Abstract

Qiandao Lake is located in the northern edge of subtropics, and its water body is thermally stratified in summer. It is of great scientific significance to study the vertical physical and chemical indexes and phytoplankton characteristics of the Qiandao Lake to reveal the aquatic ecosystem structure of the thermally stratified lake. Conventional observation uses in-situ profile instruments, which is time consuming and labor intensive. In recent years, lidar has shown increasing oceanic applications; however, it has not yet been extensively applied in inland water. There are no studies using lidar for detecting subsurface plankton layer in Qiandao Lake. In this study, we investigated the applicability of this technology for identifying subsurface plankton layer. A simple and fast phytoplankton layer detection method was introduced. The lidar-detected layer was found to well correspond with that of the in-situ measured subsurface chlorophyll maximum layer (SCML) and phycocyanin maximum layer. Primary results show that lidar and our detection method are effective for subsurface phytoplankton layer detection. They can serve as a good monitoring tool for studying inland water stratification.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea

Hang Liu, Peng Chen, Zhihua Mao, Delu Pan, and Yan He
Opt. Express 26(22) 29134-29147 (2018)

Airborne lidar detection of subsurface oceanic scattering layers

Frank E. Hoge, C. Wayne Wright, William B. Krabill, Rodney R. Buntzen, Gary D. Gilbert, Robert N. Swift, James K. Yungel, and Richard E. Berry
Appl. Opt. 27(19) 3969-3977 (1988)

Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar

Jennifer A. Schulien, Michael J. Behrenfeld, Johnathan W. Hair, Chris A. Hostetler, and Michael S. Twardowski
Opt. Express 25(12) 13577-13587 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. o. E. Environment, “2017 China bulletin on the state of the ecological environment,” (2018), retrieved http://www.gov.cn/guoqing/2019-04/09/5380689/files/87a1ee03f56741f699489bee238ba89a.pdf .
  2. M. o. E. Environment, “State of the environment in China bulletin 2009,” (2010), retrieved http://www.gov.cn/gzdt/2010-06/04/content_1620569.htm .
  3. M. Liu, Z. Wu, J. He, X. Shen, Y. Gao, and Z. Yu, “Study on thermodynamics and thermal stratification of Xin'anjiang Reservoir (Qiandao Lake),” J. Lake Sci. 26, 447–454 (2014).
    [Crossref]
  4. M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
    [Crossref]
  5. K. Richter and H.-G. Maas, “An Approach to Determining Turbidity and Correcting for Signal Attenuation in Airborne Lidar Bathymetry,” PFG 85(1), 31–40 (2017).
    [Crossref]
  6. K. Saylam, R. A. Brown, and J. R. Hupp, “Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope,” ITC J. 58, 191–200 (2017).
    [Crossref]
  7. J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52(4), 786–794 (2013).
    [Crossref]
  8. G. P. Kokhanenko, Y. S. Balin, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Oceanic Opt. 24(5), 478–486 (2011).
    [Crossref]
  9. J. Churnside, J. Hair, C. Hostetler, and A. Scarino, “Ocean Backscatter Profiling Using High-Spectral-Resolution Lidar and a Perturbation Retrieval,” Remote Sens. 10(12), 2003 (2018).
    [Crossref]
  10. B. M. Concannon and J. E. Prentice, “LOCO with a Shipboard Lidar,” Loco with A Shipboard Lidar (2008).
  11. P. Chen and D. Pan, “Ocean Optical Profiling in South China Sea Using Airborne LiDAR,” Remote Sens. 11(15), 1826 (2019).
    [Crossref]
  12. M. R. Roddewig, N. J. Pust, J. H. Churnside, and J. A. Shaw, “Dual-polarization airborne lidar for freshwater fisheries management and research,” Opt. Eng. 56(3), 031221 (2017).
    [Crossref]
  13. M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
    [Crossref]
  14. P. Chen, D. Pan, and Z. Mao, “Development of a portable laser-induced fluorescence system used for in situ measurements of dissolved organic matter,” Opt. Laser Technol. 64, 213–219 (2014).
    [Crossref]
  15. P. Chen, D. Pan, and Z. Mao, “Fluorescence measured using a field-portable laser fluorometer as a proxy for CDOM absorption,” Estuarine, Coastal Shelf Sci. 146, 33–41 (2014).
    [Crossref]
  16. J. Churnside, “Lidar signature from bubbles in the sea,” Opt. Express 18(8), 8294–8299 (2010).
    [Crossref]
  17. J. Churnside, R. D. Marchbanks, J. H. Lee, J. Shaw, A. Weidemann, and P. L. Donaghay, "Airborne lidar detection and characterization of internal waves in a shallow Fjord," J. of Applied Remote Sensing 6, p. 3611 (2012).
    [Crossref]
  18. P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-Analytic Monte Carlo Model for Oceanographic Lidar Systems: Lookup Table Method Used for Randomly Choosing Scattering Angles,” Appl. Sci. 9(1), 48 (2018).
    [Crossref]
  19. P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer,” Opt. Laser Technol. 111, 1–5 (2019).
    [Crossref]
  20. P. Chen, D. Pan, Z. Mao, and H. Liu, “A Feasible Calibration Method for Type 1 Open Ocean Water LiDAR Data Based on Bio-Optical Models,” Remote Sens. 11(2), 172 (2019).
    [Crossref]
  21. C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
    [Crossref]
  22. O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, E. D. J. I. J. o, and R. S. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19(4), 707–715 (1998).
    [Crossref]
  23. C. C. Trees, “Beyond bathymetry: probing the ocean subsurface using ship-based lidars,” Proc. SPIE 9111, 9111OU (2014).
    [Crossref]
  24. P. Chen, D. Pan, Z. Mao, and B. Tao, “Detection of water quality parameters in Hangzhou Bay using a portable laser fluorometer,” Mar. Pollut. Bull. 93(1-2), 163–171 (2015).
    [Crossref]
  25. J. H. Churnside and R. D. Marchbanks, “Subsurface plankton layers in the Arctic Ocean,” Geophys. Res. Lett. 42(12), 4896–4902 (2015).
    [Crossref]
  26. H. Liu, P. Chen, Z. Mao, D. Pan, and Y. He, “Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea,” Opt. Express 26(22), 29134–29147 (2018).
    [Crossref]
  27. R. Arnone, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean LIDARS,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2012).
  28. B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation. Revision 3, 231–257 (2002).
  29. C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
    [Crossref]
  30. J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2013).
    [Crossref]
  31. D. Chun-Ying, Y. Zuo-Ming, W. Zhi-Xu, and W. Chun-Jin, “Study on Seasonal Characteristics of Thermal Stratification in Lacustrine Zone of Lake Qiandao,” Environmental Science 34, 8 (2013).
  32. W. Zhixu, L. Mingliang, L. Jia, H. E. Jianbo, and Y. Zuoming, “Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir(Lake Qiandao) in subtropic China during summer stratification,” J. Lake Sci. 24, 6 (2012).

