Abstract

Augmented reality (AR) is an interactive experience of a real-world environment where the objects that reside in the real world are enhanced by computer-generated perceptual information. Despite its attractive features, AR has not become popular because of the visual fatigue that many people face when they experience it. Many methods have been introduced to solve this visual fatigue problem and one of these methods is an integral imaging system that provides images almost continuous viewpoints and full parallax. However, the integral imaging system, which uses a lens array with a fixed focal length, has limited depth of focus (DOF) range. As a result, images that are outside of the DOF range become distorted. In this paper, a vari-focal liquid lens array was fabricated and the optical characteristics of the lens array were evaluated. Using the vari-focal liquid lens array, the DOF range was extended and high-resolution images are realized without restriction of depth range in an AR system.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Depth plane adaptive integral imaging using a varifocal liquid lens array

Cheol-Joong Kim, Minho Chang, Muyoung Lee, Junoh Kim, and Yong Hyub Won
Appl. Opt. 54(10) 2565-2571 (2015)

High-performance integral-imaging-based light field augmented reality display using freeform optics

Hekun Huang and Hong Hua
Opt. Express 26(13) 17578-17590 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Grap. Appl. 21(6), 34–47 (2001).
    [Crossref]
  2. J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimed. Tools Appl. 51(1), 341–377 (2011).
    [Crossref]
  3. H. Hua, Augmented Virtual Environments. Optics and photonics News, OSN, Ekim, 26–33 (2006).
  4. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 33 (2008).
    [Crossref]
  5. C. M. Schor and T. K. Tsuetaki, “Fatigue of accommodation and vergence modifies their mutual interactions,” Invest. Ophthalmol. Visual Sci. 28(8), 1250–1259 (1987).
  6. K. M. Stanney and K. S. Hale, Handbook of virtual environments: Design, implementation, and applications. CRC Press (2014).
  7. K. M. Stanney, K. S. Hale, I. Nahmens, and R. S. Kennedy, “What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience,” Hum. Factors 45(3), 504–520 (2003).
    [Crossref]
  8. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
    [Crossref]
  9. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref]
  10. H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [Crossref]
  11. B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Visual. Comput. Graphics 8(1), 66–75 (2002).
    [Crossref]
  12. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” In Cockpit Displays IX: Displays for Defense Applications (Vol. 4712, pp. 300–313). International Society for Optics and Photonics (2002, August).
  13. A. Sullivan, “58.3: A Solid-state Multi-planar Volumetric Display,” In SID symposium digest of technical papers (Vol. 34, No. 1, pp. 1531–1533). Oxford, UK: Blackwell Publishing Ltd (2003, May).
  14. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
    [Crossref]
  15. S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
    [Crossref]
  16. S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
    [Crossref]
  17. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref]
  18. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).
  19. F. C. Huang, D. P. Luebke, and G. Wetzstein, “The light field stereoscope,” In SIGGRAPH Emerging Technologies (pp. 24-1) (2015, July).
  20. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [Crossref]
  21. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
    [Crossref]
  22. Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Visual. Comput. Graphics 15(5), 841–852 (2009).
    [Crossref]
  23. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref]
  24. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett. 12(6), 060010 (2014).
    [Crossref]
  25. F. Jin, J. S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29(12), 1345–1347 (2004).
    [Crossref]
  26. B. Lee, S. Jung, S. W. Min, and J. H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. 26(19), 1481–1482 (2001).
    [Crossref]
  27. S. W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42(20), 4186–4195 (2003).
    [Crossref]
  28. D. Q. Pham, N. Kim, K. C. Kwon, J. H. Jung, K. Hong, B. Lee, and J. H. Park, “Depth enhancement of integral imaging by using polymer-dispersed liquid-crystal films and a dual-depth configuration,” Opt. Lett. 35(18), 3135–3137 (2010).
    [Crossref]
  29. X. Shen and B. Javidi, “Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens,” Appl. Opt. 57(7), B184–B189 (2018).
    [Crossref]
  30. H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
    [Crossref]
  31. H. Deng, Q. H. Wang, and D. H. Li, “The realization of computer generated integral imaging based on two step pickup method,” In 2010 Symposium on Photonics and Optoelectronics (pp. 1–3). IEEE (2010, June).
  32. C. J. Kim, M. Chang, M. Lee, J. Kim, and Y. H. Won, “Depth plane adaptive integral imaging using a varifocal liquid lens array,” Appl. Opt. 54(10), 2565–2571 (2015).
    [Crossref]
  33. D. Shin, J. Kim, C. Kim, J. Lee, G. H. Koo, J. H. Sim, and Y. H. Won, “3-D image Crosstalk Reduction by Controlling the Width of the Electrode in a Liquid Lenticular Lens,” IEEE Photonics J. 10(4), 1–12 (2018).
    [Crossref]
  34. J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in DC electrowetting,” Langmuir 29(29), 9118–9125 (2013).
    [Crossref]
  35. P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
    [Crossref]
  36. B. H. W. Hendriks, S. Kuiper, M. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
    [Crossref]
  37. N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
    [Crossref]
  38. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
    [Crossref]

2018 (3)

2016 (1)

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

2015 (2)

2014 (3)

2013 (3)

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52(4), 546–560 (2013).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in DC electrowetting,” Langmuir 29(29), 9118–9125 (2013).
[Crossref]

2011 (1)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimed. Tools Appl. 51(1), 341–377 (2011).
[Crossref]

2010 (1)

2009 (2)

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Visual. Comput. Graphics 15(5), 841–852 (2009).
[Crossref]

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 33 (2008).
[Crossref]

2005 (1)

B. H. W. Hendriks, S. Kuiper, M. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

2004 (1)

