Abstract

Titanium nitride (TiN) has been identified as a promising refractory material for high temperature plasmonic applications such as surface plasmon polaritons (SPPs) waveguides, lasers and light sources, and near field optics. Such SPPs are sensitive not only to the highly metallic nature of the TiN, but also to its low loss. We have formed highly metallic, low-loss TiN thin films on MgO substrates to create SPPs with resonances between 775-825 nm. Scanning near-field optical microscopy (SNOM) allowed imaging of the SPP fringes, the accurate determination of the effective wavelength of the SPP modes, and propagation lengths greater than 10 microns. Further, we show the engineering of the band structure of the plasmonic modes in TiN in the mid-IR regime and experimentally demonstrate, for the first time, the ability of TiN to support Spoof Surface Plasmon Polaritons in the mid-IR (6 microns wavelength).

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Gadalla, A. S. Greenspon, M. Tamagnone, F. Capasso, and E. L. Hu, “Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures,” ACS Appl. Nano Mater. 2(6), 3444–3452 (2019)..
    [Crossref]
  2. U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
    [Crossref]
  3. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  4. U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
    [Crossref]
  5. H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017)..
    [Crossref]
  6. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
    [Crossref]
  7. C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 2786–2797 (2015)..
    [Crossref]
  8. W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
    [Crossref]
  9. R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications,” ACS Photonics 5(3), 814–819 (2018).
    [Crossref]
  10. N. Kinsey, M. Ferrera, G. V. Naik, V. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
    [Crossref]
  11. C. Vernoux, Y. Chen, L. Markey, C. Spârchez, J. Arocas, T. Felder, M. Neitz, L. Brusberg, J.-C. Weeber, and S. I. Bozhevolnyi, “Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects,” Opt. Mater. Express 8(2), 469–484 (2018).
    [Crossref]
  12. C. M. Zgrabik, Wide tunability of magnetron sputtered titanium nitride and titanium oxynitride for plasmonic applications (2016).
  13. M. Gadalla, A. Greenspon, M. Tamagnone, F. Capasso, and E. Hu, “Metallic refractory titanium nitride: An alternative stable metal with tunable optical properties for high temperature plasmonic applications,” in APS Meeting Abstracts (2019).
  14. N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
    [Crossref]
  15. J. Rivory, J. Behaghel, S. Berthier, and J. Lafait, “Structure and properties of TiN coatings,” Thin Solid Films 78(2), 161–165 (1981).
    [Crossref]
  16. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001)..
    [Crossref]
  17. W. M. Haynes, Crc handbook of chemistry and physics (CRC press, 2014).
  18. S. A. Maier, Plasmonics: Fundamentals and applications (Springer Science & Business Media, 2007).
  19. J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17(26), 23603–23609 (2009).
    [Crossref]
  20. M.-S. Tomaš and Z. Lenac, “Long-range surface polaritons in a supported thin metallic slab,” Solid State Commun. 50(10), 915–918 (1984).
    [Crossref]
  21. M.-S. Tomaš and Z. Lenac, “Coupled surface polariton with guided wave polariton modes in asymmetric metal clad dielectric waveguides,” Opt. Commun. 55(4), 267–270 (1985).
    [Crossref]
  22. Z. Lenac, “Attenuation of long-range surface polaritons in a thin metallic slab with a dielectric coating,” Surf. Sci. 154(2-3), 639–657 (1985).
    [Crossref]
  23. http://www.nanophys.kth.se/nanophys/facilities/nfl/resists/zep520a-7-2.pdf .
  24. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  25. W. Ma and A. S. Helmy, “Asymmetric long-range hybrid-plasmonic modes in asymmetric nanometer-scale structures,” J. Opt. Soc. Am. B 31(7), 1723–1729 (2014)..
    [Crossref]
  26. S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films,” ACS Photonics 5(11), 4423–4431 (2018)..
    [Crossref]
  27. J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref]
  28. M. Born and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).
  29. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [Crossref]
  30. J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure,” Sci. Rep. 5(1), 8165 (2015)..
    [Crossref]
  31. Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015)..
    [Crossref]
  32. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100(2), 375–378 (2010).
    [Crossref]
  33. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008).
    [Crossref]
  34. F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  35. M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
    [Crossref]

2019 (2)

M. N. Gadalla, A. S. Greenspon, M. Tamagnone, F. Capasso, and E. L. Hu, “Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures,” ACS Appl. Nano Mater. 2(6), 3444–3452 (2019)..
[Crossref]

W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
[Crossref]