2019 (4)

P. Chen, D. Pan, Z. Mao, and H. Liu, “A Feasible Calibration Method for Type 1 Open Ocean Water LiDAR Data Based on Bio-Optical Models,” Remote Sens. 11(2), 172 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer,” Opt. Laser Technol. 111, 1–5 (2019).
[Crossref]

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

P. Chen and D. Pan, “Ocean Optical Profiling in South China Sea Using Airborne LiDAR,” Remote Sens. 11(15), 1826 (2019).
[Crossref]

2018 (5)

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-Analytic Monte Carlo Model for Oceanographic Lidar Systems: Lookup Table Method Used for Randomly Choosing Scattering Angles,” Appl. Sci. 9(1), 48 (2018).
[Crossref]

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

H. Liu, P. Chen, Z. Mao, D. Pan, and Y. He, “Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea,” Opt. Express 26(22), 29134–29147 (2018).
[Crossref]

J. Churnside, J. Hair, C. Hostetler, and A. Scarino, “Ocean Backscatter Profiling Using High-Spectral-Resolution Lidar and a Perturbation Retrieval,” Remote Sens. 10(12), 2003 (2018).
[Crossref]

M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
[Crossref]

2017 (4)

M. R. Roddewig, N. J. Pust, J. H. Churnside, and J. A. Shaw, “Dual-polarization airborne lidar for freshwater fisheries management and research,” Opt. Eng. 56(3), 031221 (2017).
[Crossref]

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

K. Saylam, R. A. Brown, and J. R. Hupp, “Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope,” ITC J. 58, 191–200 (2017).
[Crossref]

K. Richter and H.-G. Maas, “An Approach to Determining Turbidity and Correcting for Signal Attenuation in Airborne Lidar Bathymetry,” PFG 85(1), 31–40 (2017).
[Crossref]

2015 (2)

P. Chen, D. Pan, Z. Mao, and B. Tao, “Detection of water quality parameters in Hangzhou Bay using a portable laser fluorometer,” Mar. Pollut. Bull. 93(1-2), 163–171 (2015).
[Crossref]

J. H. Churnside and R. D. Marchbanks, “Subsurface plankton layers in the Arctic Ocean,” Geophys. Res. Lett. 42(12), 4896–4902 (2015).
[Crossref]

2014 (4)

P. Chen, D. Pan, and Z. Mao, “Fluorescence measured using a field-portable laser fluorometer as a proxy for CDOM absorption,” Estuarine, Coastal Shelf Sci. 146, 33–41 (2014).
[Crossref]

P. Chen, D. Pan, and Z. Mao, “Development of a portable laser-induced fluorescence system used for in situ measurements of dissolved organic matter,” Opt. Laser Technol. 64, 213–219 (2014).
[Crossref]

M. Liu, Z. Wu, J. He, X. Shen, Y. Gao, and Z. Yu, “Study on thermodynamics and thermal stratification of Xin'anjiang Reservoir (Qiandao Lake),” J. Lake Sci. 26, 447–454 (2014).
[Crossref]

C. C. Trees, “Beyond bathymetry: probing the ocean subsurface using ship-based lidars,” Proc. SPIE 9111, 9111OU (2014).
[Crossref]

2013 (3)

D. Chun-Ying, Y. Zuo-Ming, W. Zhi-Xu, and W. Chun-Jin, “Study on Seasonal Characteristics of Thermal Stratification in Lacustrine Zone of Lake Qiandao,” Environmental Science 34, 8 (2013).

