Abstract

The undesirable optical proximity effect (OPE) that appeared in the digital micro-mirrors device (DMD) based maskless lithography directly influences the final exposure pattern and decreases the lithography quality. In this manuscript, a convenient method of intensity modulation applied for the maskless lithography is proposed to optimize such an effect. According to the pulse width modulation based image recognition of DMD, we replaced the digital binary mask with a special digital grayscale mask to modulate the UV intensity distribution to be closer to the expectation in a way of point-by-point modification. The exposure result applying the grayscale mask has a better consistency with the design pattern than that for the case in which the original binary mask is used. The effectiveness of this method was analyzed by the image subtraction technique. Experimental data revealed that the matching rate between the exposure pattern and the mask pattern has been improved from 78% to 91%. Besides, more experiments have been conducted to verify the validity of this method for the optical proximity optimization and its potential in the high-fidelity DMD based maskless lithography.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation

Biao Yang, Jinyun Zhou, Qiming Chen, Liang Lei, and Kunhua Wen
Opt. Express 26(22) 28927-28937 (2018)

Block-based mask optimization for optical lithography

Xu Ma, Zhiyang Song, Yanqiu Li, and Gonzalo R. Arce
Appl. Opt. 52(14) 3351-3363 (2013)

Gradient-based inverse extreme ultraviolet lithography

Xu Ma, Jie Wang, Xuanbo Chen, Yanqiu Li, and Gonzalo R. Arce
Appl. Opt. 54(24) 7284-7300 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Cizmar, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29283 (2016).
    [Crossref]
  2. S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40(22), 5407–5410 (2015).
    [Crossref]
  3. Y. X. Ren, R. D. Lu, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. (Berlin) 527(7-8), 447–470 (2015).
    [Crossref]
  4. K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 2(4), 331–339 (2003).
    [Crossref]
  5. R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
    [Crossref]
  6. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators, A 121(1), 113–120 (2005).
    [Crossref]
  7. S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
    [Crossref]
  8. D. J. Heath, T. H. Rana, R. A. Bapty, J. A. Grant-Jacob, Y. Xie, R. W. Eason, and B. Mills, “Ultrafast multi-layer subtractive patterning,” Opt. Express 26(9), 11928–11933 (2018).
    [Crossref]
  9. W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
    [Crossref]
  10. L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro/Nanolithogr., MEMS, MOEMS 4(4), 5 (2005).
    [Crossref]
  11. B. A. Yang, J. Y. Zhou, Q. M. Chen, L. Lei, and K. H. Wen, “Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation,” Opt. Express 26(22), 28927–28937 (2018).
    [Crossref]
  12. J. B. Kim and K. H. Jeong, “Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography,” Opt. Express 25(14), 16854–16859 (2017).
    [Crossref]
  13. E. J. Hansotte, E. C. Carignan, and W. D. Meisburger, “High speed maskless lithography of printed circuit boards using digital micromirrors,” in Emerging Digital Micromirror Device Based Systems and Applications Iii, M. R. Douglass and P. I. Oden, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2011).
  14. A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
    [Crossref]
  15. M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
    [Crossref]
  16. A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
    [Crossref]
  17. L. W. Liang, J. Y. Zhou, L. Lei, B. Wang, Q. Wang, and K. H. Wen, “Suppression of imaging crack caused by the gap between micromirrors in maskless lithography,” Opt. Eng. 56(10), 1 (2017).
    [Crossref]
  18. J. F. Chen, T. Laidig, K. E. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 15(6), 2426–2433 (1997).
    [Crossref]
  19. C. Dolainsky and W. Maurer, Application of a simple resist model to fast optical proximity correction, Optical Microlithography X (Spie - Int Soc Optical Engineering, Bellingham, 1997), Vol. 3051, pp. 774–780.
  20. R. Luo, “Optical proximity correction using a multilayer perceptron neural network,” J. Opt. 15(7), 075708 (2013).
    [Crossref]
  21. Z. Xiong, H. Liu, R. H. Chen, J. Xu, Q. K. Li, J. H. Li, and W. J. Zhang, “Illumination uniformity improvement in digital micromirror device based scanning photolithography system,” Opt. Express 26(14), 18597–18607 (2018).
    [Crossref]
  22. G. Frankowski, M. Chen, and T. Huth, “Real-time 3D shape measurement with digital stripe projection by texas instruments micromirror devices DMD (TM),” in Three-Dimensional Image Capture and Applications Iii, B. D. Corner and J. H. Nurre, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2000), pp. 90–105.