2018 (3)

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

C. Vernoux, Y. Chen, L. Markey, C. Spârchez, J. Arocas, T. Felder, M. Neitz, L. Brusberg, J.-C. Weeber, and S. I. Bozhevolnyi, “Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects,” Opt. Mater. Express 8(2), 469–484 (2018).
[Crossref]

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films,” ACS Photonics 5(11), 4423–4431 (2018)..
[Crossref]

2017 (2)

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017)..
[Crossref]

2015 (3)

C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 2786–2797 (2015)..
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure,” Sci. Rep. 5(1), 8165 (2015)..
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015)..
[Crossref]

2014 (5)

W. Ma and A. S. Helmy, “Asymmetric long-range hybrid-plasmonic modes in asymmetric nanometer-scale structures,” J. Opt. Soc. Am. B 31(7), 1723–1729 (2014)..
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref]

2012 (1)

2010 (3)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100(2), 375–378 (2010).
[Crossref]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref]

2009 (2)

2008 (1)

2005 (1)

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

2004 (1)

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

2001 (1)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001)..
[Crossref]

1985 (2)

M.-S. Tomaš and Z. Lenac, “Coupled surface polariton with guided wave polariton modes in asymmetric metal clad dielectric waveguides,” Opt. Commun. 55(4), 267–270 (1985).
[Crossref]

Z. Lenac, “Attenuation of long-range surface polaritons in a thin metallic slab with a dielectric coating,” Surf. Sci. 154(2-3), 639–657 (1985).
[Crossref]

1984 (1)

M.-S. Tomaš and Z. Lenac, “Long-range surface polaritons in a supported thin metallic slab,” Solid State Commun. 50(10), 915–918 (1984).
[Crossref]

1981 (1)

J. Rivory, J. Behaghel, S. Berthier, and J. Lafait, “Structure and properties of TiN coatings,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Arocas, J.

Babicheva, V.

Behaghel, J.

J. Rivory, J. Behaghel, S. Berthier, and J. Lafait, “Structure and properties of TiN coatings,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Berthier, S.

J. Rivory, J. Behaghel, S. Berthier, and J. Lafait, “Structure and properties of TiN coatings,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Boltasseva, A.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films,” ACS Photonics 5(11), 4423–4431 (2018)..
[Crossref]

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017)..
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Bozhevolnyi, S. I.

Brusberg, L.

Campbell, A.

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Capasso, F.

M. N. Gadalla, A. S. Greenspon, M. Tamagnone, F. Capasso, and E. L. Hu, “Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures,” ACS Appl. Nano Mater. 2(6), 3444–3452 (2019)..
[Crossref]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

M. Gadalla, A. Greenspon, M. Tamagnone, F. Capasso, and E. Hu, “Metallic refractory titanium nitride: An alternative stable metal with tunable optical properties for high temperature plasmonic applications,” in APS Meeting Abstracts (2019).

Chandrasekar, R.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Chen, J.

Chen, L.-J.

W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
[Crossref]

Chen, Y.

Cheng, C.-W.

W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
[Crossref]

Cortie, M.

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref]

Cui, T. J.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015)..
[Crossref]

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure,” Sci. Rep. 5(1), 8165 (2015)..
[Crossref]

Dao, T. D.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Dowd, A.

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref]

Durach, M.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100(2), 375–378 (2010).
[Crossref]

A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008).
[Crossref]

Dutta, A.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films,” ACS Photonics 5(11), 4423–4431 (2018)..
[Crossref]

Eyink, K.

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Felder, T.

Fernández-Domínguez, A. I.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015)..
[Crossref]

Ferrera, M.

Gadalla, M.

M. Gadalla, A. Greenspon, M. Tamagnone, F. Capasso, and E. Hu, “Metallic refractory titanium nitride: An alternative stable metal with tunable optical properties for high temperature plasmonic applications,” in APS Meeting Abstracts (2019).

Gadalla, M. N.

M. N. Gadalla, A. S. Greenspon, M. Tamagnone, F. Capasso, and E. L. Hu, “Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures,” ACS Appl. Nano Mater. 2(6), 3444–3452 (2019)..
[Crossref]

Garcia-Vidal, F.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Giddings, J.

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref]

Gong, Q.

Grant, J.

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Greenspon, A.

M. Gadalla, A. Greenspon, M. Tamagnone, F. Capasso, and E. Hu, “Metallic refractory titanium nitride: An alternative stable metal with tunable optical properties for high temperature plasmonic applications,” in APS Meeting Abstracts (2019).

