Abstract

In this work, shape-dependent mid-infrared properties of novel split ring resonator (SRR) metamaterials composed of single-walled carbon nanotube (CNT) forest are investigated. The introduction of the gap and dip shape to the closed ring geometry reduced the total reflectance by 15%, due to the generation of circular currents and LC resonances in SRRs. The increase of the SRR height reduced the total IR reflectance by 25%. Unique one-dimensional anisotropic electric and photonic properties of CNTs, combined with an artificial refractive index induced in SRR circuits, will stimulate the development of new optoelectronics applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube

J. H. Woo, E. Choi, Boyoung Kang, E. S. Kim, J. Kim, Y. U. Lee, Tae Y. Hong, Jae H. Kim, Ilha Lee, Young Hee Lee, and J. W. Wu
Opt. Express 20(14) 15440-15451 (2012)

THz bandwidth optical switching with carbon nanotube metamaterial

Andrey E. Nikolaenko, Nikitas Papasimakis, Arkadi Chipouline, Francesco De Angelis, Enzo Di Fabrizio, and Nikolay I. Zheludev
Opt. Express 20(6) 6068-6079 (2012)

Dependence of LC resonance wavelength on size of silver split-ring resonator fabricated by nanosphere lithography

Toshihiro Okamoto, Tomoya Otsuka, Shuji Sato, Tetsuya Fukuta, and Masanobu Haraguchi
Opt. Express 20(21) 24059-24067 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Focus Issue: Negative Refraction and Metamaterials,” Opt. Express 11(7), 639 (2003).
    [Crossref]
  2. A. C. Sparavigna, “Vibrations of a one-dimensional host-guest system,” Mater. Sci. Appl. 2(5), 314–318 (2011).
    [Crossref]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  4. A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” J. Opt. Soc. Am. B 24(3), 510–515 (2007).
    [Crossref]
  5. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref]
  6. A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
    [Crossref]
  7. A. Pander, A. Hatta, and H. Furuta, “FIB secondary etching method for fabrication of fine CNT forest metamaterials,” Nano-Micro Lett. 9(4), 44 (2017).
    [Crossref]
  8. T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
    [Crossref]
  9. H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4(1), 5217 (2015).
    [Crossref]
  10. N. Feth, C. Enkrich, M. Wegener, and S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15(2), 501–507 (2007).
    [Crossref]
  11. V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
    [Crossref]
  12. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
    [Crossref]
  13. A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electronic Adv. 1(5), 18000901–18000925 (2018).
    [Crossref]
  14. Y. Zhao, A. Qing, Y. Meng, Z. Song, and C. Lin, “Dual-band Circular Polarizer Based on Simultaneous Anisotropy and Chirality in Planar Metamaterial,” Sci. Rep. 8(1), 1729 (2018).
    [Crossref]
  15. A. Rose, S. Larouche, E. Poutrina, and D. R. Smith, “Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory,” Phys. Rev. A 86(3), 033816 (2012).
    [Crossref]
  16. A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
    [Crossref]
  17. A. A. Sukhorukov, A. S. Solntsev, S. S. Kruk, D. N. Neshev, and Y. S. Kivshar, “Nonlinear coupled-mode theory for periodic plasmonic waveguides and metamaterials with loss and gain,” Opt. Lett. 39(3), 462–465 (2014).
    [Crossref]
  18. H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
    [Crossref]
  19. H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
    [Crossref]
  20. H. Dai, “Carbon nanotubes: Opportunities and challenges,” Surf. Sci. 500(1-3), 218–241 (2002).
    [Crossref]
  21. W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science 270(5239), 1179–1180 (1995).
    [Crossref]
  22. A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
    [Crossref]
  23. J. A. García-Merino, C. L. Martínez-González, C. R. T. San Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Magneto-conductivity and magnetically-controlled nonlinear optical transmittance in multi-wall carbon nanotubes,” Opt. Express 24(17), 19552–19557 (2016).
    [Crossref]
  24. D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Phys. Lett. A 329(3), 207–213 (2004).
    [Crossref]
  25. Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, “Polarization dependence of the optical absorption of single-walled carbon nanotubes,” Phys. Rev. Lett. 94(8), 087402 (2005).
    [Crossref]
  26. M. Ichida, S. Mizuno, H. Kataura, Y. Achiba, and A. Nakamura, “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A 78(8), 1117–1120 (2004).
    [Crossref]
  27. H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
    [Crossref]
  28. P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, “Carbon nanotube optoelectronics,” Phys. Status Solidi B 243(13), 3197–3203 (2006).
    [Crossref]
  29. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
    [Crossref]
  30. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
    [Crossref]
  31. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
    [Crossref]
  32. H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express 18(6), 6347–6359 (2010).
    [Crossref]
  33. M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
    [Crossref]
  34. G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
    [Crossref]
  35. J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
    [Crossref]
  36. S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014).
    [Crossref]
  37. T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
    [Crossref]
  38. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  39. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007).
    [Crossref]
  40. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
    [Crossref]
  41. J. H. Woo, E. Choi, B. Kang, E. S. Kim, J. Kim, Y. U. Lee, T. Y. Hong, J. H. Kim, I. Lee, Y. H. Lee, and J. W. Wu, “Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube,” Opt. Express 20(14), 15440–15451 (2012).
    [Crossref]
  42. A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20(6), 6068–6079 (2012).
    [Crossref]
  43. Y. Wang, Z. Cui, D. Zhu, X. Zhang, and L. Qian, “Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface,” Opt. Express 26(12), 15343–15352 (2018).
    [Crossref]
  44. H. Butt, A. K. Yetisen, R. Ahmed, S. H. Yun, and Q. Dai, “Carbon nanotube biconvex microcavities,” Appl. Phys. Lett. 106(12), 121108 (2015).
    [Crossref]
  45. H. Butt, Q. Dai, R. Rajesekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials,” ACS Nano 5(11), 9138–9143 (2011).
    [Crossref]
  46. Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
    [Crossref]
  47. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
    [Crossref]
  48. J. Chen, Y. Jin, P. Chen, Y. Shan, J. Xu, F. Kong, and J. Shao, “Polarization-independent almost-perfect absorber controlled from narrowband to broadband,” Opt. Express 25(12), 13916–13922 (2017).
    [Crossref]
  49. C.-H. Fann, J. Zhang, M. ElKabbash, W. R. Donaldson, E. Michael Campbell, C. Guo, E. M. Campbell, and C. Guo, “Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms,” Opt. Express 27(20), 27917–27926 (2019).
    [Crossref]
  50. L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
    [Crossref]
  51. A. Pander, A. Hatta, and H. Furuta, “Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method,” Appl. Surf. Sci. 371, 425–435 (2016).
    [Crossref]
  52. A. Pander, K. Ishimoto, A. Hatta, and H. Furuta, “Significant decrease in the reflectance of thin CNT forest films tuned by the Taguchi method,” Vacuum 154, 285–295 (2018).
    [Crossref]
  53. S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, “Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics,” Chem. Mater. 19(16), 4023–4029 (2007).
    [Crossref]
  54. S. Maine, C. Koechlin, S. Rennesson, J. Jaeck, S. Salort, B. Chassagne, F. Pardo, J.-L. Pelouard, and R. Hadar, “Complex optical index of single wall carbon nanotube films from the near-infrared to the terahertz spectral range,” Appl. Opt. 51(15), 3031–3035 (2012).
    [Crossref]
  55. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  56. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon 40(12), 2043–2061 (2002).
    [Crossref]
  57. V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
    [Crossref]
  58. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
    [Crossref]
  59. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
    [Crossref]
  60. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
    [Crossref]
  61. M. Wąsik, J. Judek, and M. Zdrojek, “Polarization-dependent optical reflection from vertically aligned multiwalled carbon nanotube arrays,” Carbon 64, 550–552 (2013).
    [Crossref]
  62. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
    [Crossref]
  63. X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
    [Crossref]
  64. M. Wąsik, J. Judek, M. Zdrojek, and A. M. Witowski, “Limitations of blackbody behavior of vertically aligned multi-walled carbon nanotubes arrays,” Mater. Lett. 137, 85–87 (2014).
    [Crossref]
  65. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
    [Crossref]
  66. A. Pander, K. Takano, A. Hatta, M. Nakajima, and H. Furuta, “The influence of the inner structure of CNT forest metamaterials in the infrared regime,” Diamond Relat. Mater. 80, 99–107 (2017).
    [Crossref]
  67. M. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes,” Phys. Rev. B 98(18), 186808 (2007).
    [Crossref]
  68. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
    [Crossref]
  69. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency yunability,” Nano Lett. 10(10), 4222–4227 (2010).
    [Crossref]

