Abstract

Inhomogeneities in the refractive index of a biological microscopy sample can introduce phase aberrations, severely impairing the quality of images. Adaptive optics can be employed to correct for phase aberrations and improve image quality. However, conventional adaptive optics can only correct a single phase aberration for the whole field of view (isoplanatic correction) while, due to the highly heterogeneous nature of biological tissues, the sample induced aberrations in microscopy often vary throughout the field of view (anisoplanatic aberration), limiting significantly the effectiveness of adaptive optics. This paper reports on a new approach for aberration correction in laser scanning confocal microscopy, in which a spatial light modulator is used to generate multiple excitation points in the sample to simultaneously scan different portions of the field of view with completely independent correction, achieving anisoplanatic compensation of sample induced aberrations, in a significantly shorter time compared to sequential isoplanatic correction of multiple image subregions. The method was tested in whole Drosophila brains and in larval Zebrafish, each showing a dramatic improvement in resolution and sharpness when compared to conventional isoplanatic adaptive optics.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14(4), 374–380 (2017).
    [Crossref]
  2. M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
    [Crossref]
  3. D. C. Johnston and B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11(1), 394–408 (1994).
    [Crossref]
  4. E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328
  5. J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17(6), 4454–4467 (2009).
    [Crossref]
  6. T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
    [Crossref]
  7. J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
    [Crossref]
  8. J. Mertz, H. Paudel, and T. G. Bifano, “Field of view advantage of conjugate adaptive optics in microscopy applications,” Appl. Opt. 54(11), 3498–3506 (2015).
    [Crossref]
  9. H. P. Paudel, J. Taranto, J. Mertz, and T. Bifano, “Axial range of conjugate adaptive optics in two-photon microscopy,” Opt. Express 23(16), 20849–20857 (2015).
    [Crossref]
  10. J. H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. 112(30), 9236–9241 (2015).
    [Crossref]
  11. I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref]
  12. M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “Gpu accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
    [Crossref]
  13. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
    [Crossref]
  14. P. Pozzi, L. Maddalena, N. Ceffa, O. Soloviev, G. Vdovin, E. Carroll, and M. Verhaegen, “Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm,” Methods Protoc. 2(1), 2 (2019).
    [Crossref]
  15. T. D. Visser and S. H. Wiersma, “Electromagnetic description of image formation in confocal fluorescence microscopy,” J. Opt. Soc. Am. A 11(2), 599–608 (1994).
    [Crossref]
  16. D. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, and M. Verhaegen, “Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope,” Opt. Express 24(22), 24896–24906 (2016).
    [Crossref]
  17. P. Pozzi, O. Soloviev, D. Wilding, G. Vdovin, and M. Verhaegen, “Optimal model-based sensorless adaptive optics for epifluorescence microscopy,” PLoS One 13(3), e0194523–15 (2018).
    [Crossref]
  18. D. Débarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15(13), 8176–8190 (2007).
    [Crossref]
  19. T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3d sted microscopy in aberrating specimens,” Opt. Express 20(19), 20998–21009 (2012).
    [Crossref]
  20. T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
    [Crossref]
  21. P. Pozzi, D. Wilding, O. Soloviev, H. Verstraete, L. Bliek, G. Vdovin, and M. Verhaegen, “High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy,” Opt. Express 25(2), 949–959 (2017).
    [Crossref]
  22. A. Nakano, “Spinning-disk confocal microscopy–a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
    [Crossref]
  23. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998).
    [Crossref]
  24. H. R. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, “Model-based sensor-less wavefront aberration correction in optical coherence tomography,” Opt. Lett. 40(24), 5722–5725 (2015).
    [Crossref]
  25. E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, and S. Waddell, “Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body,” Neuron 90(5), 1086–1099 (2016).
    [Crossref]

2019 (1)

P. Pozzi, L. Maddalena, N. Ceffa, O. Soloviev, G. Vdovin, E. Carroll, and M. Verhaegen, “Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm,” Methods Protoc. 2(1), 2 (2019).
[Crossref]

2018 (2)