Greenspon, A. S.

M. N. Gadalla, A. S. Greenspon, M. Tamagnone, F. Capasso, and E. L. Hu, “Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures,” ACS Appl. Nano Mater. 2(6), 3444–3452 (2019)..
[Crossref]

Guler, U.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017)..
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

Guo, W.-P.

W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
[Crossref]

Gwo, S.

W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
[Crossref]

Haynes, W. M.

W. M. Haynes, Crc handbook of chemistry and physics (CRC press, 2014).

Helmy, A. S.

Hu, E.

M. Gadalla, A. Greenspon, M. Tamagnone, F. Capasso, and E. Hu, “Metallic refractory titanium nitride: An alternative stable metal with tunable optical properties for high temperature plasmonic applications,” in APS Meeting Abstracts (2019).

Hu, E. L.

M. N. Gadalla, A. S. Greenspon, M. Tamagnone, F. Capasso, and E. L. Hu, “Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures,” ACS Appl. Nano Mater. 2(6), 3444–3452 (2019)..
[Crossref]

C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 2786–2797 (2015)..
[Crossref]

Irudayaraj, J. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

Ishii, S.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

Jakubiak, R.

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Kildishev, A. V.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films,” ACS Photonics 5(11), 4423–4431 (2018)..
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017)..
[Crossref]

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Kim, J.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Kinsey, N.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films,” ACS Photonics 5(11), 4423–4431 (2018)..
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref]

Kudyshev, Z.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017)..
[Crossref]

Lafait, J.

J. Rivory, J. Behaghel, S. Berthier, and J. Lafait, “Structure and properties of TiN coatings,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Lenac, Z.

M.-S. Tomaš and Z. Lenac, “Coupled surface polariton with guided wave polariton modes in asymmetric metal clad dielectric waveguides,” Opt. Commun. 55(4), 267–270 (1985).
[Crossref]

Z. Lenac, “Attenuation of long-range surface polaritons in a thin metallic slab with a dielectric coating,” Surf. Sci. 154(2-3), 639–657 (1985).
[Crossref]

M.-S. Tomaš and Z. Lenac, “Long-range surface polaritons in a supported thin metallic slab,” Solid State Commun. 50(10), 915–918 (1984).
[Crossref]

Li, L.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Li, Z.

Liao, Z.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015)..
[Crossref]

Lin, M.-T.

W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
[Crossref]

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Liu, J.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

Logothetidis, S.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001)..
[Crossref]

Luo, Y.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015)..
[Crossref]

Ma, W.

Maier, S. A.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015)..
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and applications (Springer Science & Business Media, 2007).

Markey, L.

Martinez, G.

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Martin-Moreno, L.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Meng, X.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Mishra, R.

W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
[Crossref]

Nabatame, T.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

Nagao, T.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

Naik, G. V.

Neitz, M.

Nelson, K. A.

Ni, X.

Ohi, A.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

Pachter, R.

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Pan, B. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure,” Sci. Rep. 5(1), 8165 (2015)..
[Crossref]

Patsalas, P.

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001)..
[Crossref]

Pendry, J.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Ramana, C.

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Reddy, H.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017)..
[Crossref]

Ren, J.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure,” Sci. Rep. 5(1), 8165 (2015)..
[Crossref]

Rivory, J.

J. Rivory, J. Behaghel, S. Berthier, and J. Lafait, “Structure and properties of TiN coatings,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Rusina, A.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100(2), 375–378 (2010).
[Crossref]

A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008).
[Crossref]

Saber, S. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

Saha, B.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

Saha, S.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films,” ACS Photonics 5(11), 4423–4431 (2018)..
[Crossref]

Sands, T. D.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Schroeder, J. L.

Shalaev, V. M.

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films,” ACS Photonics 5(11), 4423–4431 (2018)..
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017)..
[Crossref]

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref]

Shen, X.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015)..
[Crossref]

Spârchez, C.

Stach, E.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Stach, E. A.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

Stockman, M. I.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100(2), 375–378 (2010).
[Crossref]

A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008).
[Crossref]

Sugavaneshwar, R. P.

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

Tamagnone, M.

M. N. Gadalla, A. S. Greenspon, M. Tamagnone, F. Capasso, and E. L. Hu, “Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures,” ACS Appl. Nano Mater. 2(6), 3444–3452 (2019)..
[Crossref]

M. Gadalla, A. Greenspon, M. Tamagnone, F. Capasso, and E. Hu, “Metallic refractory titanium nitride: An alternative stable metal with tunable optical properties for high temperature plasmonic applications,” in APS Meeting Abstracts (2019).