2019 (3)

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

C.-H. Fann, J. Zhang, M. ElKabbash, W. R. Donaldson, E. Michael Campbell, C. Guo, E. M. Campbell, and C. Guo, “Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms,” Opt. Express 27(20), 27917–27926 (2019).
[Crossref]

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

2018 (4)

Y. Wang, Z. Cui, D. Zhu, X. Zhang, and L. Qian, “Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface,” Opt. Express 26(12), 15343–15352 (2018).
[Crossref]

A. Pander, K. Ishimoto, A. Hatta, and H. Furuta, “Significant decrease in the reflectance of thin CNT forest films tuned by the Taguchi method,” Vacuum 154, 285–295 (2018).
[Crossref]

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electronic Adv. 1(5), 18000901–18000925 (2018).
[Crossref]

Y. Zhao, A. Qing, Y. Meng, Z. Song, and C. Lin, “Dual-band Circular Polarizer Based on Simultaneous Anisotropy and Chirality in Planar Metamaterial,” Sci. Rep. 8(1), 1729 (2018).
[Crossref]

2017 (3)

A. Pander, A. Hatta, and H. Furuta, “FIB secondary etching method for fabrication of fine CNT forest metamaterials,” Nano-Micro Lett. 9(4), 44 (2017).
[Crossref]

A. Pander, K. Takano, A. Hatta, M. Nakajima, and H. Furuta, “The influence of the inner structure of CNT forest metamaterials in the infrared regime,” Diamond Relat. Mater. 80, 99–107 (2017).
[Crossref]

J. Chen, Y. Jin, P. Chen, Y. Shan, J. Xu, F. Kong, and J. Shao, “Polarization-independent almost-perfect absorber controlled from narrowband to broadband,” Opt. Express 25(12), 13916–13922 (2017).
[Crossref]

2016 (3)

A. Pander, A. Hatta, and H. Furuta, “Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method,” Appl. Surf. Sci. 371, 425–435 (2016).
[Crossref]

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

J. A. García-Merino, C. L. Martínez-González, C. R. T. San Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Magneto-conductivity and magnetically-controlled nonlinear optical transmittance in multi-wall carbon nanotubes,” Opt. Express 24(17), 19552–19557 (2016).
[Crossref]

2015 (2)

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4(1), 5217 (2015).
[Crossref]

H. Butt, A. K. Yetisen, R. Ahmed, S. H. Yun, and Q. Dai, “Carbon nanotube biconvex microcavities,” Appl. Phys. Lett. 106(12), 121108 (2015).
[Crossref]

2014 (3)

S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014).
[Crossref]

M. Wąsik, J. Judek, M. Zdrojek, and A. M. Witowski, “Limitations of blackbody behavior of vertically aligned multi-walled carbon nanotubes arrays,” Mater. Lett. 137, 85–87 (2014).
[Crossref]

A. A. Sukhorukov, A. S. Solntsev, S. S. Kruk, D. N. Neshev, and Y. S. Kivshar, “Nonlinear coupled-mode theory for periodic plasmonic waveguides and metamaterials with loss and gain,” Opt. Lett. 39(3), 462–465 (2014).
[Crossref]

2013 (3)

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

M. Wąsik, J. Judek, and M. Zdrojek, “Polarization-dependent optical reflection from vertically aligned multiwalled carbon nanotube arrays,” Carbon 64, 550–552 (2013).
[Crossref]

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

2012 (5)

2011 (4)

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref]

A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[Crossref]

