S. M. Nascimento, K. Amano, and D. H. Foster, “Spatial distributions of local illumination color in natural scenes,” Vision Res. 120, 39–44 (2016).

[Crossref]

B. Arad and O. Ben-Shahar, “Sparse recovery of hyperspectral signal from natural RGB images,” in IEEE European Conference on Computer Vision, pp. 19–34.

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

[Crossref]

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).

[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).

[Crossref]

B. Arad and O. Ben-Shahar, “Sparse recovery of hyperspectral signal from natural RGB images,” in IEEE European Conference on Computer Vision, pp. 19–34.

A. Sobral, S. Javed, S. Ki Jung, T. Bouwmans, and E.-H. Zahzah, “Online stochastic tensor decomposition for background subtraction in multispectral video sequences,” in IEEE I. Conf. Comp. Vis., pp. 946–953.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

[Crossref]

S. Wug Oh, M. S. Brown, M. Pollefeys, and S. Joo Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 2461–2469.

R. M. Nguyen, D. K. Prasad, and M. S. Brown, “Training-based spectral reconstruction from a single RGB image,” in IEEE European Conference on Computer Vision, pp. 186–201.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).

[Crossref]

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

[Crossref]

C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification (Kluwer Academic/Plenum Publishers, 2003).

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

L.-J. Cheng and G. F. Reyes, “AOTF polarimetric hyperspectral imaging for mine detection,” in Detection Technologies for Mines and Minelike Targets, vol. 2496 (International Society for Optics and Photonics, 1995), pp. 305–311.

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

J. Suo, L. Bian, F. Chen, and Q. Dai, “Bispectral coding: compressive and high-quality acquisition of fluorescence and reflectance,” Opt. Express 22(2), 1697–1712 (2014).

[Crossref]

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).

[Crossref]

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).

[Crossref]

C. F. Higham, R. Murray-Smith, M. J. Padgett, and M. P. Edgar, “Deep learning for real-time single-pixel video,” Sci. Rep. 8(1), 2369 (2018).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

S. M. Nascimento, K. Amano, and D. H. Foster, “Spatial distributions of local illumination color in natural scenes,” Vision Res. 120, 39–44 (2016).

[Crossref]

J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum, “MarrNet: 3D shape reconstruction via 2.5D sketches,” in Adv. Neur. In., pp. 540–550.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” in Wavelet Applications VII, vol. 4056 (International Society for Optics and Photonics, 2000), pp. 50–64.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).

[Crossref]

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228(4704), 1147–1153 (1985).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).

[Crossref]

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).

[Crossref]

C. McElfresh, T. Harrington, and K. S. Vecchio, “Application of a novel new multispectral nanoparticle tracking technique,” Meas. Sci. Technol. 29(6), 065002 (2018).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 770–778.

C. F. Higham, R. Murray-Smith, M. J. Padgett, and M. P. Edgar, “Deep learning for real-time single-pixel video,” Sci. Rep. 8(1), 2369 (2018).

[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. on Image Process. 19(9), 2241–2253 (2010).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

A. Sobral, S. Javed, S. Ki Jung, T. Bouwmans, and E.-H. Zahzah, “Online stochastic tensor decomposition for background subtraction in multispectral video sequences,” in IEEE I. Conf. Comp. Vis., pp. 946–953.

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

S. Wug Oh, M. S. Brown, M. Pollefeys, and S. Joo Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 2461–2469.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A deep representation for volumetric shapes,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 1912–1920.

A. Sobral, S. Javed, S. Ki Jung, T. Bouwmans, and E.-H. Zahzah, “Online stochastic tensor decomposition for background subtraction in multispectral video sequences,” in IEEE I. Conf. Comp. Vis., pp. 946–953.

B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 136–144.

J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using very deep convolutional networks,” in IEEE I. Conf. Comp. Vis., pp. 1646–1654.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).

G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive coded aperture spectral imaging,” IEEE Signal Process. Mag. 31(1), 105–115 (2014).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).

[Crossref]

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).