Tomaš, M.-S.

M.-S. Tomaš and Z. Lenac, “Coupled surface polariton with guided wave polariton modes in asymmetric metal clad dielectric waveguides,” Opt. Commun. 55(4), 267–270 (1985).
[Crossref]

M.-S. Tomaš and Z. Lenac, “Long-range surface polaritons in a supported thin metallic slab,” Solid State Commun. 50(10), 915–918 (1984).
[Crossref]

Vernoux, C.

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Wang, Z.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Weeber, J.-C.

White, N.

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Wu, B.-H.

W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
[Crossref]

Yin, J. Y.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure,” Sci. Rep. 5(1), 8165 (2015)..
[Crossref]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Yue, S.

Zemlyanov, D.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Zgrabik, C. M.

C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 2786–2797 (2015)..
[Crossref]

C. M. Zgrabik, Wide tunability of magnetron sputtered titanium nitride and titanium oxynitride for plasmonic applications (2016).

Zhang, H. C.

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure,” Sci. Rep. 5(1), 8165 (2015)..
[Crossref]

ACS Appl. Nano Mater. (1)

M. N. Gadalla, A. S. Greenspon, M. Tamagnone, F. Capasso, and E. L. Hu, “Excitation of Strong Localized Surface Plasmon Resonances in Highly Metallic Titanium Nitride Nano-Antennas for Stable Performance at Elevated Temperatures,” ACS Appl. Nano Mater. 2(6), 3444–3452 (2019)..
[Crossref]

ACS Photonics (4)

W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, and S. Gwo, “Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold,” ACS Photonics 6(8), 1848–1854 (2019)..
[Crossref]

R. P. Sugavaneshwar, S. Ishii, T. D. Dao, A. Ohi, T. Nabatame, and T. Nagao, “Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications,” ACS Photonics 5(3), 814–819 (2018).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017)..
[Crossref]

S. Saha, A. Dutta, N. Kinsey, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films,” ACS Photonics 5(11), 4423–4431 (2018)..
[Crossref]

Adv. Opt. Mater. (1)

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Appl. Phys. A (1)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A 100(2), 375–378 (2010).
[Crossref]

Appl. Surf. Sci. (1)

N. White, A. Campbell, J. Grant, R. Pachter, K. Eyink, R. Jakubiak, G. Martinez, and C. Ramana, “Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films,” Appl. Surf. Sci. 292, 74–85 (2014).
[Crossref]

J. Appl. Phys. (1)

P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90(9), 4725–4734 (2001)..
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanotechnology (1)

M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnology 21(11), 115201 (2010).
[Crossref]

Nat. Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Opt. Commun. (1)

M.-S. Tomaš and Z. Lenac, “Coupled surface polariton with guided wave polariton modes in asymmetric metal clad dielectric waveguides,” Opt. Commun. 55(4), 267–270 (1985).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (3)

Proc. Natl. Acad. Sci. (1)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)..
[Crossref]

Sci. Rep. (2)

J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, “Broadband Frequency-Selective Spoof Surface Plasmon Polaritons on Ultrathin Metallic Structure,” Sci. Rep. 5(1), 8165 (2015)..
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015)..
[Crossref]

Science (2)

J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref]

Solid State Commun. (1)

M.-S. Tomaš and Z. Lenac, “Long-range surface polaritons in a supported thin metallic slab,” Solid State Commun. 50(10), 915–918 (1984).
[Crossref]

Surf. Sci. (1)

Z. Lenac, “Attenuation of long-range surface polaritons in a thin metallic slab with a dielectric coating,” Surf. Sci. 154(2-3), 639–657 (1985).
[Crossref]

Thin Solid Films (1)

J. Rivory, J. Behaghel, S. Berthier, and J. Lafait, “Structure and properties of TiN coatings,” Thin Solid Films 78(2), 161–165 (1981).
[Crossref]

Other (6)

C. M. Zgrabik, Wide tunability of magnetron sputtered titanium nitride and titanium oxynitride for plasmonic applications (2016).

M. Gadalla, A. Greenspon, M. Tamagnone, F. Capasso, and E. Hu, “Metallic refractory titanium nitride: An alternative stable metal with tunable optical properties for high temperature plasmonic applications,” in APS Meeting Abstracts (2019).