2018 (3)

2017 (2)

L. W. Liang, J. Y. Zhou, L. Lei, B. Wang, Q. Wang, and K. H. Wen, “Suppression of imaging crack caused by the gap between micromirrors in maskless lithography,” Opt. Eng. 56(10), 1 (2017).
[Crossref]

J. B. Kim and K. H. Jeong, “Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography,” Opt. Express 25(14), 16854–16859 (2017).
[Crossref]

2016 (1)

2015 (3)

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40(22), 5407–5410 (2015).
[Crossref]

Y. X. Ren, R. D. Lu, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. (Berlin) 527(7-8), 447–470 (2015).
[Crossref]

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref]

2013 (2)

S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

R. Luo, “Optical proximity correction using a multilayer perceptron neural network,” J. Opt. 15(7), 075708 (2013).
[Crossref]

2012 (2)

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
[Crossref]

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

2005 (3)

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro/Nanolithogr., MEMS, MOEMS 4(4), 5 (2005).
[Crossref]

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[Crossref]

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators, A 121(1), 113–120 (2005).
[Crossref]

2003 (1)

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 2(4), 331–339 (2003).
[Crossref]

1997 (1)

J. F. Chen, T. Laidig, K. E. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 15(6), 2426–2433 (1997).
[Crossref]

1996 (1)

A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
[Crossref]

Aristizabal, S. L.

S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

Bapty, R. A.

Brunner, R.

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro/Nanolithogr., MEMS, MOEMS 4(4), 5 (2005).
[Crossref]

Caldwell, R.

J. F. Chen, T. Laidig, K. E. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 15(6), 2426–2433 (1997).
[Crossref]

Carignan, E. C.

E. J. Hansotte, E. C. Carignan, and W. D. Meisburger, “High speed maskless lithography of printed circuit boards using digital micromirrors,” in Emerging Digital Micromirror Device Based Systems and Applications Iii, M. R. Douglass and P. I. Oden, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2011).

Chan, K. F.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 2(4), 331–339 (2003).
[Crossref]

Chen, J. F.

J. F. Chen, T. Laidig, K. E. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 15(6), 2426–2433 (1997).
[Crossref]

Chen, M.

G. Frankowski, M. Chen, and T. Huth, “Real-time 3D shape measurement with digital stripe projection by texas instruments micromirror devices DMD (TM),” in Three-Dimensional Image Capture and Applications Iii, B. D. Corner and J. H. Nurre, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2000), pp. 90–105.

Chen, Q. M.

Chen, R. H.

Chen, S. C.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
[Crossref]

Cirino, G. A.

S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

Cizmar, T.

Cooper, G. J. T.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref]

Cronin, L.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref]

Deparnay, A.

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro/Nanolithogr., MEMS, MOEMS 4(4), 5 (2005).
[Crossref]

Dolainsky, C.

C. Dolainsky and W. Maurer, Application of a simple resist model to fast optical proximity correction, Optical Microlithography X (Spie - Int Soc Optical Engineering, Bellingham, 1997), Vol. 3051, pp. 774–780.

Eason, R. W.

Erdmann, L.

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro/Nanolithogr., MEMS, MOEMS 4(4), 5 (2005).
[Crossref]

Fang, N.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators, A 121(1), 113–120 (2005).
[Crossref]

Feng, Z. Q.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 2(4), 331–339 (2003).
[Crossref]

Frankowski, G.