[Crossref]

J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using very deep convolutional networks,” in IEEE I. Conf. Comp. Vis., pp. 1646–1654.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

Z. Xiong, Z. Shi, H. Li, L. Wang, D. Liu, and F. Wu, “HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections,” in IEEE I. Conf. Comp. Vis., pp. 518–525.

B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 136–144.

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).

[Crossref]

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).

[Crossref]

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).

[Crossref]

K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning for human pose estimation,” arXiv preprint arXiv:1902.09212 (2019).

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

Z. Xiong, Z. Shi, H. Li, L. Wang, D. Liu, and F. Wu, “HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections,” in IEEE I. Conf. Comp. Vis., pp. 518–525.

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent memory network for image restoration,” in IEEE I. Conf. Comp. Vis., pp. 4539–4547.

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).

[Crossref]

O. Losson, L. Macaire, and Y. Yang, “Comparison of color demosaicing methods,” Adv. Imaging Electron Phys. 162, 173–265 (2010).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

O. Losson, L. Macaire, and Y. Yang, “Comparison of color demosaicing methods,” Adv. Imaging Electron Phys. 162, 173–265 (2010).

[Crossref]

C. McElfresh, T. Harrington, and K. S. Vecchio, “Application of a novel new multispectral nanoparticle tracking technique,” Meas. Sci. Technol. 29(6), 065002 (2018).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).

[Crossref]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. on Image Process. 19(9), 2241–2253 (2010).

[Crossref]

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 136–144.

J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using very deep convolutional networks,” in IEEE I. Conf. Comp. Vis., pp. 1646–1654.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

C. F. Higham, R. Murray-Smith, M. J. Padgett, and M. P. Edgar, “Deep learning for real-time single-pixel video,” Sci. Rep. 8(1), 2369 (2018).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 136–144.

S. M. Nascimento, K. Amano, and D. H. Foster, “Spatial distributions of local illumination color in natural scenes,” Vision Res. 120, 39–44 (2016).

[Crossref]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. on Image Process. 19(9), 2241–2253 (2010).

[Crossref]

R. M. Nguyen, D. K. Prasad, and M. S. Brown, “Training-based spectral reconstruction from a single RGB image,” in IEEE European Conference on Computer Vision, pp. 186–201.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

C. F. Higham, R. Murray-Smith, M. J. Padgett, and M. P. Edgar, “Deep learning for real-time single-pixel video,” Sci. Rep. 8(1), 2369 (2018).

[Crossref]

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

S. Wug Oh, M. S. Brown, M. Pollefeys, and S. Joo Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 2461–2469.

A.-I. Popa, M. Zanfir, and C. Sminchisescu, “Deep multitask architecture for integrated 2D and 3D human sensing,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 6289–6298.

R. M. Nguyen, D. K. Prasad, and M. S. Brown, “Training-based spectral reconstruction from a single RGB image,” in IEEE European Conference on Computer Vision, pp. 186–201.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 770–778.

L.-J. Cheng and G. F. Reyes, “AOTF polarimetric hyperspectral imaging for mine detection,” in Detection Technologies for Mines and Minelike Targets, vol. 2496 (International Society for Optics and Photonics, 1995), pp. 305–311.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228(4704), 1147–1153 (1985).

[Crossref]

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

[Crossref]

Z. Xiong, Z. Shi, H. Li, L. Wang, D. Liu, and F. Wu, “HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections,” in IEEE I. Conf. Comp. Vis., pp. 518–525.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

A.-I. Popa, M. Zanfir, and C. Sminchisescu, “Deep multitask architecture for integrated 2D and 3D human sensing,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 6289–6298.

A. Sobral, S. Javed, S. Ki Jung, T. Bouwmans, and E.-H. Zahzah, “Online stochastic tensor decomposition for background subtraction in multispectral video sequences,” in IEEE I. Conf. Comp. Vis., pp. 946–953.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228(4704), 1147–1153 (1985).

[Crossref]

B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 136–144.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A deep representation for volumetric shapes,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 1912–1920.

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 770–778.

K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning for human pose estimation,” arXiv preprint arXiv:1902.09212 (2019).