P. Pozzi, O. Soloviev, D. Wilding, G. Vdovin, and M. Verhaegen, “Optimal model-based sensorless adaptive optics for epifluorescence microscopy,” PLoS One 13(3), e0194523–15 (2018).
[Crossref]

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

2017 (3)

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref]

N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14(4), 374–380 (2017).
[Crossref]

P. Pozzi, D. Wilding, O. Soloviev, H. Verstraete, L. Bliek, G. Vdovin, and M. Verhaegen, “High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy,” Opt. Express 25(2), 949–959 (2017).
[Crossref]

2016 (2)

E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, and S. Waddell, “Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body,” Neuron 90(5), 1086–1099 (2016).
[Crossref]

D. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, and M. Verhaegen, “Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope,” Opt. Express 24(22), 24896–24906 (2016).
[Crossref]

2015 (4)

2014 (1)

2013 (1)

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

2012 (1)

2009 (1)

2007 (3)

2002 (2)

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

A. Nakano, “Spinning-disk confocal microscopy–a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref]

1998 (1)

1994 (2)

Amorin, A.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Arcidiacono, C.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Baade, D.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Balestra, A.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Barnstedt, O.

E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, and S. Waddell, “Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body,” Neuron 90(5), 1086–1099 (2016).
[Crossref]

Baruffolo, A.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Betzig, E.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Bewersdorf, J.

Bifano, T.

Bifano, T. G.

Bliek, L.

Booth, M. J.

Brynnel, J.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Burke, D.

Butler, D. J.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Carroll, E.

P. Pozzi, L. Maddalena, N. Ceffa, O. Soloviev, G. Vdovin, E. Carroll, and M. Verhaegen, “Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm,” Methods Protoc. 2(1), 2 (2019).
[Crossref]

Cavadore, C.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Ceffa, N.

P. Pozzi, L. Maddalena, N. Ceffa, O. Soloviev, G. Vdovin, E. Carroll, and M. Verhaegen, “Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm,” Methods Protoc. 2(1), 2 (2019).
[Crossref]

Cižmár, T.

Collins, Z. M.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Conan, R.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Cui, M.

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref]

J. H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. 112(30), 9236–9241 (2015).
[Crossref]

Cunniff, B.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Dambournet, D.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Débarre, D.

Delabre, B.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Dholakia, K.

Di Leonardo, R.

Diolaiti, E.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Donaldson, R.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Drubin, D. G.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Farinato, J.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Fedrigo, E.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Forster, R.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Franza, F.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Fujita, K.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Gilmozzi, R.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Gould, T. J.

Hayashi, S.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Hell, S. W.

Hippler, S.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Hiscock, T. W.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Hockemeyer, D.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Hubin, N. N.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Huetteroth, W.

E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, and S. Waddell, “Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body,” Neuron 90(5), 1086–1099 (2016).
[Crossref]

Ianni, F.

Ji, N.

N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14(4), 374–380 (2017).
[Crossref]

Johnston, D. C.

Juškaitis, R.

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

Kalkman, J.

Kirchhausen, T.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Knutsson, P.

Kohrman, A. Q.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Kondo, T.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Kong, L.

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref]

Konno, D.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Kosugi, Y.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Koyama, M.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

l. Liu, T.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Lizon, J.-L.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Louarn, M. L.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Maddalena, L.

P. Pozzi, L. Maddalena, N. Ceffa, O. Soloviev, G. Vdovin, E. Carroll, and M. Verhaegen, “Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm,” Methods Protoc. 2(1), 2 (2019).
[Crossref]

Marchetti, E.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Martin, B. L.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Matsuzaki, F.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Matus, D. Q.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Medwig, T. N.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Megason, S. G.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Mertz, J.

Meyerowitz, E. M.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Milkie, D. E.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Mimori-Kiyosue, Y.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Monnet, G. J.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Mosaliganti, K. R.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Mosk, A.

Nakano, A.

A. Nakano, “Spinning-disk confocal microscopy–a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref]

Nakayama, H.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Neil, M. A.

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

Onami, S.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Owald, D.