A. C. Sparavigna, “Vibrations of a one-dimensional host-guest system,” Mater. Sci. Appl. 2(5), 314–318 (2011).
[Crossref]

H. Butt, Q. Dai, R. Rajesekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials,” ACS Nano 5(11), 9138–9143 (2011).
[Crossref]

2010 (8)

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency yunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref]

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
[Crossref]

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[Crossref]

H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express 18(6), 6347–6359 (2010).
[Crossref]

2009 (2)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref]

2008 (4)

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

2007 (7)

N. Feth, C. Enkrich, M. Wegener, and S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15(2), 501–507 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

A. Ishikawa, T. Tanaka, and S. Kawata, “Frequency dependence of the magnetic response of split-ring resonators,” J. Opt. Soc. Am. B 24(3), 510–515 (2007).
[Crossref]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

M. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes,” Phys. Rev. B 98(18), 186808 (2007).
[Crossref]

S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, “Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics,” Chem. Mater. 19(16), 4023–4029 (2007).
[Crossref]

J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007).
[Crossref]

2006 (3)

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, “Carbon nanotube optoelectronics,” Phys. Status Solidi B 243(13), 3197–3203 (2006).
[Crossref]

2005 (2)

Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, “Polarization dependence of the optical absorption of single-walled carbon nanotubes,” Phys. Rev. Lett. 94(8), 087402 (2005).
[Crossref]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

2004 (5)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

M. Ichida, S. Mizuno, H. Kataura, Y. Achiba, and A. Nakamura, “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A 78(8), 1117–1120 (2004).
[Crossref]

D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Phys. Lett. A 329(3), 207–213 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

2003 (2)

J. B. Pendry, “Focus Issue: Negative Refraction and Metamaterials,” Opt. Express 11(7), 639 (2003).
[Crossref]

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

2002 (4)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

H. Dai, “Carbon nanotubes: Opportunities and challenges,” Surf. Sci. 500(1-3), 218–241 (2002).
[Crossref]

M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon 40(12), 2043–2061 (2002).
[Crossref]

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

1995 (1)

W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science 270(5239), 1179–1180 (1995).
[Crossref]

1965 (1)

Abe, D.

S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014).
[Crossref]

Achiba, Y.

M. Ichida, S. Mizuno, H. Kataura, Y. Achiba, and A. Nakamura, “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A 78(8), 1117–1120 (2004).
[Crossref]

Adewuyi, O. S.

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Ahmed, R.

H. Butt, A. K. Yetisen, R. Ahmed, S. H. Yun, and Q. Dai, “Carbon nanotube biconvex microcavities,” Appl. Phys. Lett. 106(12), 121108 (2015).
[Crossref]

Ahn, Y. H.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Aitchison, B.

Ajayan, P. M.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref]

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Akozbek, N.

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

Amaratunga, G. A. J.

H. Butt, Q. Dai, R. Rajesekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials,” ACS Nano 5(11), 9138–9143 (2011).
[Crossref]

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Anderson, J. T.

S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, “Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics,” Chem. Mater. 19(16), 4023–4029 (2007).
[Crossref]

Ashburn, P.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[Crossref]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency yunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref]

Avouris, P.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, “Carbon nanotube optoelectronics,” Phys. Status Solidi B 243(13), 3197–3203 (2006).
[Crossref]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency yunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref]

Bahena-Garrido, S.

S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014).
[Crossref]

Bao, H.

Baumberg, J. J.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Bhatia, B.

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

Bloemer, M. J.

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

Boden, S. A.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[Crossref]

Brar, V. W.

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency yunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref]

Brown, D. P.

Bur, J. A.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref]

Butler, T.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Butt, H.

H. Butt, A. K. Yetisen, R. Ahmed, S. H. Yun, and Q. Dai, “Carbon nanotube biconvex microcavities,” Appl. Phys. Lett. 106(12), 121108 (2015).
[Crossref]

H. Butt, Q. Dai, R. Rajesekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials,” ACS Nano 5(11), 9138–9143 (2011).
[Crossref]

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Campbell, E. M.

Centini, M.

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

Chandra, B.

M. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes,” Phys. Rev. B 98(18), 186808 (2007).
[Crossref]

Chassagne, B.

Chatelain, A.

W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science 270(5239), 1179–1180 (1995).
[Crossref]

Chen, G.

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Phys. Lett. A 329(3), 207–213 (2004).
[Crossref]

Chen, J.

J. Chen, Y. Jin, P. Chen, Y. Shan, J. Xu, F. Kong, and J. Shao, “Polarization-independent almost-perfect absorber controlled from narrowband to broadband,” Opt. Express 25(12), 13916–13922 (2017).
[Crossref]

P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, “Carbon nanotube optoelectronics,” Phys. Status Solidi B 243(13), 3197–3203 (2006).
[Crossref]

Chen, P.

Chen, Y.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Chipouline, A.

Cho, Y. J.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Choi, E.

Choi, H.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4(1), 5217 (2015).
[Crossref]

Ci, L.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref]

Cola, B. A.

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Cooper, T. A.

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

Cui, Z.

Dai, H.

H. Dai, “Carbon nanotubes: Opportunities and challenges,” Surf. Sci. 500(1-3), 218–241 (2002).
[Crossref]

Dai, Q.

H. Butt, A. K. Yetisen, R. Ahmed, S. H. Yun, and Q. Dai, “Carbon nanotube biconvex microcavities,” Appl. Phys. Lett. 106(12), 121108 (2015).
[Crossref]

H. Butt, Q. Dai, R. Rajesekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials,” ACS Nano 5(11), 9138–9143 (2011).
[Crossref]

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

De Angelis, F.

A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20(6), 6068–6079 (2012).
[Crossref]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[Crossref]

de Ceglia, D.

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

de Heer, W. A.

W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science 270(5239), 1179–1180 (1995).
[Crossref]

Di Fabrizio, E.

A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20(6), 6068–6079 (2012).
[Crossref]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[Crossref]

Digiovanni, D. J.

Donaldson, W. R.

Dresselhaus, G.