G. Frankowski, M. Chen, and T. Huth, “Real-time 3D shape measurement with digital stripe projection by texas instruments micromirror devices DMD (TM),” in Three-Dimensional Image Capture and Applications Iii, B. D. Corner and J. H. Nurre, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2000), pp. 90–105.

Gibson, G. M.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref]

Gil, D.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[Crossref]

Gong, L.

Y. X. Ren, R. D. Lu, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. (Berlin) 527(7-8), 447–470 (2015).
[Crossref]

Grant-Jacob, J. A.

Hansotte, E. J.

E. J. Hansotte, E. C. Carignan, and W. D. Meisburger, “High speed maskless lithography of printed circuit boards using digital micromirrors,” in Emerging Digital Micromirror Device Based Systems and Applications Iii, M. R. Douglass and P. I. Oden, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2011).

He, S. L.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
[Crossref]

Heath, D. J.

Hinkley, T.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref]

Hospital, M.

S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

Hribar, K. C.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
[Crossref]

Huth, T.

G. Frankowski, M. Chen, and T. Huth, “Real-time 3D shape measurement with digital stripe projection by texas instruments micromirror devices DMD (TM),” in Three-Dimensional Image Capture and Applications Iii, B. D. Corner and J. H. Nurre, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2000), pp. 90–105.

Ishikawa, A.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 2(4), 331–339 (2003).
[Crossref]

Iwasaki, W.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Jeong, K. H.

Jonckheere, R.

A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
[Crossref]

Kim, J. B.

Kim, K.

Kudo, Y.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Laidig, T.

J. F. Chen, T. Laidig, K. E. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 15(6), 2426–2433 (1997).
[Crossref]

Langle, M. L.

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro/Nanolithogr., MEMS, MOEMS 4(4), 5 (2005).
[Crossref]

Lee, J. W.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
[Crossref]

Lee, M. P.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref]

Lei, L.

B. A. Yang, J. Y. Zhou, Q. M. Chen, L. Lei, and K. H. Wen, “Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation,” Opt. Express 26(22), 28927–28937 (2018).
[Crossref]

L. W. Liang, J. Y. Zhou, L. Lei, B. Wang, Q. Wang, and K. H. Wen, “Suppression of imaging crack caused by the gap between micromirrors in maskless lithography,” Opt. Eng. 56(10), 1 (2017).
[Crossref]

Li, J. H.

Li, Q. K.

Liang, L. W.

L. W. Liang, J. Y. Zhou, L. Lei, B. Wang, Q. Wang, and K. H. Wen, “Suppression of imaging crack caused by the gap between micromirrors in maskless lithography,” Opt. Eng. 56(10), 1 (2017).
[Crossref]

Liu, H.

Lu, R. D.

Y. X. Ren, R. D. Lu, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. (Berlin) 527(7-8), 447–470 (2015).
[Crossref]

Luo, R.

R. Luo, “Optical proximity correction using a multilayer perceptron neural network,” J. Opt. 15(7), 075708 (2013).
[Crossref]

Maeda, R.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Mansano, R. D.

S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

Maschke, G.

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro/Nanolithogr., MEMS, MOEMS 4(4), 5 (2005).
[Crossref]

Maurer, W.

C. Dolainsky and W. Maurer, Application of a simple resist model to fast optical proximity correction, Optical Microlithography X (Spie - Int Soc Optical Engineering, Bellingham, 1997), Vol. 3051, pp. 774–780.

Mei, W. H.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 2(4), 331–339 (2003).
[Crossref]

Meisburger, W. D.

E. J. Hansotte, E. C. Carignan, and W. D. Meisburger, “High speed maskless lithography of printed circuit boards using digital micromirrors,” in Emerging Digital Micromirror Device Based Systems and Applications Iii, M. R. Douglass and P. I. Oden, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2011).

Menon, R.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[Crossref]

Mills, B.

Mitchell, K. J.

Montagnoli, A. N.

S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

Ogino, H.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Padgett, M. J.