E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, and S. Waddell, “Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body,” Neuron 90(5), 1086–1099 (2016).
[Crossref]

Owner-Petersen, M.

Park, J. H.

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref]

J. H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. 112(30), 9236–9241 (2015).
[Crossref]

Paudel, H.

Paudel, H. P.

Perisse, E.

E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, and S. Waddell, “Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body,” Neuron 90(5), 1086–1099 (2016).
[Crossref]

Pick, R.

Plöschner, M.

Popovic, Z.

Pozzi, P.

P. Pozzi, L. Maddalena, N. Ceffa, O. Soloviev, G. Vdovin, E. Carroll, and M. Verhaegen, “Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm,” Methods Protoc. 2(1), 2 (2019).
[Crossref]

P. Pozzi, O. Soloviev, D. Wilding, G. Vdovin, and M. Verhaegen, “Optimal model-based sensorless adaptive optics for epifluorescence microscopy,” PLoS One 13(3), e0194523–15 (2018).
[Crossref]

P. Pozzi, D. Wilding, O. Soloviev, H. Verstraete, L. Bliek, G. Vdovin, and M. Verhaegen, “High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy,” Opt. Express 25(2), 949–959 (2017).
[Crossref]

D. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, and M. Verhaegen, “Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope,” Opt. Express 24(22), 24896–24906 (2016).
[Crossref]

Ragazzoni, R.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Ruan, Y.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Ruocco, G.

Scholpp, S.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Shea, J.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Shimozawa, T.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Shitamukai, A.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Singh, V.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Soloviev, O.

P. Pozzi, L. Maddalena, N. Ceffa, O. Soloviev, G. Vdovin, E. Carroll, and M. Verhaegen, “Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm,” Methods Protoc. 2(1), 2 (2019).
[Crossref]

P. Pozzi, O. Soloviev, D. Wilding, G. Vdovin, and M. Verhaegen, “Optimal model-based sensorless adaptive optics for epifluorescence microscopy,” PLoS One 13(3), e0194523–15 (2018).
[Crossref]

P. Pozzi, D. Wilding, O. Soloviev, H. Verstraete, L. Bliek, G. Vdovin, and M. Verhaegen, “High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy,” Opt. Express 25(2), 949–959 (2017).
[Crossref]

D. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, and M. Verhaegen, “Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope,” Opt. Express 24(22), 24896–24906 (2016).
[Crossref]

Straka, B.

Sun, W.

J. H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. 112(30), 9236–9241 (2015).
[Crossref]

Swinburne, I. A.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Takayama, J.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Talbot, C. B.

E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, and S. Waddell, “Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body,” Neuron 90(5), 1086–1099 (2016).
[Crossref]

Taranto, J.

Thaung, J.

Upadhyayula, S.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Vdovin, G.

P. Pozzi, L. Maddalena, N. Ceffa, O. Soloviev, G. Vdovin, E. Carroll, and M. Verhaegen, “Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm,” Methods Protoc. 2(1), 2 (2019).
[Crossref]

P. Pozzi, O. Soloviev, D. Wilding, G. Vdovin, and M. Verhaegen, “Optimal model-based sensorless adaptive optics for epifluorescence microscopy,” PLoS One 13(3), e0194523–15 (2018).
[Crossref]

P. Pozzi, D. Wilding, O. Soloviev, H. Verstraete, L. Bliek, G. Vdovin, and M. Verhaegen, “High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy,” Opt. Express 25(2), 949–959 (2017).
[Crossref]

D. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, and M. Verhaegen, “Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope,” Opt. Express 24(22), 24896–24906 (2016).
[Crossref]

Vellekoop, I. M.

Verhaegen, M.

Vernet-Viard, E.

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Verstraete, H.

Verstraete, H. R.

Visser, T. D.

Waddell, S.

E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, and S. Waddell, “Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body,” Neuron 90(5), 1086–1099 (2016).
[Crossref]

Wahls, S.

Wang, K.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Watanabe, T. M.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Welsh, B. M.

Wiersma, S. H.

Wilding, D.

Wilson, T.

D. Débarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15(13), 8176–8190 (2007).
[Crossref]

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

Yamagata, K.

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

Yashiro, H.

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Zhou, Y.

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref]

Appl. Opt. (1)

Cell Struct. Funct. (1)

A. Nakano, “Spinning-disk confocal microscopy–a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27(5), 349–355 (2002).
[Crossref]

J. Opt. Soc. Am. A (2)

Methods Protoc. (1)

P. Pozzi, L. Maddalena, N. Ceffa, O. Soloviev, G. Vdovin, E. Carroll, and M. Verhaegen, “Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm,” Methods Protoc. 2(1), 2 (2019).
[Crossref]

Nat. Methods (2)

N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14(4), 374–380 (2017).
[Crossref]

J. H. Park, L. Kong, Y. Zhou, and M. Cui, “Large-field-of-view imaging by multi-pupil adaptive optics,” Nat. Methods 14(6), 581–583 (2017).
[Crossref]

Neuron (1)

E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, and S. Waddell, “Aversive learning and appetitive motivation toggle feed-forward inhibition in the drosophila mushroom body,” Neuron 90(5), 1086–1099 (2016).
[Crossref]

Opt. Express (8)

P. Pozzi, D. Wilding, O. Soloviev, H. Verstraete, L. Bliek, G. Vdovin, and M. Verhaegen, “High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy,” Opt. Express 25(2), 949–959 (2017).
[Crossref]

J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17(6), 4454–4467 (2009).
[Crossref]

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3d sted microscopy in aberrating specimens,” Opt. Express 20(19), 20998–21009 (2012).
[Crossref]

D. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, and M. Verhaegen, “Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope,” Opt. Express 24(22), 24896–24906 (2016).
[Crossref]

H. P. Paudel, J. Taranto, J. Mertz, and T. Bifano, “Axial range of conjugate adaptive optics in two-photon microscopy,” Opt. Express 23(16), 20849–20857 (2015).
[Crossref]

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
[Crossref]

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “Gpu accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
[Crossref]

D. Débarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15(13), 8176–8190 (2007).
[Crossref]

Opt. Lett. (3)

PLoS One (1)

P. Pozzi, O. Soloviev, D. Wilding, G. Vdovin, and M. Verhaegen, “Optimal model-based sensorless adaptive optics for epifluorescence microscopy,” PLoS One 13(3), e0194523–15 (2018).
[Crossref]

Proc. Natl. Acad. Sci. (3)

T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T. M. Watanabe, K. Fujita, and Y. Mimori-Kiyosue, “Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,” Proc. Natl. Acad. Sci. 110(9), 3399–3404 (2013).
[Crossref]

J. H. Park, W. Sun, and M. Cui, “High-resolution in vivo imaging of mouse brain through the intact skull,” Proc. Natl. Acad. Sci. 112(30), 9236–9241 (2015).
[Crossref]

M. J. Booth, M. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. 99(9), 5788–5792 (2002).
[Crossref]

Science (1)

T. l. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms,” Science 360(6386), eaaq1392 (2018).
[Crossref]

Other (1)

E. Marchetti, N. N. Hubin, E. Fedrigo, J. Brynnel, B. Delabre, R. Donaldson, F. Franza, R. Conan, M. L. Louarn, C. Cavadore, A. Balestra, D. Baade, J.-L. Lizon, R. Gilmozzi, G. J. Monnet, R. Ragazzoni, C. Arcidiacono, A. Baruffolo, E. Diolaiti, J. Farinato, E. Vernet-Viard, D. J. Butler, S. Hippler, and A. Amorin, “Mad: the eso multiconjugate adaptive optics demonstrator,” in Adaptive Optical System Technologies II, vol. 4839 (International Society for Optics and Photonics, 2003), pp. 317–328

