µm, and δ=62.5 µm, correspondingly. The color bar refers to the relative strength of electrical field. N and S refers to north pole and south pole, respectively.

Tables (2)

Tables Icon

Table 1. The mode frequency of basic resonators

Tables Icon

Table 2. Properties of transparency windows in type-I & II metasurfaces

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( ν ) = | E s a m p l e ( ν ) | / | E s a m p l e ( ν ) | | E r e f ( ν ) | | E r e f ( ν ) | ,
Q = ν / ν Δ ν Δ ν ,
Δ τ = d φ 2 π d ν ,
F O M = Δ ν Δ τ 2 π
B r = μ 0 4 π c I d l × r d r d 3 ,

Metrics