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Cizmar, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29283 (2016).
[Crossref]

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref]

Park, Y.

Patel, A.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[Crossref]

Peng, Y.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Phillips, D. B.

Qu, X.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
[Crossref]

Rana, T. H.

Ren, Y. X.

Y. X. Ren, R. D. Lu, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. (Berlin) 527(7-8), 447–470 (2015).
[Crossref]

Ronse, K.

A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
[Crossref]

Rubert, J. B.

S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

Sawada, R.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Shibata, H.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Shin, S.

Smith, H. I.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[Crossref]

Sobrinho, A. A.

S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

Soman, P.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
[Crossref]

Stirniman, J. P.

A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
[Crossref]

Sun, C.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators, A 121(1), 113–120 (2005).
[Crossref]

Takeshita, T.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Tritchkov, A.

A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
[Crossref]

Turtaev, S.

Vandenberghe, G.

A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
[Crossref]

Vandenhove, L.

A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
[Crossref]

Wampler, K. E.

J. F. Chen, T. Laidig, K. E. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 15(6), 2426–2433 (1997).
[Crossref]

Wang, B.

L. W. Liang, J. Y. Zhou, L. Lei, B. Wang, Q. Wang, and K. H. Wen, “Suppression of imaging crack caused by the gap between micromirrors in maskless lithography,” Opt. Eng. 56(10), 1 (2017).
[Crossref]

Wang, Q.

L. W. Liang, J. Y. Zhou, L. Lei, B. Wang, Q. Wang, and K. H. Wen, “Suppression of imaging crack caused by the gap between micromirrors in maskless lithography,” Opt. Eng. 56(10), 1 (2017).
[Crossref]

Wen, K. H.

B. A. Yang, J. Y. Zhou, Q. M. Chen, L. Lei, and K. H. Wen, “Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation,” Opt. Express 26(22), 28927–28937 (2018).
[Crossref]

L. W. Liang, J. Y. Zhou, L. Lei, B. Wang, Q. Wang, and K. H. Wen, “Suppression of imaging crack caused by the gap between micromirrors in maskless lithography,” Opt. Eng. 56(10), 1 (2017).
[Crossref]

Wu, D. M.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators, A 121(1), 113–120 (2005).
[Crossref]

Xie, Y.

Xiong, Z.

Xu, J.

Yang, B. A.

Yang, R.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 2(4), 331–339 (2003).
[Crossref]

Yen, A.

A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
[Crossref]

Yoon, J.

Zhang, A. P.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
[Crossref]

Zhang, W. J.

Zhang, X.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators, A 121(1), 113–120 (2005).
[Crossref]

Zhou, J. Y.

B. A. Yang, J. Y. Zhou, Q. M. Chen, L. Lei, and K. H. Wen, “Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation,” Opt. Express 26(22), 28927–28937 (2018).
[Crossref]

L. W. Liang, J. Y. Zhou, L. Lei, B. Wang, Q. Wang, and K. H. Wen, “Suppression of imaging crack caused by the gap between micromirrors in maskless lithography,” Opt. Eng. 56(10), 1 (2017).
[Crossref]

Adv. Mater. (1)

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography,” Adv. Mater. 24(31), 4266–4270 (2012).
[Crossref]

Ann. Phys. (Berlin) (1)

Y. X. Ren, R. D. Lu, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. (Berlin) 527(7-8), 447–470 (2015).
[Crossref]

J. Micro/Nanolithogr., MEMS, MOEMS (2)

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography,” J. Micro/Nanolithogr., MEMS, MOEMS 2(4), 331–339 (2003).
[Crossref]

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Micro/Nanolithogr., MEMS, MOEMS 4(4), 5 (2005).
[Crossref]

J. Opt. (1)

R. Luo, “Optical proximity correction using a multilayer perceptron neural network,” J. Opt. 15(7), 075708 (2013).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. (2)