J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2013).
[Crossref]

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52(4), 786–794 (2013).
[Crossref]

2012 (2)

W. Zhixu, L. Mingliang, L. Jia, H. E. Jianbo, and Y. Zuoming, “Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir(Lake Qiandao) in subtropic China during summer stratification,” J. Lake Sci. 24, 6 (2012).

J. Churnside, R. D. Marchbanks, J. H. Lee, J. Shaw, A. Weidemann, and P. L. Donaghay, "Airborne lidar detection and characterization of internal waves in a shallow Fjord," J. of Applied Remote Sensing 6, p. 3611 (2012).
[Crossref]

2011 (1)

G. P. Kokhanenko, Y. S. Balin, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Oceanic Opt. 24(5), 478–486 (2011).
[Crossref]

2010 (1)

2002 (1)

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation. Revision 3, 231–257 (2002).

1998 (1)

O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, E. D. J. I. J. o, and R. S. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19(4), 707–715 (1998).
[Crossref]

Ab, D.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Ahmad, Z.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Angelini, F.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Arnone, R.

R. Arnone, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean LIDARS,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2012).

Babin, M.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Balin, Y. S.

G. P. Kokhanenko, Y. S. Balin, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Oceanic Opt. 24(5), 478–486 (2011).
[Crossref]

Behrenfeld, M.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Behrenfeld, M. J.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Bigelow, P.

M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
[Crossref]

Boss, E.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Boss, E. S.

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Brown, R. A.

K. Saylam, R. A. Brown, and J. R. Hupp, “Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope,” ITC J. 58, 191–200 (2017).
[Crossref]

Bukin, O. A.

O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, E. D. J. I. J. o, and R. S. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19(4), 707–715 (1998).
[Crossref]

Cairns, B.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Chen, P.

P. Chen and D. Pan, “Ocean Optical Profiling in South China Sea Using Airborne LiDAR,” Remote Sens. 11(15), 1826 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer,” Opt. Laser Technol. 111, 1–5 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “A Feasible Calibration Method for Type 1 Open Ocean Water LiDAR Data Based on Bio-Optical Models,” Remote Sens. 11(2), 172 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-Analytic Monte Carlo Model for Oceanographic Lidar Systems: Lookup Table Method Used for Randomly Choosing Scattering Angles,” Appl. Sci. 9(1), 48 (2018).
[Crossref]

H. Liu, P. Chen, Z. Mao, D. Pan, and Y. He, “Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea,” Opt. Express 26(22), 29134–29147 (2018).
[Crossref]

P. Chen, D. Pan, Z. Mao, and B. Tao, “Detection of water quality parameters in Hangzhou Bay using a portable laser fluorometer,” Mar. Pollut. Bull. 93(1-2), 163–171 (2015).
[Crossref]

P. Chen, D. Pan, and Z. Mao, “Development of a portable laser-induced fluorescence system used for in situ measurements of dissolved organic matter,” Opt. Laser Technol. 64, 213–219 (2014).
[Crossref]

P. Chen, D. Pan, and Z. Mao, “Fluorescence measured using a field-portable laser fluorometer as a proxy for CDOM absorption,” Estuarine, Coastal Shelf Sci. 146, 33–41 (2014).
[Crossref]

Chowdhary, J.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Chun-Jin, W.

D. Chun-Ying, Y. Zuo-Ming, W. Zhi-Xu, and W. Chun-Jin, “Study on Seasonal Characteristics of Thermal Stratification in Lacustrine Zone of Lake Qiandao,” Environmental Science 34, 8 (2013).

Chun-Ying, D.

D. Chun-Ying, Y. Zuo-Ming, W. Zhi-Xu, and W. Chun-Jin, “Study on Seasonal Characteristics of Thermal Stratification in Lacustrine Zone of Lake Qiandao,” Environmental Science 34, 8 (2013).

Churnside, J.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
[Crossref]

J. Churnside, J. Hair, C. Hostetler, and A. Scarino, “Ocean Backscatter Profiling Using High-Spectral-Resolution Lidar and a Perturbation Retrieval,” Remote Sens. 10(12), 2003 (2018).
[Crossref]

J. Churnside, R. D. Marchbanks, J. H. Lee, J. Shaw, A. Weidemann, and P. L. Donaghay, "Airborne lidar detection and characterization of internal waves in a shallow Fjord," J. of Applied Remote Sensing 6, p. 3611 (2012).
[Crossref]

J. Churnside, “Lidar signature from bubbles in the sea,” Opt. Express 18(8), 8294–8299 (2010).
[Crossref]

Churnside, J. H.