M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon 40(12), 2043–2061 (2002).
[Crossref]

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

Dresselhaus, M. S.

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon 40(12), 2043–2061 (2002).
[Crossref]

Economou, E. N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Edamura, T.

Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, “Polarization dependence of the optical absorption of single-walled carbon nanotubes,” Phys. Rev. Lett. 94(8), 087402 (2005).
[Crossref]

Einarsson, E.

Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, “Polarization dependence of the optical absorption of single-walled carbon nanotubes,” Phys. Rev. Lett. 94(8), 087402 (2005).
[Crossref]

ElKabbash, M.

Enkrich, C.

N. Feth, C. Enkrich, M. Wegener, and S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15(2), 501–507 (2007).
[Crossref]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Etrich, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

Fang, A.

Fann, C.-H.

Farah, P.

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Feng, Q.

Feth, N.

Filho, A. G. S.

M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon 40(12), 2043–2061 (2002).
[Crossref]

Fisher, T. S.

Freitag, M.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, “Carbon nanotube optoelectronics,” Phys. Status Solidi B 243(13), 3197–3203 (2006).
[Crossref]

Furuki, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Furuta, H.

A. Pander, K. Ishimoto, A. Hatta, and H. Furuta, “Significant decrease in the reflectance of thin CNT forest films tuned by the Taguchi method,” Vacuum 154, 285–295 (2018).
[Crossref]

A. Pander, K. Takano, A. Hatta, M. Nakajima, and H. Furuta, “The influence of the inner structure of CNT forest metamaterials in the infrared regime,” Diamond Relat. Mater. 80, 99–107 (2017).
[Crossref]

A. Pander, A. Hatta, and H. Furuta, “FIB secondary etching method for fabrication of fine CNT forest metamaterials,” Nano-Micro Lett. 9(4), 44 (2017).
[Crossref]

A. Pander, A. Hatta, and H. Furuta, “Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method,” Appl. Surf. Sci. 371, 425–435 (2016).
[Crossref]

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
[Crossref]

Furuta, M.

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
[Crossref]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

García-Merino, J. A.

Gerthsen, D.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

Giessen, H.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

Goldberg, B. B.

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

Guo, C.

Guo, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

Guo, Y.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Hadar, R.

Hakulinen, T.

Härkönen, A.

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Hatta, A.

A. Pander, K. Ishimoto, A. Hatta, and H. Furuta, “Significant decrease in the reflectance of thin CNT forest films tuned by the Taguchi method,” Vacuum 154, 285–295 (2018).
[Crossref]

A. Pander, K. Takano, A. Hatta, M. Nakajima, and H. Furuta, “The influence of the inner structure of CNT forest metamaterials in the infrared regime,” Diamond Relat. Mater. 80, 99–107 (2017).
[Crossref]

A. Pander, A. Hatta, and H. Furuta, “FIB secondary etching method for fabrication of fine CNT forest metamaterials,” Nano-Micro Lett. 9(4), 44 (2017).
[Crossref]

A. Pander, A. Hatta, and H. Furuta, “Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method,” Appl. Surf. Sci. 371, 425–435 (2016).
[Crossref]

Haus, J. W.

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Hirao, T.

H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
[Crossref]

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

Hojo, T.

S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014).
[Crossref]

Hone, J.

M. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes,” Phys. Rev. B 98(18), 186808 (2007).
[Crossref]

Hong, B. H.

M. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes,” Phys. Rev. B 98(18), 186808 (2007).
[Crossref]

Hong, D.

S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, “Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics,” Chem. Mater. 19(16), 4023–4029 (2007).
[Crossref]

Hong, J. T.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Hong, M.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electronic Adv. 1(5), 18000901–18000925 (2018).
[Crossref]

Hong, T. Y.

Hu, C.

Huang, C.

Huang, D.

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref]

Huang, Y.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Huang, Z.

Hung, C. M.

S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, “Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics,” Chem. Mater. 19(16), 4023–4029 (2007).
[Crossref]

Ichida, M.

M. Ichida, S. Mizuno, H. Kataura, Y. Achiba, and A. Nakamura, “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A 78(8), 1117–1120 (2004).
[Crossref]

In, C.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4(1), 5217 (2015).
[Crossref]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Ishikawa, A.

Ishimoto, K.

A. Pander, K. Ishimoto, A. Hatta, and H. Furuta, “Significant decrease in the reflectance of thin CNT forest films tuned by the Taguchi method,” Vacuum 154, 285–295 (2018).
[Crossref]

Iwasa, I.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Jablonski, M.

Jaeck, J.

Jang, D. M.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Jin, Y.

Jorio, A.

M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon 40(12), 2043–2061 (2002).
[Crossref]

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

Judek, J.

M. Wąsik, J. Judek, M. Zdrojek, and A. M. Witowski, “Limitations of blackbody behavior of vertically aligned multi-walled carbon nanotubes arrays,” Mater. Lett. 137, 85–87 (2014).
[Crossref]

M. Wąsik, J. Judek, and M. Zdrojek, “Polarization-dependent optical reflection from vertically aligned multiwalled carbon nanotube arrays,” Carbon 64, 550–552 (2013).
[Crossref]

Jung, G. B.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Jung, H.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4(1), 5217 (2015).
[Crossref]

Kafesaki, M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Kaiser, S.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Kang, B.

Kang, C.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Kaskela, A.

Kataura, H.

M. Ichida, S. Mizuno, H. Kataura, Y. Achiba, and A. Nakamura, “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A 78(8), 1117–1120 (2004).
[Crossref]

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Kauppinen, E. I.

Kawabata, K.

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
[Crossref]

Kawaharamura, T.

H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
[Crossref]

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

Kawata, S.

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency yunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref]

Keszler, D. A.

S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, “Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics,” Chem. Mater. 19(16), 4023–4029 (2007).
[Crossref]

Kim, D. S.

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Kim, E. S.

Kim, H. S.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Kim, J.

Kim, J. H.

Kim, P.

M. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes,” Phys. Rev. B 98(18), 186808 (2007).
[Crossref]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Kivistö, S.

Kivshar, Y. S.

Koechlin, C.

Komukai, T.