M. Born and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

W. M. Haynes, Crc handbook of chemistry and physics (CRC press, 2014).

S. A. Maier, Plasmonics: Fundamentals and applications (Springer Science & Business Media, 2007).

http://www.nanophys.kth.se/nanophys/facilities/nfl/resists/zep520a-7-2.pdf .

Supplementary Material (3)

NameDescription
» Visualization 1       This video shows the excitation of spoof surface plasmon at 6 microns excitation in TiN.
» Visualization 2       This video shows how the confined spoof plasmons on a patterned TiN surface lose confinement and couple to radiative modes as they transition from the fringe surface to a flat surface. These radiative modes couple back into confined modes as they tra
» Visualization 3       This video shows the effect of etch depth on exciting spoof surface plasmons in titanium nitride.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Real and Imaginary part of the dielectric function of Au and our sputtered TiN thin film on MgO substrate obtained by spectroscopic ellipsometry, showing the close resemblance between both Re (ɛ) and Im (ɛ) of our optimized TiN thin films and those of Au. (b) FDTD numerical simulations of the surface plasmon band diagram in IMI system with the dispersion relation of single interface overlaid as dotted white and black lines for the case of Air/TiN and MgO/TiN respectively. This plot was obtained using FDTD simulations by sweeping over the wave vector to find corresponding frequencies at which the coupled electric field is maximized. The change in color along the SPP trace reflects the strength of the resonance at each point. For small wave vectors (dark red color), each wave vector has strong coupling at a single corresponding frequency. As the value of the wave vector increases the corresponding resonance branches from being one frequency point to a band of different resonance frequencies (faded turquoise region in the plot representing different frequencies at which strong coupling is observed where the strength of the coupling is determined by the scale bar) (c) Zoom in from Fig. 1(b) showing the dispersion relation at the frequency band of interest in the Air/TiN/MgO interface.
Fig. 2.
Fig. 2. (a) Grating used for momentum matching. (b,c,d) far-field reflectivity at 775 nm, 800 nm, and 825 nm respectively at different angles of incidence showing strong coupling to SPPs in TiN in the visible regime. Measurements are labeled as FTIR and simulations are labeled as FDTD.
Fig. 3.
Fig. 3. (a) SNOM measurement procedure (b) FDTD simulations for SPPs on TiN using slit coupling at 825 nm excitation. (c,d,e) SNOM results showing actual images of the SPPs with long propagation length of at least 10 µm for three excitation wavelengths: 775 nm, 800 nm, and 825 nm. Fast Fourier Transform of the data presented shows a dominant peak that corresponds to the periodicity of the fringes. The insets of figure c, d, and e labeled E-Field Intensity I(x) show the exponential power decay as a function of propagation distance x.
Fig. 4.
Fig. 4. (a, b, c, d) dispersion relation of SSPP at 50 nm, 200 nm, 500 nm, and 700 nm etch depth respectively. (e,f,g,h) Corresponding FDTD simulations showing the coupling from a 6 µm Total Field / Scattered Field excitation source (TF/SF) to SSPP on the surface of 50 nm, 200 nm, 500 nm, and 700 nm etch depth respectively. The red blob propagating upwards in plots f, g, and h represents reflections from the normally incident source. Figure h clearly shows the confined high intensity SSPP modes and the exponential evanescent behavior experienced inside the waveguides. The inset of Figure h shows a zoom in on the evanescent modes inside the trenches with saturated scale bar to highlight their decay behavior inside the guide. Visualization 1, Visualization 2, and Visualization 3 show the temporal evolution of the spoof plasmons for different etch depths in addition to the coupling and decoupling of radiative and confined states as the modes transition between flat and etched surfaces.
Fig. 5.
Fig. 5. (a) 700 nm deep grooves in TiN fabricated using Ebeam lithography and ICP-RIE etching. (b) Top view for the FDTD simulations of the expected spoof plasmon modes at 6 um illumination. (c) Near field imaging of the strongly excited plasmons for a grating line width of 100 nm and a period of 200 nm. The nonuniformity of the measured field pattern in figure c is due to the degradation of the tip as it scans the trenches with significantly high aspect ratio.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k i 2 = k x 2 k 0 2 ε i ( i = 1 , 2 , 3 )
e 4 k 1 a = k 1 ε 1 + k 2 ε 2 k 1 ε 1 k 2 ε 2 k 1 ε 1 + k 3 ε 3 k 1 ε 1 k 3 ε 3
k x 2 = k 0 2 + ( a k g t a n ( h k g ) d ) 2
k g 2 = k 0 2 ( 1 + i + 1 a k 0 R e ϵ T i N )

Metrics