M. R. Roddewig, N. J. Pust, J. H. Churnside, and J. A. Shaw, “Dual-polarization airborne lidar for freshwater fisheries management and research,” Opt. Eng. 56(3), 031221 (2017).
[Crossref]

J. H. Churnside and R. D. Marchbanks, “Subsurface plankton layers in the Arctic Ocean,” Geophys. Res. Lett. 42(12), 4896–4902 (2015).
[Crossref]

J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2013).
[Crossref]

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52(4), 786–794 (2013).
[Crossref]

Concannon, B. M.

B. M. Concannon and J. E. Prentice, “LOCO with a Shipboard Lidar,” Loco with A Shipboard Lidar (2008).

Davis, A.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Dionisi, D.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Donaghay, P. L.

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52(4), 786–794 (2013).
[Crossref]

J. Churnside, R. D. Marchbanks, J. H. Lee, J. Shaw, A. Weidemann, and P. L. Donaghay, "Airborne lidar detection and characterization of internal waves in a shallow Fjord," J. of Applied Remote Sensing 6, p. 3611 (2012).
[Crossref]

Duforêt-Gaurier, L.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Franz, B.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Frouin, R.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Gao, M.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Gao, Y.

M. Liu, Z. Wu, J. He, X. Shen, Y. Gao, and Z. Yu, “Study on thermodynamics and thermal stratification of Xin'anjiang Reservoir (Qiandao Lake),” J. Lake Sci. 26, 447–454 (2014).
[Crossref]

Gilerson, A.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Hair, J.

J. Churnside, J. Hair, C. Hostetler, and A. Scarino, “Ocean Backscatter Profiling Using High-Spectral-Resolution Lidar and a Perturbation Retrieval,” Remote Sens. 10(12), 2003 (2018).
[Crossref]

Hair, J. W.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

He, J.

M. Liu, Z. Wu, J. He, X. Shen, Y. Gao, and Z. Yu, “Study on thermodynamics and thermal stratification of Xin'anjiang Reservoir (Qiandao Lake),” J. Lake Sci. 26, 447–454 (2014).
[Crossref]

He, Y.

Hostetler, C.

J. Churnside, J. Hair, C. Hostetler, and A. Scarino, “Ocean Backscatter Profiling Using High-Spectral-Resolution Lidar and a Perturbation Retrieval,” Remote Sens. 10(12), 2003 (2018).
[Crossref]

Hostetler, C. A.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Hu, Y.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Hupp, J. R.

K. Saylam, R. A. Brown, and J. R. Hupp, “Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope,” ITC J. 58, 191–200 (2017).
[Crossref]

Ibrahim, A.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Jamet, C.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Jia, L.

W. Zhixu, L. Mingliang, L. Jia, H. E. Jianbo, and Y. Zuoming, “Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir(Lake Qiandao) in subtropic China during summer stratification,” J. Lake Sci. 24, 6 (2012).

Jianbo, H. E.

W. Zhixu, L. Mingliang, L. Jia, H. E. Jianbo, and Y. Zuoming, “Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir(Lake Qiandao) in subtropic China during summer stratification,” J. Lake Sci. 24, 6 (2012).

Kahru, M.

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation. Revision 3, 231–257 (2002).

Kholodkevich, R. S.

O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, E. D. J. I. J. o, and R. S. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19(4), 707–715 (1998).
[Crossref]

Koel, T.

M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
[Crossref]

Kokhanenko, G. P.

G. P. Kokhanenko, Y. S. Balin, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Oceanic Opt. 24(5), 478–486 (2011).
[Crossref]

Ladner, S.

R. Arnone, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean LIDARS,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2012).

Lee, J. H.

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52(4), 786–794 (2013).
[Crossref]

J. Churnside, R. D. Marchbanks, J. H. Lee, J. Shaw, A. Weidemann, and P. L. Donaghay, "Airborne lidar detection and characterization of internal waves in a shallow Fjord," J. of Applied Remote Sensing 6, p. 3611 (2012).
[Crossref]

Liu, H.

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer,” Opt. Laser Technol. 111, 1–5 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “A Feasible Calibration Method for Type 1 Open Ocean Water LiDAR Data Based on Bio-Optical Models,” Remote Sens. 11(2), 172 (2019).
[Crossref]

H. Liu, P. Chen, Z. Mao, D. Pan, and Y. He, “Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea,” Opt. Express 26(22), 29134–29147 (2018).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-Analytic Monte Carlo Model for Oceanographic Lidar Systems: Lookup Table Method Used for Randomly Choosing Scattering Angles,” Appl. Sci. 9(1), 48 (2018).
[Crossref]

Liu, M.