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Anisoplanatic aberrations and correction approach. a Light from different parts of the field of view travel through different sections of the sample, and are therefore affected by different aberrations, which can not be compensated completely by a single corrector in the pupil plane. b phase patterns generating single corrected spots in different locations in the sample. It should be apparent that the corrected phase aberration varies depending on the spot location. c Multispot hologram with independent spots correction. The hologram is a complex sum of the phase patterns generating the single corrected spots. It is crucial to notice that all correction patterns are defined over the full size of the pupil, therefore exploiting the full resolution of the corrector.
Fig. 2.
Fig. 2. Method description and performance a Schematic representation of the optical setup, reporting the optical paths for two spots at the edges of the field of view, represented in green and red. Displacement between spots is exaggerated to aid readability. Excitation light (Source) was modulated by the SLM with the computed hologram (CGH). The SLM plane was conjugated by a telescope (L1,L2) to the DM plane. A second telescope (L3,L4) conjugated the DM to the back aperture of the objective. Fluorescence light propagated the opposite direction, was descanned by the DM, filtered by a dichroic and emission filter set (EF) and focused by a short focal tube lens (TL) on the camera detector (CAM). b Schematic representation of the intensity distribution and scanning path at the sample plane for a 4 spot LSFM-ACE, with scanning path for the acquisition of metric values. c Simulated examples of Lorentzian fits for the estimations of maximas of a given coefficient. d Scanning path for the final image acquisition. e Comparison of minimum achievable frame time for LSFM-ACE correcting $64$ subregions with a $400Hz$ camera and sequential correction with a traditional confocal microscope scanning at $400Hz$ e Pixels exposure times for LSFM-ACE and sequential correction with a traditional confocal microscope, under the same assumptions as in panel e.
Fig. 3.
Fig. 3. Image correction comparison. Example of image acquired with LSFM-ACE, all images of the same sample are on the same intensity scale. a, b, c Image at approximately 15 $\mu m$ depth respectively without adaptive optics, corrected with isoplanatic adaptive optic and with anisoplanatic correction of excitation. d, e, f maximum intensity projection, of a $30 \mu m$ thick stack of the same sample of panels a, b, c. g, h, i x-z maximum intensity projection of the same stacks of panels d, e, f. j Isoplanatic correction applied with the DM on the plane imaged in b and c. k Individual correction of the $8 \times 8$ patches corrected in panel c. l SLM hologram generating the anisoplanatically corrected hologram in c. m, n, o) details from the red highlighted areas in a, b, c.
Fig. 4.
Fig. 4. Estimated resolution. Results of Fourier Ring Correlation of single subregions in the data presented in Fig. 3. a-d Distribution of estimated resolution, , relative improvement of anisoplanatic correction compared to traditional AO, and a selected subregion detail for the image acquired at $5$ to $35 \mu m$ depth in the sample e-f Histogram of the distribution of axial and lateral resolution amongst subregions in the volume at depths higher than $10 \mu m$.
Fig. 5.
Fig. 5. Maximum instensity projections of zebrafish images.Maximum intensity projections of images from a fixed 4 dpf larva expressing GFP in blood vessels is shown with a no aberration corrections; b isoplanatic corrections; c LSFM-ACE images. d Schematic of zebrafish head indicating rostral (R) – caudal (C) axis. e) Detail from forebrain region indicated by box in panel a. Scale bar is $20 \mu m$. f Wrapped isoplanatic aberration corrected in b. g Comparison of line profiles (indicated by red line in b) shows that the LSFM-ACE method particularly improved features far from the FOV center, in this case making smaller vessels visible in the optic tectum. Inset images show wrapped corrections applied to corresponding individual isoplanatic patches.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ C G H = arg ( n = 1 N e i ( ϕ P O S , n + ϕ A O , n + θ n ) ) ,
ϕ P O S , n ( x , y ) = 2 π λ f ( x x n + y y n ) ,
x m a x = λ f R 2 D λ R 4 N A
ϕ C G H 0 = arg ( n = 1 N e i ( ϕ n 0 + θ n ) ) ,
max a n j Υ n ( ϕ j 1 + a n j L j )   ,
ϕ C G H j = arg ( n = 1 N e i ( ϕ n j + θ n ) ) ,
ϕ n j = ϕ n j 1 + a ^ n j L j   ,

Metrics