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

Kong, F.

Kong, W.-Y.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Koschny, T.

A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[Crossref]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Kruk, S. S.

Kuhl, J.

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

Larouche, S.

A. Rose, S. Larouche, E. Poutrina, and D. R. Smith, “Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory,” Phys. Rev. A 86(3), 033816 (2012).
[Crossref]

Lederer, F.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

Lee, C.-W.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Lee, H.

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4(1), 5217 (2015).
[Crossref]

Lee, I.

Lee, S.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Lee, Y. H.

Lee, Y. U.

Li, C.

H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
[Crossref]

Li, X.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Li, Z.-P.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Lim, H.

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Lin, C.

Y. Zhao, A. Qing, Y. Meng, Z. Song, and C. Lin, “Dual-band Circular Polarizer Based on Simultaneous Anisotropy and Chirality in Planar Metamaterial,” Sci. Rep. 8(1), 1729 (2018).
[Crossref]

Lin, S. Y.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref]

Linden, S.

N. Feth, C. Enkrich, M. Wegener, and S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15(2), 501–507 (2007).
[Crossref]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Liu, N.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

Loa, I.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

Lu, T.-M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Luo, J.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Luo, L.-B.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Luo, X.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref]

Ma, X.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref]

Maeng, I.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Maine, S.

Malitson, I. H.

Martínez-González, C. L.

Martínez-Gutiérrez, H.

Maruyama, S.

Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, “Polarization dependence of the optical absorption of single-walled carbon nanotubes,” Phys. Rev. Lett. 94(8), 087402 (2005).
[Crossref]

Matsuda, T.

H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
[Crossref]

Meng, Y.

Y. Zhao, A. Qing, Y. Meng, Z. Song, and C. Lin, “Dual-band Circular Polarizer Based on Simultaneous Anisotropy and Chirality in Planar Metamaterial,” Sci. Rep. 8(1), 1729 (2018).
[Crossref]

Meyers, S. T.

S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, “Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics,” Chem. Mater. 19(16), 4023–4029 (2007).
[Crossref]

Meyrath, T. P.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Michael Campbell, E.

Mitsu, H.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Mizuno, S.

M. Ichida, S. Mizuno, H. Kataura, Y. Achiba, and A. Nakamura, “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A 78(8), 1117–1120 (2004).
[Crossref]

Murakami, Y.

Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, “Polarization dependence of the optical absorption of single-walled carbon nanotubes,” Phys. Rev. Lett. 94(8), 087402 (2005).
[Crossref]

Myung, Y.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Nakajima, M.

A. Pander, K. Takano, A. Hatta, M. Nakajima, and H. Furuta, “The influence of the inner structure of CNT forest metamaterials in the infrared regime,” Diamond Relat. Mater. 80, 99–107 (2017).
[Crossref]

Nakamura, A.

M. Ichida, S. Mizuno, H. Kataura, Y. Achiba, and A. Nakamura, “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A 78(8), 1117–1120 (2004).
[Crossref]

Nasibulin, A. G.

Nemati, A.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electronic Adv. 1(5), 18000901–18000925 (2018).
[Crossref]

Neshev, D. N.

Nicholson, J. W.

Nikolaenko, A. E.

A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20(6), 6068–6079 (2012).
[Crossref]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[Crossref]

O’Brien, K.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Oguchi, T.

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

Okhotnikov, O. G.

Pander, A.

A. Pander, K. Ishimoto, A. Hatta, and H. Furuta, “Significant decrease in the reflectance of thin CNT forest films tuned by the Taguchi method,” Vacuum 154, 285–295 (2018).
[Crossref]

A. Pander, A. Hatta, and H. Furuta, “FIB secondary etching method for fabrication of fine CNT forest metamaterials,” Nano-Micro Lett. 9(4), 44 (2017).
[Crossref]

A. Pander, K. Takano, A. Hatta, M. Nakajima, and H. Furuta, “The influence of the inner structure of CNT forest metamaterials in the infrared regime,” Diamond Relat. Mater. 80, 99–107 (2017).
[Crossref]

A. Pander, A. Hatta, and H. Furuta, “Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method,” Appl. Surf. Sci. 371, 425–435 (2016).
[Crossref]

Papasimakis, N.

A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20(6), 6068–6079 (2012).
[Crossref]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[Crossref]

Pardo, F.

Park, D. J.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Park, J.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Park, J. K.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Park, J.-Y.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Pelouard, J.-L.

Pendry, J. B.

Perebeinos, V.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, “Carbon nanotube optoelectronics,” Phys. Status Solidi B 243(13), 3197–3203 (2006).
[Crossref]

Pérez-Willard, F.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

Poutrina, E.

A. Rose, S. Larouche, E. Poutrina, and D. R. Smith, “Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory,” Phys. Rev. A 86(3), 033816 (2012).
[Crossref]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency yunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref]

Pu, M.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref]

Purewal, M.

M. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes,” Phys. Rev. B 98(18), 186808 (2007).
[Crossref]

Qian, L.

Qing, A.

Y. Zhao, A. Qing, Y. Meng, Z. Song, and C. Lin, “Dual-band Circular Polarizer Based on Simultaneous Anisotropy and Chirality in Planar Metamaterial,” Sci. Rep. 8(1), 1729 (2018).
[Crossref]

Rajesekharan, R.

H. Butt, Q. Dai, R. Rajesekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials,” ACS Nano 5(11), 9138–9143 (2011).
[Crossref]

Raravikar, N. R.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Ravi, A.

M. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes,” Phys. Rev. B 98(18), 186808 (2007).
[Crossref]

Rennesson, S.

Rockstuhl, C.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

Roppo, V.

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

Rose, A.

A. Rose, S. Larouche, E. Poutrina, and D. R. Smith, “Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory,” Phys. Rev. A 86(3), 033816 (2012).
[Crossref]

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref]

Rotermund, F.

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Ruan, X.

Saito, R.

M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon 40(12), 2043–2061 (2002).
[Crossref]

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

Salandrino, A.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Salort, S.

Samsonidze, G. G.

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

San Miguel, C. R. T.