M. Liu, Z. Wu, J. He, X. Shen, Y. Gao, and Z. Yu, “Study on thermodynamics and thermal stratification of Xin'anjiang Reservoir (Qiandao Lake),” J. Lake Sci. 26, 447–454 (2014).
[Crossref]

Lu, X.

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Maas, H.-G.

K. Richter and H.-G. Maas, “An Approach to Determining Turbidity and Correcting for Signal Attenuation in Airborne Lidar Bathymetry,” PFG 85(1), 31–40 (2017).
[Crossref]

Major, A. Y.

O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, E. D. J. I. J. o, and R. S. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19(4), 707–715 (1998).
[Crossref]

Mao, Z.

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer,” Opt. Laser Technol. 111, 1–5 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “A Feasible Calibration Method for Type 1 Open Ocean Water LiDAR Data Based on Bio-Optical Models,” Remote Sens. 11(2), 172 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-Analytic Monte Carlo Model for Oceanographic Lidar Systems: Lookup Table Method Used for Randomly Choosing Scattering Angles,” Appl. Sci. 9(1), 48 (2018).
[Crossref]

H. Liu, P. Chen, Z. Mao, D. Pan, and Y. He, “Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea,” Opt. Express 26(22), 29134–29147 (2018).
[Crossref]

P. Chen, D. Pan, Z. Mao, and B. Tao, “Detection of water quality parameters in Hangzhou Bay using a portable laser fluorometer,” Mar. Pollut. Bull. 93(1-2), 163–171 (2015).
[Crossref]

P. Chen, D. Pan, and Z. Mao, “Fluorescence measured using a field-portable laser fluorometer as a proxy for CDOM absorption,” Estuarine, Coastal Shelf Sci. 146, 33–41 (2014).
[Crossref]

P. Chen, D. Pan, and Z. Mao, “Development of a portable laser-induced fluorescence system used for in situ measurements of dissolved organic matter,” Opt. Laser Technol. 64, 213–219 (2014).
[Crossref]

Marchbanks, R. D.

J. H. Churnside and R. D. Marchbanks, “Subsurface plankton layers in the Arctic Ocean,” Geophys. Res. Lett. 42(12), 4896–4902 (2015).
[Crossref]

J. H. Lee, J. H. Churnside, R. D. Marchbanks, P. L. Donaghay, and J. M. Sullivan, “Oceanographic lidar profiles compared with estimates from in situ optical measurements,” Appl. Opt. 52(4), 786–794 (2013).
[Crossref]

J. Churnside, R. D. Marchbanks, J. H. Lee, J. Shaw, A. Weidemann, and P. L. Donaghay, "Airborne lidar detection and characterization of internal waves in a shallow Fjord," J. of Applied Remote Sensing 6, p. 3611 (2012).
[Crossref]

Mingliang, L.

W. Zhixu, L. Mingliang, L. Jia, H. E. Jianbo, and Y. Zuoming, “Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir(Lake Qiandao) in subtropic China during summer stratification,” J. Lake Sci. 24, 6 (2012).

Mitchell, B. G.

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation. Revision 3, 231–257 (2002).

Mj, B.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

o, E. D. J. I. J.

O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, E. D. J. I. J. o, and R. S. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19(4), 707–715 (1998).
[Crossref]

O’Malley, R. T.

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Ov, K.

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Pan, D.

P. Chen and D. Pan, “Ocean Optical Profiling in South China Sea Using Airborne LiDAR,” Remote Sens. 11(15), 1826 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “A Feasible Calibration Method for Type 1 Open Ocean Water LiDAR Data Based on Bio-Optical Models,” Remote Sens. 11(2), 172 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer,” Opt. Laser Technol. 111, 1–5 (2019).
[Crossref]

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-Analytic Monte Carlo Model for Oceanographic Lidar Systems: Lookup Table Method Used for Randomly Choosing Scattering Angles,” Appl. Sci. 9(1), 48 (2018).
[Crossref]

H. Liu, P. Chen, Z. Mao, D. Pan, and Y. He, “Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea,” Opt. Express 26(22), 29134–29147 (2018).
[Crossref]

P. Chen, D. Pan, Z. Mao, and B. Tao, “Detection of water quality parameters in Hangzhou Bay using a portable laser fluorometer,” Mar. Pollut. Bull. 93(1-2), 163–171 (2015).
[Crossref]

P. Chen, D. Pan, and Z. Mao, “Development of a portable laser-induced fluorescence system used for in situ measurements of dissolved organic matter,” Opt. Laser Technol. 64, 213–219 (2014).
[Crossref]

P. Chen, D. Pan, and Z. Mao, “Fluorescence measured using a field-portable laser fluorometer as a proxy for CDOM absorption,” Estuarine, Coastal Shelf Sci. 146, 33–41 (2014).
[Crossref]

Pavlov, A. N.