J. F. Chen, T. Laidig, K. E. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 15(6), 2426–2433 (1997).
[Crossref]

A. Yen, A. Tritchkov, J. P. Stirniman, G. Vandenberghe, R. Jonckheere, K. Ronse, and L. Vandenhove, “Characterization and correction of optical proximity effects in deep-ultraviolet lithography using behavior modeling,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 14(6), 4175–4178 (1996).
[Crossref]

Jpn. J. Appl. Phys. (1)

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless Lithographic Fine Patterning on Deeply Etched or Slanted Surfaces, and Grayscale Lithography, Using Newly Developed Digital Mirror Device Lithography Equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Mater. Today (1)

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[Crossref]

Opt. Eng. (2)

S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, M. Hospital, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52(12), 125101 (2013).
[Crossref]

L. W. Liang, J. Y. Zhou, L. Lei, B. Wang, Q. Wang, and K. H. Wen, “Suppression of imaging crack caused by the gap between micromirrors in maskless lithography,” Opt. Eng. 56(10), 1 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Sci. Rep. (1)

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref]

Sens. Actuators, A (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators, A 121(1), 113–120 (2005).
[Crossref]

Other (3)

E. J. Hansotte, E. C. Carignan, and W. D. Meisburger, “High speed maskless lithography of printed circuit boards using digital micromirrors,” in Emerging Digital Micromirror Device Based Systems and Applications Iii, M. R. Douglass and P. I. Oden, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2011).

G. Frankowski, M. Chen, and T. Huth, “Real-time 3D shape measurement with digital stripe projection by texas instruments micromirror devices DMD (TM),” in Three-Dimensional Image Capture and Applications Iii, B. D. Corner and J. H. Nurre, eds. (Spie-Int Soc Optical Engineering, Bellingham, 2000), pp. 90–105.

C. Dolainsky and W. Maurer, Application of a simple resist model to fast optical proximity correction, Optical Microlithography X (Spie - Int Soc Optical Engineering, Bellingham, 1997), Vol. 3051, pp. 774–780.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) The sketch of DMD based maskless lithography, (b) the working principle of DMD. (c) A simple digital image at the size of 1024*768. (d) Picture of DMD when this image is uploaded.
Fig. 2.
Fig. 2. The PWM based UV intensity modulation.
Fig. 3.
Fig. 3. (a) Simulated UV intensity distribution, (b) Simulated exposure pattern on the photoresist.
Fig. 4.
Fig. 4. The exposure of grating line and the “L” pattern.
Fig. 5.
Fig. 5. The actual exposure pattern of the “L” pattern.
Fig. 6.
Fig. 6. Relationship between the average UV intensity and the grayscale of pixels on the mask.
Fig. 7.
Fig. 7. Relationship between the exposure line-width and the grayscale of (a) pixel at (Row 3, Column 1), (b) pixel at (Row 1, Column 4).
Fig. 8.
Fig. 8. The designed OPC mask and the grayscale of pixels.
Fig. 9.
Fig. 9. The exposure pattern using the designed OPC mask.
Fig. 10.
Fig. 10. The image subtraction calculation process.
Fig. 11.
Fig. 11. The exposure results using: (a) original mask of a cross pattern, (b) original mask of letters “IOE”, (c) optimized mask of the cross pattern, (d) optimized mask of letters “IOE”. Scale bar: 2µm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D = I 0 × T × i = 0 i = 7 [ ( 2 v 1 ) × 2 i ] 2 8
I = I 0 × i = 0 i = 7 [ ( 2 v 1 ) × 2 i ] 2 8
I ( x , y ) = P 0 × 1 2 π δ 2 e x 2 + y 2 2 δ 2 ( 0 x L , 0 y L )
I ( x , y ) = I 0 × i = 0 i = 7 ( 2 v + i 2 i ) 2 9 π δ 2 e x 2 + y 2 2 δ 2
x o p c = x ( G ( 1.3 ) G ( 2.6 L ) )
M a t c h i n g r a t e = 1 i j a b s [ D ( i , j ) B ( i , j ) ] i j D ( i , j ) × 100 %