Sato, Y.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Scalora, M.

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

Schadler, L. S.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Seidel, A.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Sellin, P. J.

D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Phys. Lett. A 329(3), 207–213 (2004).
[Crossref]

Seo, M. A.

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Set, S. Y.

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shan, Y.

Shao, J.

Shimoi, N.

S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014).
[Crossref]

Shimomoto, Y.

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

Smith, D. R.

A. Rose, S. Larouche, E. Poutrina, and D. R. Smith, “Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory,” Phys. Rev. A 86(3), 033816 (2012).
[Crossref]

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref]

Sohn, Y. J.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Solntsev, A. S.

Son, J.-H.

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

Song, Z.

Y. Zhao, A. Qing, Y. Meng, Z. Song, and C. Lin, “Dual-band Circular Polarizer Based on Simultaneous Anisotropy and Chirality in Planar Metamaterial,” Sci. Rep. 8(1), 1729 (2018).
[Crossref]

Soukoulis, C. M.

A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[Crossref]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Souza Filho, A. G.

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

Sparavigna, A. C.

A. C. Sparavigna, “Vibrations of a one-dimensional host-guest system,” Mater. Sci. Appl. 2(5), 314–318 (2011).
[Crossref]

Strobach, E.

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

Suchowski, H.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Sukhorukov, A. A.

Swan, A. K.

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

Syassen, K.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

Takano, K.

A. Pander, K. Takano, A. Hatta, M. Nakajima, and H. Furuta, “The influence of the inner structure of CNT forest metamaterials in the infrared regime,” Diamond Relat. Mater. 80, 99–107 (2017).
[Crossref]

Tanaka, T.

Tanaka, Y.

S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014).
[Crossref]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

Tatsuura, S.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Teng, J.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electronic Adv. 1(5), 18000901–18000925 (2018).
[Crossref]

Tian, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Tohji, K.

S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014).
[Crossref]

Torres-Torres, C.

Trejo-Valdez, M.

Tsang, J. C.

P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, “Carbon nanotube optoelectronics,” Phys. Status Solidi B 243(13), 3197–3203 (2006).
[Crossref]

Ugarte, D.

W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science 270(5239), 1179–1180 (1995).
[Crossref]

Ünlü, M. S.

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

Vicenti, M. A.

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

Wager, J. F.

S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, “Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics,” Chem. Mater. 19(16), 4023–4029 (2007).
[Crossref]

Wang, C.

Wang, E. N.

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

Wang, G.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Wang, J.-Z.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Wang, L. P.

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Wang, M.

Wang, Q.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electronic Adv. 1(5), 18000901–18000925 (2018).
[Crossref]

Wang, S. G.

D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Phys. Lett. A 329(3), 207–213 (2004).
[Crossref]

Wang, X. J.

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Wang, Y.

Wasik, M.

M. Wąsik, J. Judek, M. Zdrojek, and A. M. Witowski, “Limitations of blackbody behavior of vertically aligned multi-walled carbon nanotubes arrays,” Mater. Lett. 137, 85–87 (2014).
[Crossref]

M. Wąsik, J. Judek, and M. Zdrojek, “Polarization-dependent optical reflection from vertically aligned multiwalled carbon nanotube arrays,” Carbon 64, 550–552 (2013).
[Crossref]

Wegener, M.

N. Feth, C. Enkrich, M. Wegener, and S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15(2), 501–507 (2007).
[Crossref]

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Weinstein, L. A.

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

Wilkinson, T. D.

H. Butt, Q. Dai, R. Rajesekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials,” ACS Nano 5(11), 9138–9143 (2011).
[Crossref]

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Windeler, R. S.

Witowski, A. M.

M. Wąsik, J. Judek, M. Zdrojek, and A. M. Witowski, “Limitations of blackbody behavior of vertically aligned multi-walled carbon nanotubes arrays,” Mater. Lett. 137, 85–87 (2014).
[Crossref]

Wong, Z. J.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Woo, J. H.

Wu, G.-A.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Wu, J. W.

Xu, J.

Yaguchi, H.

Yang, D. J.

D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Phys. Lett. A 329(3), 207–213 (2004).
[Crossref]

Yang, S.

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

Yang, Z. P.

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref]

Yao, E.-X.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Yetisen, A. K.

H. Butt, A. K. Yetisen, R. Ahmed, S. H. Yun, and Q. Dai, “Carbon nanotube biconvex microcavities,” Appl. Phys. Lett. 106(12), 121108 (2015).
[Crossref]

Yim, J. H.

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

Yin, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Yoshihara, K.

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Yun, S. H.

H. Butt, A. K. Yetisen, R. Ahmed, S. H. Yun, and Q. Dai, “Carbon nanotube biconvex microcavities,” Appl. Phys. Lett. 106(12), 121108 (2015).
[Crossref]

Zdrojek, M.

M. Wąsik, J. Judek, M. Zdrojek, and A. M. Witowski, “Limitations of blackbody behavior of vertically aligned multi-walled carbon nanotubes arrays,” Mater. Lett. 137, 85–87 (2014).
[Crossref]

M. Wąsik, J. Judek, and M. Zdrojek, “Polarization-dependent optical reflection from vertically aligned multiwalled carbon nanotube arrays,” Carbon 64, 550–552 (2013).
[Crossref]

Zentgraf, T.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

Zhang, J.

Zhang, Q.

D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Phys. Lett. A 329(3), 207–213 (2004).
[Crossref]

Zhang, T.-F.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Zhang, X.

Y. Wang, Z. Cui, D. Zhu, X. Zhang, and L. Qian, “Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface,” Opt. Express 26(12), 15343–15352 (2018).
[Crossref]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

Zhang, X.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Zhang, Z. M.

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

Zhao, L.

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

Zhao, Y.

Y. Zhao, A. Qing, Y. Meng, Z. Song, and C. Lin, “Dual-band Circular Polarizer Based on Simultaneous Anisotropy and Chirality in Planar Metamaterial,” Sci. Rep. 8(1), 1729 (2018).
[Crossref]

Zhao, Y.-P.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

Zhao, Y.-W.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Zhao, Z.