O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, E. D. J. I. J. o, and R. S. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19(4), 707–715 (1998).
[Crossref]

Penner, I. E.

G. P. Kokhanenko, Y. S. Balin, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Oceanic Opt. 24(5), 478–486 (2011).
[Crossref]

Prentice, J. E.

B. M. Concannon and J. E. Prentice, “LOCO with a Shipboard Lidar,” Loco with A Shipboard Lidar (2008).

Pust, N. J.

M. R. Roddewig, N. J. Pust, J. H. Churnside, and J. A. Shaw, “Dual-polarization airborne lidar for freshwater fisheries management and research,” Opt. Eng. 56(3), 031221 (2017).
[Crossref]

Richard Hauer, F.

M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
[Crossref]

Richter, K.

K. Richter and H.-G. Maas, “An Approach to Determining Turbidity and Correcting for Signal Attenuation in Airborne Lidar Bathymetry,” PFG 85(1), 31–40 (2017).
[Crossref]

Roddewig, M. R.

M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
[Crossref]

M. R. Roddewig, N. J. Pust, J. H. Churnside, and J. A. Shaw, “Dual-polarization airborne lidar for freshwater fisheries management and research,” Opt. Eng. 56(3), 031221 (2017).
[Crossref]

Sarmiento, J. L.

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Saylam, K.

K. Saylam, R. A. Brown, and J. R. Hupp, “Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope,” ITC J. 58, 191–200 (2017).
[Crossref]

Scarino, A.

J. Churnside, J. Hair, C. Hostetler, and A. Scarino, “Ocean Backscatter Profiling Using High-Spectral-Resolution Lidar and a Perturbation Retrieval,” Remote Sens. 10(12), 2003 (2018).
[Crossref]

Schulien, J.

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Schulien, J. A.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Shamanaev, V. S.

G. P. Kokhanenko, Y. S. Balin, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Oceanic Opt. 24(5), 478–486 (2011).
[Crossref]

Shaw, J.

M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
[Crossref]

J. Churnside, R. D. Marchbanks, J. H. Lee, J. Shaw, A. Weidemann, and P. L. Donaghay, "Airborne lidar detection and characterization of internal waves in a shallow Fjord," J. of Applied Remote Sensing 6, p. 3611 (2012).
[Crossref]

Shaw, J. A.

M. R. Roddewig, N. J. Pust, J. H. Churnside, and J. A. Shaw, “Dual-polarization airborne lidar for freshwater fisheries management and research,” Opt. Eng. 56(3), 031221 (2017).
[Crossref]

Shen, X.

M. Liu, Z. Wu, J. He, X. Shen, Y. Gao, and Z. Yu, “Study on thermodynamics and thermal stratification of Xin'anjiang Reservoir (Qiandao Lake),” J. Lake Sci. 26, 447–454 (2014).
[Crossref]

Shevtsov, B. M.

O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, E. D. J. I. J. o, and R. S. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19(4), 707–715 (1998).
[Crossref]

Siegel, D. A.

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Stramska, M.

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation. Revision 3, 231–257 (2002).

Sullivan, J. M.

Tao, B.

P. Chen, D. Pan, Z. Mao, and B. Tao, “Detection of water quality parameters in Hangzhou Bay using a portable laser fluorometer,” Mar. Pollut. Bull. 93(1-2), 163–171 (2015).
[Crossref]

Trees, C.

R. Arnone, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean LIDARS,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2012).

Trees, C. C.

C. C. Trees, “Beyond bathymetry: probing the ocean subsurface using ship-based lidars,” Proc. SPIE 9111, 9111OU (2014).
[Crossref]

Weidemann, A.

J. Churnside, R. D. Marchbanks, J. H. Lee, J. Shaw, A. Weidemann, and P. L. Donaghay, "Airborne lidar detection and characterization of internal waves in a shallow Fjord," J. of Applied Remote Sensing 6, p. 3611 (2012).
[Crossref]

Wieland, J.

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation. Revision 3, 231–257 (2002).

Williams, J.

M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
[Crossref]

Wu, Z.

M. Liu, Z. Wu, J. He, X. Shen, Y. Gao, and Z. Yu, “Study on thermodynamics and thermal stratification of Xin'anjiang Reservoir (Qiandao Lake),” J. Lake Sci. 26, 447–454 (2014).
[Crossref]

Yu, Z.

M. Liu, Z. Wu, J. He, X. Shen, Y. Gao, and Z. Yu, “Study on thermodynamics and thermal stratification of Xin'anjiang Reservoir (Qiandao Lake),” J. Lake Sci. 26, 447–454 (2014).
[Crossref]

Zhixu, W.

W. Zhixu, L. Mingliang, L. Jia, H. E. Jianbo, and Y. Zuoming, “Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir(Lake Qiandao) in subtropic China during summer stratification,” J. Lake Sci. 24, 6 (2012).

Zhi-Xu, W.