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum, “MarrNet: 3D shape reconstruction via 2.5D sketches,” in Adv. Neur. In., pp. 540–550.

Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent memory network for image restoration,” in IEEE I. Conf. Comp. Vis., pp. 4539–4547.

T. Shimobaba, Y. Endo, T. Nishitsuji, T. Takahashi, Y. Nagahama, S. Hasegawa, M. Sano, R. Hirayama, T. Kakue, A. Shiraki, and T. Ito, “Computational ghost imaging using deep learning,” Opt. Commun. 413, 147–151 (2018).

[Crossref]

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A deep representation for volumetric shapes,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 1912–1920.

J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum, “MarrNet: 3D shape reconstruction via 2.5D sketches,” in Adv. Neur. In., pp. 540–550.

X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for multispectral video acquisition,” IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2423–2435 (2011).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).

[Crossref]

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).

[Crossref]

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for earth remote sensing,” Science 228(4704), 1147–1153 (1985).

[Crossref]

C. McElfresh, T. Harrington, and K. S. Vecchio, “Application of a novel new multispectral nanoparticle tracking technique,” Meas. Sci. Technol. 29(6), 065002 (2018).

[Crossref]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning for human pose estimation,” arXiv preprint arXiv:1902.09212 (2019).

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

Z. Xiong, Z. Shi, H. Li, L. Wang, D. Liu, and F. Wu, “HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections,” in IEEE I. Conf. Comp. Vis., pp. 518–525.

M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, and G. Situ, “Deep-learning-based ghost imaging,” Sci. Rep. 7(1), 17865 (2017).

[Crossref]

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum, “MarrNet: 3D shape reconstruction via 2.5D sketches,” in Adv. Neur. In., pp. 540–550.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

[Crossref]

Z. Xiong, Z. Shi, H. Li, L. Wang, D. Liu, and F. Wu, “HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections,” in IEEE I. Conf. Comp. Vis., pp. 518–525.

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).

[Crossref]

J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum, “MarrNet: 3D shape reconstruction via 2.5D sketches,” in Adv. Neur. In., pp. 540–550.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A deep representation for volumetric shapes,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 1912–1920.

S. Wug Oh, M. S. Brown, M. Pollefeys, and S. Joo Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 2461–2469.

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning for human pose estimation,” arXiv preprint arXiv:1902.09212 (2019).

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A deep representation for volumetric shapes,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 1912–1920.

Z. Xiong, Z. Shi, H. Li, L. Wang, D. Liu, and F. Wu, “HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections,” in IEEE I. Conf. Comp. Vis., pp. 518–525.

Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent memory network for image restoration,” in IEEE I. Conf. Comp. Vis., pp. 4539–4547.

J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum, “MarrNet: 3D shape reconstruction via 2.5D sketches,” in Adv. Neur. In., pp. 540–550.

Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent memory network for image restoration,” in IEEE I. Conf. Comp. Vis., pp. 4539–4547.

O. Losson, L. Macaire, and Y. Yang, “Comparison of color demosaicing methods,” Adv. Imaging Electron Phys. 162, 173–265 (2010).

[Crossref]

F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum,” IEEE Trans. on Image Process. 19(9), 2241–2253 (2010).

[Crossref]

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A deep representation for volumetric shapes,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 1912–1920.

A. Sobral, S. Javed, S. Ki Jung, T. Bouwmans, and E.-H. Zahzah, “Online stochastic tensor decomposition for background subtraction in multispectral video sequences,” in IEEE I. Conf. Comp. Vis., pp. 946–953.

A.-I. Popa, M. Zanfir, and C. Sminchisescu, “Deep multitask architecture for integrated 2D and 3D human sensing,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 6289–6298.

D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004).

[Crossref]

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A deep representation for volumetric shapes,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 1912–1920.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE I. Conf. Comp. Vis. Patt. Recog., pp. 770–778.

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu, and J. Wang, “High-resolution representations for labeling pixels and regions,” CoRR, abs/1904.04514 (2019).

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).

[Crossref]