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref]

Zheludev, N. I.

A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20(6), 6068–6079 (2012).
[Crossref]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[Crossref]

Zheng, Y.-Z.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Zhou, J.

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Zhu, D.

Zhuang, N.-X.

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

ACS Nano (2)

H. Butt, Q. Dai, R. Rajesekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials,” ACS Nano 5(11), 9138–9143 (2011).
[Crossref]

L. Zhao, B. Bhatia, S. Yang, E. Strobach, L. A. Weinstein, T. A. Cooper, G. Chen, and E. N. Wang, “Harnessing Heat Beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels,” ACS Nano 13(7), 7508–7516 (2019).
[Crossref]

Adv. Mater. (2)

C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005).
[Crossref]

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003).
[Crossref]

Adv. Sci. (1)

Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, and X. Luo, “Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

M. Ichida, S. Mizuno, H. Kataura, Y. Achiba, and A. Nakamura, “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A 78(8), 1117–1120 (2004).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B: Lasers Opt. 84(1-2), 219–227 (2006).
[Crossref]

Appl. Phys. Express (1)

H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, and T. Oguchi, “Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement,” Appl. Phys. Express 3(10), 105101 (2010).
[Crossref]

Appl. Phys. Lett. (6)

H. Butt, Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, “Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes,” Appl. Phys. Lett. 97(16), 163102 (2010).
[Crossref]

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[Crossref]

M. A. Seo, J. H. Yim, Y. H. Ahn, F. Rotermund, D. S. Kim, S. Lee, and H. Lim, “Terahertz electromagnetic interference shielding using single-walled carbon nanotube flexible films,” Appl. Phys. Lett. 93(23), 231905 (2008).
[Crossref]

X. J. Wang, L. P. Wang, O. S. Adewuyi, B. A. Cola, and Z. M. Zhang, “Highly specular carbon nanotube absorbers,” Appl. Phys. Lett. 97(16), 163116 (2010).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

H. Butt, A. K. Yetisen, R. Ahmed, S. H. Yun, and Q. Dai, “Carbon nanotube biconvex microcavities,” Appl. Phys. Lett. 106(12), 121108 (2015).
[Crossref]

Appl. Surf. Sci. (1)

A. Pander, A. Hatta, and H. Furuta, “Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method,” Appl. Surf. Sci. 371, 425–435 (2016).
[Crossref]

Carbon (2)

M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon 40(12), 2043–2061 (2002).
[Crossref]

M. Wąsik, J. Judek, and M. Zdrojek, “Polarization-dependent optical reflection from vertically aligned multiwalled carbon nanotube arrays,” Carbon 64, 550–552 (2013).
[Crossref]

Chem. Mater. (1)

S. T. Meyers, J. T. Anderson, D. Hong, C. M. Hung, J. F. Wager, and D. A. Keszler, “Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics,” Chem. Mater. 19(16), 4023–4029 (2007).
[Crossref]

Diamond Relat. Mater. (1)

A. Pander, K. Takano, A. Hatta, M. Nakajima, and H. Furuta, “The influence of the inner structure of CNT forest metamaterials in the infrared regime,” Diamond Relat. Mater. 80, 99–107 (2017).
[Crossref]

e-J. Surf. Sci. Nanotechnol. (1)

H. Furuta, T. Kawaharamura, K. Kawabata, M. Furuta, T. Matsuda, C. Li, and T. Hirao, “High-density short-height directly grown CNT patterned emitter on glass,” e-J. Surf. Sci. Nanotechnol. 8, 336–339 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

G. B. Jung, Y. Myung, Y. J. Cho, Y. J. Sohn, D. M. Jang, H. S. Kim, C.-W. Lee, J. Park, I. Maeng, J.-H. Son, and C. Kang, “Terahertz spectroscopy of nanocrystal−carbon nanotube and −graphene oxide hybrid nanostructures,” J. Phys. Chem. C 114(25), 11258–11265 (2010).
[Crossref]

J. Phys. Chem. Lett. (1)

J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J.-Y. Park, S. Lee, and Y. H. Ahn, “Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices,” J. Phys. Chem. Lett. 4(22), 3950–3957 (2013).
[Crossref]

Mater. Lett. (1)

M. Wąsik, J. Judek, M. Zdrojek, and A. M. Witowski, “Limitations of blackbody behavior of vertically aligned multi-walled carbon nanotubes arrays,” Mater. Lett. 137, 85–87 (2014).
[Crossref]

Mater. Sci. Appl. (1)

A. C. Sparavigna, “Vibrations of a one-dimensional host-guest system,” Mater. Sci. Appl. 2(5), 314–318 (2011).
[Crossref]

Metamaterials (1)

V. Roppo, M. Centini, D. de Ceglia, M. A. Vicenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses,” Metamaterials 2(2-3), 135–144 (2008).
[Crossref]

Nano Lett. (2)

Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8(2), 446–451 (2008).
[Crossref]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency yunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref]

Nano-Micro Lett. (1)

A. Pander, A. Hatta, and H. Furuta, “FIB secondary etching method for fabrication of fine CNT forest metamaterials,” Nano-Micro Lett. 9(4), 44 (2017).
[Crossref]

Nat. Photonics (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

Opt. Express (14)

H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express 18(6), 6347–6359 (2010).
[Crossref]

J. A. García-Merino, C. L. Martínez-González, C. R. T. San Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Magneto-conductivity and magnetically-controlled nonlinear optical transmittance in multi-wall carbon nanotubes,” Opt. Express 24(17), 19552–19557 (2016).
[Crossref]

J. B. Pendry, “Focus Issue: Negative Refraction and Metamaterials,” Opt. Express 11(7), 639 (2003).
[Crossref]

A. Fang, Z. Huang, T. Koschny, and C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[Crossref]

N. Feth, C. Enkrich, M. Wegener, and S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15(2), 501–507 (2007).
[Crossref]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref]

J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15(15), 9176–9183 (2007).
[Crossref]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref]