D. Chun-Ying, Y. Zuo-Ming, W. Zhi-Xu, and W. Chun-Jin, “Study on Seasonal Characteristics of Thermal Stratification in Lacustrine Zone of Lake Qiandao,” Environmental Science 34, 8 (2013).

Zuoming, Y.

W. Zhixu, L. Mingliang, L. Jia, H. E. Jianbo, and Y. Zuoming, “Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir(Lake Qiandao) in subtropic China during summer stratification,” J. Lake Sci. 24, 6 (2012).

Zuo-Ming, Y.

D. Chun-Ying, Y. Zuo-Ming, W. Zhi-Xu, and W. Chun-Jin, “Study on Seasonal Characteristics of Thermal Stratification in Lacustrine Zone of Lake Qiandao,” Environmental Science 34, 8 (2013).

Annu. Rev. Mar. Sci. (1)

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Sci. (1)

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-Analytic Monte Carlo Model for Oceanographic Lidar Systems: Lookup Table Method Used for Randomly Choosing Scattering Angles,” Appl. Sci. 9(1), 48 (2018).
[Crossref]

Applied Optics (1)

M. R. Roddewig, J. Churnside, F. Richard Hauer, J. Williams, P. Bigelow, T. Koel, and J. Shaw, Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake,” Applied Optics 57, p. 4111 (2018).
[Crossref]

Atmos. Oceanic Opt. (1)

G. P. Kokhanenko, Y. S. Balin, I. E. Penner, and V. S. Shamanaev, “Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal,” Atmos. Oceanic Opt. 24(5), 478–486 (2011).
[Crossref]

Environmental Science (1)

D. Chun-Ying, Y. Zuo-Ming, W. Zhi-Xu, and W. Chun-Jin, “Study on Seasonal Characteristics of Thermal Stratification in Lacustrine Zone of Lake Qiandao,” Environmental Science 34, 8 (2013).

Estuarine, Coastal Shelf Sci. (1)

P. Chen, D. Pan, and Z. Mao, “Fluorescence measured using a field-portable laser fluorometer as a proxy for CDOM absorption,” Estuarine, Coastal Shelf Sci. 146, 33–41 (2014).
[Crossref]

Front. Mar. Sci. (1)

C. Jamet, B. Mj, D. Ab, K. Ov, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. Behrenfeld, E. Boss, B. Cairns, J. Churnside, J. Chowdhary, A. Davis, D. Dionisi, L. Duforêt-Gaurier, B. Franz, R. Frouin, M. Gao, and A. Gilerson, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Geophys. Res. Lett. (1)

J. H. Churnside and R. D. Marchbanks, “Subsurface plankton layers in the Arctic Ocean,” Geophys. Res. Lett. 42(12), 4896–4902 (2015).
[Crossref]

Int. J. Remote Sens. (1)

O. A. Bukin, A. Y. Major, A. N. Pavlov, B. M. Shevtsov, E. D. J. I. J. o, and R. S. Kholodkevich, “Measurement of the lightscattering layers structure and detection of the dynamic processes in the upper ocean layer by shipborne lidar,” Int. J. Remote Sens. 19(4), 707–715 (1998).
[Crossref]

ITC J. (1)

K. Saylam, R. A. Brown, and J. R. Hupp, “Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope,” ITC J. 58, 191–200 (2017).
[Crossref]

J. Lake Sci. (2)

M. Liu, Z. Wu, J. He, X. Shen, Y. Gao, and Z. Yu, “Study on thermodynamics and thermal stratification of Xin'anjiang Reservoir (Qiandao Lake),” J. Lake Sci. 26, 447–454 (2014).
[Crossref]

W. Zhixu, L. Mingliang, L. Jia, H. E. Jianbo, and Y. Zuoming, “Vertical distribution of phytoplankton and physico-chemical characteristics in the lacustrine zone of Xin'anjiang Reservoir(Lake Qiandao) in subtropic China during summer stratification,” J. Lake Sci. 24, 6 (2012).

J. of Applied Remote Sensing (1)

J. Churnside, R. D. Marchbanks, J. H. Lee, J. Shaw, A. Weidemann, and P. L. Donaghay, "Airborne lidar detection and characterization of internal waves in a shallow Fjord," J. of Applied Remote Sensing 6, p. 3611 (2012).
[Crossref]

Mar. Pollut. Bull. (1)

P. Chen, D. Pan, Z. Mao, and B. Tao, “Detection of water quality parameters in Hangzhou Bay using a portable laser fluorometer,” Mar. Pollut. Bull. 93(1-2), 163–171 (2015).
[Crossref]

Nat. Geosci. (1)

M. J. Behrenfeld, Y. Hu, R. T. O’Malley, E. S. Boss, C. A. Hostetler, D. A. Siegel, J. L. Sarmiento, J. Schulien, J. W. Hair, and X. Lu, “Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar,” Nat. Geosci. 10(2), 118–122 (2017).
[Crossref]

Ocean optics protocols for satellite ocean color sensor validation. Revision (1)

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation. Revision 3, 231–257 (2002).