J. H. Woo, E. Choi, B. Kang, E. S. Kim, J. Kim, Y. U. Lee, T. Y. Hong, J. H. Kim, I. Lee, Y. H. Lee, and J. W. Wu, “Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube,” Opt. Express 20(14), 15440–15451 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, and N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Express 20(6), 6068–6079 (2012).
[Crossref]

Y. Wang, Z. Cui, D. Zhu, X. Zhang, and L. Qian, “Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface,” Opt. Express 26(12), 15343–15352 (2018).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref]

J. Chen, Y. Jin, P. Chen, Y. Shan, J. Xu, F. Kong, and J. Shao, “Polarization-independent almost-perfect absorber controlled from narrowband to broadband,” Opt. Express 25(12), 13916–13922 (2017).
[Crossref]

C.-H. Fann, J. Zhang, M. ElKabbash, W. R. Donaldson, E. Michael Campbell, C. Guo, E. M. Campbell, and C. Guo, “Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms,” Opt. Express 27(20), 27917–27926 (2019).
[Crossref]

Opt. Lett. (1)

Opto-Electronic Adv. (1)

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electronic Adv. 1(5), 18000901–18000925 (2018).
[Crossref]

Phys. Lett. A (1)

D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Phys. Lett. A 329(3), 207–213 (2004).
[Crossref]

Phys. Rev. A (1)

A. Rose, S. Larouche, E. Poutrina, and D. R. Smith, “Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory,” Phys. Rev. A 86(3), 033816 (2012).
[Crossref]

Phys. Rev. B (3)

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Phys. Rev. B 66(15), 155418 (2002).
[Crossref]

M. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes,” Phys. Rev. B 98(18), 186808 (2007).
[Crossref]

Phys. Rev. Lett. (3)

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett. 107(6), 063902 (2011).
[Crossref]

Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, “Polarization dependence of the optical absorption of single-walled carbon nanotubes,” Phys. Rev. Lett. 94(8), 087402 (2005).
[Crossref]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. 104(15), 153902 (2010).
[Crossref]

Phys. Status Solidi B (1)

P. Avouris, J. Chen, M. Freitag, V. Perebeinos, and J. C. Tsang, “Carbon nanotube optoelectronics,” Phys. Status Solidi B 243(13), 3197–3203 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 106(15), 6044–6047 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014).
[Crossref]

Sci. Rep. (3)

T.-F. Zhang, Z.-P. Li, J.-Z. Wang, W.-Y. Kong, G.-A. Wu, Y.-Z. Zheng, Y.-W. Zhao, E.-X. Yao, N.-X. Zhuang, and L.-B. Luo, “Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction,” Sci. Rep. 6(1), 38569 (2016).
[Crossref]

Y. Zhao, A. Qing, Y. Meng, Z. Song, and C. Lin, “Dual-band Circular Polarizer Based on Simultaneous Anisotropy and Chirality in Planar Metamaterial,” Sci. Rep. 8(1), 1729 (2018).
[Crossref]

H. Jung, C. In, H. Choi, and H. Lee, “Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster,” Sci. Rep. 4(1), 5217 (2015).
[Crossref]

Science (3)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase mismatch-free nonlinear propagation in optical zero-index materials,” Science 342(6163), 1223–1226 (2013).
[Crossref]

W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science 270(5239), 1179–1180 (1995).
[Crossref]

Surf. Sci. (1)

H. Dai, “Carbon nanotubes: Opportunities and challenges,” Surf. Sci. 500(1-3), 218–241 (2002).
[Crossref]

Vacuum (1)

A. Pander, K. Ishimoto, A. Hatta, and H. Furuta, “Significant decrease in the reflectance of thin CNT forest films tuned by the Taguchi method,” Vacuum 154, 285–295 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Graphical illustration of investigated geometrical parameters of CNT forest metamaterials: height h, dip depth d, and gap size g. SEM images of (b) patterned AlO x /Fe catalyst substrate and (c) a tilted view of CNT forest SRR metamaterial array.
Fig. 2.
Fig. 2. (a) – (e) Top view and angled SEM images of CNT SRR metamaterial arrays with the variation of the gap size of 0, 0.3, 0.6, 0.9, and 1.2µm. (f) Reflectance, (g) transmittance, and (h) absorbance spectra of fabricated SRR patterns. Peaks related to absorption of H2O and CO2 in the CNT forest structure are assigned.
Fig. 3.
Fig. 3. (a) – (d) SEM images of SRR patterns with different value of d parameter (0, 250, 500, and 750nm) used for the tuning of the magnetic resonance. (e) FT-IR reflectance spectra of fabricated patterns. Peaks related to absorption of H2O and CO2 in the CNT forest structure are assigned.
Fig. 4.
Fig. 4. SEM images of CNT SRR patterns with the modification of the total height: (a) 190nm, (b) 350nm, (c) 750nm, and (d) 2000nm. (e) Infrared reflectance spectra measured for SRR arrays. Peaks associated with the absorption of H2O and CO2 in CNTs were assigned.
Fig. 5.
Fig. 5. Electric field distribution for (a) closed ring and (b) split ring resonator composed of CNT forest at 20 THz. (c) Schematic of the elctric current flow in the structure of the CNT SRR. Size of the simulated structures was 2×2 µm.
Fig. 6.
Fig. 6. Simulated reflectance, transmittance, and absorbance responses for CNT SRR metamaterial arrays in the dependence of the gap size, from 0 to 1.2µm.
Fig. 7.
Fig. 7. Simulated reflectance, transmittance, and absorbance responses for CNT SRR metamaterial arrays in the dependence of the dip depth, from 0 to 0.8µm.
Fig. 8.
Fig. 8. Simulated reflectance, transmittance, and absorbance responses for CNT SRR metamaterial arrays in the dependence of the height, from 0.19 to 2µm.
Fig. 9.
Fig. 9. Growth time dependent Raman spectra of (a) as prepared CNT forest, and (b) patterned CNT forest.
Fig. 10.
Fig. 10. (a) Top view SEM images of CNT SRR metamaterial arrays with the height of 2µm, and the gap size of 0, 0.6, and 1.2 um. (b) Reflectance of fabricated patterns, and (c) values of reflectance for 2650cm−1 wavenumber.

Metrics