Opt. Eng. (2)

J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2013).
[Crossref]

M. R. Roddewig, N. J. Pust, J. H. Churnside, and J. A. Shaw, “Dual-polarization airborne lidar for freshwater fisheries management and research,” Opt. Eng. 56(3), 031221 (2017).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (2)

P. Chen, D. Pan, Z. Mao, and H. Liu, “Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer,” Opt. Laser Technol. 111, 1–5 (2019).
[Crossref]

P. Chen, D. Pan, and Z. Mao, “Development of a portable laser-induced fluorescence system used for in situ measurements of dissolved organic matter,” Opt. Laser Technol. 64, 213–219 (2014).
[Crossref]

PFG (1)

K. Richter and H.-G. Maas, “An Approach to Determining Turbidity and Correcting for Signal Attenuation in Airborne Lidar Bathymetry,” PFG 85(1), 31–40 (2017).
[Crossref]

Proc. SPIE (1)

C. C. Trees, “Beyond bathymetry: probing the ocean subsurface using ship-based lidars,” Proc. SPIE 9111, 9111OU (2014).
[Crossref]

Remote Sens. (3)

P. Chen, D. Pan, Z. Mao, and H. Liu, “A Feasible Calibration Method for Type 1 Open Ocean Water LiDAR Data Based on Bio-Optical Models,” Remote Sens. 11(2), 172 (2019).
[Crossref]

J. Churnside, J. Hair, C. Hostetler, and A. Scarino, “Ocean Backscatter Profiling Using High-Spectral-Resolution Lidar and a Perturbation Retrieval,” Remote Sens. 10(12), 2003 (2018).
[Crossref]

P. Chen and D. Pan, “Ocean Optical Profiling in South China Sea Using Airborne LiDAR,” Remote Sens. 11(15), 1826 (2019).
[Crossref]

Other (4)

B. M. Concannon and J. E. Prentice, “LOCO with a Shipboard Lidar,” Loco with A Shipboard Lidar (2008).

M. o. E. Environment, “2017 China bulletin on the state of the ecological environment,” (2018), retrieved http://www.gov.cn/guoqing/2019-04/09/5380689/files/87a1ee03f56741f699489bee238ba89a.pdf .

M. o. E. Environment, “State of the environment in China bulletin 2009,” (2010), retrieved http://www.gov.cn/gzdt/2010-06/04/content_1620569.htm .

R. Arnone, S. Ladner, and C. Trees, “Probing the subsurface ocean processes using ocean LIDARS,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Block diagram of the system (a) and a photo of actual products (b).
Fig. 2.
Fig. 2. Study area in Qiandao Lake. Thin yellow lines are shipborne lidar running routes on June 3-5, 2019.
Fig. 3.
Fig. 3. Schematic diagram of subsurface phytoplankton layer detection method (reproduced and modified from our previous study in Ref. [26]).
Fig. 4.
Fig. 4. An example result of step-by-step processing. (a) Origin signal S0; (b) range-corrected signal; (c) Logarithmic form of S0 and SB by linear fitting; (d) detected subsurface layer SL.
Fig. 5.
Fig. 5. Comparison of shipborne lidar measurements and in situ measurements at the station (119.183°E, 29.567°N). The black line is the lidar-detected layers, the red line is the vertical distribution of chlorophyll concentration, the cyan line is the vertical distribution of phycocyanin concentration, the carmine line is the temperature vertical distribution, the green line is the vertical distribution of DO (dissolved oxygen), the blue line is the vertical distribution of pH, the purple line is the volume scattering function of 140°at 510 nm, and the dotted black line is the thermocline depth.
Fig. 6.
Fig. 6. Vertical distribution of lidar-detected layer mapped along ship tracks at different locations. (a) Vertical distribution measured by lidar for 10 min when ship traveled near (118.800°E, 29.667°N), and (b) vertical distribution measured by lidar for 30 min when ship traveled near (119.200°E, 29.500°N).
Fig. 7.
Fig. 7. Lidar-detected layer’s maximum depth and thickness along ship tracks at different locations. Lidar-detected layer’s maximum depth and thickness when ship traveled near (118.800°E, 29.667°N) (a), and (119.200°E, 29.500°N) (b).

Tables (1)

Tables Icon

Table 1. Shipborne lidar system parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P ( z ) = A β ( z ) (n H + z ) 2 exp [ 2 0 z α ( x ) dx ]
S ( z ) = A β ( z ) exp ( 2 α z )
S O ( z ) = S B ( z ) + S L ( z )
S B ( z ) = S B ( 0 ) exp ( 2 α z )
L o g ( S B ) = log ( S B ( 0 ) ) 2 α z = S fitting B ( 0 )
L og ( S L ( z ) ) = L o g ( S O ( z ) S B ( z ) ) = L o g ( S O ( z ) S B f i t t i n g ( z ) )

Metrics