2003 (3)

K. M. Stanney, K. S. Hale, I. Nahmens, and R. S. Kennedy, “What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience,” Hum. Factors 45(3), 504–520 (2003).
[Crossref]

S. W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42(20), 4186–4195 (2003).
[Crossref]

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

2002 (1)

B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Visual. Comput. Graphics 8(1), 66–75 (2002).
[Crossref]

2001 (4)

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Grap. Appl. 21(6), 34–47 (2001).
[Crossref]

B. Lee, S. Jung, S. W. Min, and J. H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. 26(19), 1481–1482 (2001).
[Crossref]

H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
[Crossref]

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[Crossref]

2000 (1)

1997 (1)

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

1994 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

1987 (1)

C. M. Schor and T. K. Tsuetaki, “Fatigue of accommodation and vergence modifies their mutual interactions,” Invest. Ophthalmol. Visual Sci. 28(8), 1250–1259 (1987).

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 33 (2008).
[Crossref]

Anisetti, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimed. Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Arimoto, H.

As, M. V.

B. H. W. Hendriks, S. Kuiper, M. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Azuma, R.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Grap. Appl. 21(6), 34–47 (2001).
[Crossref]

Baillot, Y.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Grap. Appl. 21(6), 34–47 (2001).
[Crossref]

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 33 (2008).
[Crossref]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

Behringer, R.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Grap. Appl. 21(6), 34–47 (2001).
[Crossref]

Blundell, B. G.

B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Visual. Comput. Graphics 8(1), 66–75 (2002).
[Crossref]

Carmigniani, J.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimed. Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Ceravolo, P.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimed. Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Chang, M.

Cheng, D.

Chun, W. S.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” In Cockpit Displays IX: Displays for Defense Applications (Vol. 4712, pp. 300–313). International Society for Optics and Photonics (2002, August).

Damiani, E.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimed. Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Deng, H.

H. Deng, Q. H. Wang, and D. H. Li, “The realization of computer generated integral imaging based on two step pickup method,” In 2010 Symposium on Photonics and Optoelectronics (pp. 1–3). IEEE (2010, June).

Dorval, R. K.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” In Cockpit Displays IX: Displays for Defense Applications (Vol. 4712, pp. 300–313). International Society for Optics and Photonics (2002, August).

Eisner, M.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Favalora, G. E.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” In Cockpit Displays IX: Displays for Defense Applications (Vol. 4712, pp. 300–313). International Society for Optics and Photonics (2002, August).

Feiner, S.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Grap. Appl. 21(6), 34–47 (2001).
[Crossref]

Furht, B.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimed. Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Furness, T. A.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Giovinco, M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” In Cockpit Displays IX: Displays for Defense Applications (Vol. 4712, pp. 300–313). International Society for Optics and Photonics (2002, August).

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 33 (2008).
[Crossref]

Goon, A.

Hahn, J.

Hale, K. S.

K. M. Stanney, K. S. Hale, I. Nahmens, and R. S. Kennedy, “What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience,” Hum. Factors 45(3), 504–520 (2003).
[Crossref]

K. M. Stanney and K. S. Hale, Handbook of virtual environments: Design, implementation, and applications. CRC Press (2014).

Hall, D. M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” In Cockpit Displays IX: Displays for Defense Applications (Vol. 4712, pp. 300–313). International Society for Optics and Photonics (2002, August).

Haselbeck, S.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

Heikenfeld, J.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

Hendriks, B. H. W.

B. H. W. Hendriks, S. Kuiper, M. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Herzig, H. P.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 33 (2008).
[Crossref]

Hong, J.

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in DC electrowetting,” Langmuir 29(29), 9118–9125 (2013).
[Crossref]

Hong, K.

Hou, L.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

Hua, H.

Huang, F. C.

F. C. Huang, D. P. Luebke, and G. Wetzstein, “The light field stereoscope,” In SIGGRAPH Emerging Technologies (pp. 24-1) (2015, July).

Huang, H.

Huang, S.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Ivkovic, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimed. Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Jang, J. S.

Javidi, B.

Ji, Y. M.

Jin, F.

Julier, S.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Grap. Appl. 21(6), 34–47 (2001).
[Crossref]

Jung, J. H.

Jung, S.

Kang, I. S.

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in DC electrowetting,” Langmuir 29(29), 9118–9125 (2013).
[Crossref]

Kang, K. H.

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in DC electrowetting,” Langmuir 29(29), 9118–9125 (2013).
[Crossref]

Kelly, J. P.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Kennedy, R. S.

K. M. Stanney, K. S. Hale, I. Nahmens, and R. S. Kennedy, “What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience,” Hum. Factors 45(3), 504–520 (2003).
[Crossref]

Kim, C.

D. Shin, J. Kim, C. Kim, J. Lee, G. H. Koo, J. H. Sim, and Y. H. Won, “3-D image Crosstalk Reduction by Controlling the Width of the Electrode in a Liquid Lenticular Lens,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

Kim, C. J.

Kim, H.

Kim, H. J.

Kim, J.

D. Shin, J. Kim, C. Kim, J. Lee, G. H. Koo, J. H. Sim, and Y. H. Won, “3-D image Crosstalk Reduction by Controlling the Width of the Electrode in a Liquid Lenticular Lens,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

C. J. Kim, M. Chang, M. Lee, J. Kim, and Y. H. Won, “Depth plane adaptive integral imaging using a varifocal liquid lens array,” Appl. Opt. 54(10), 2565–2571 (2015).
[Crossref]

Kim, M.

Kim, N.

Kim, S. B.

Kim, Y. K.

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in DC electrowetting,” Langmuir 29(29), 9118–9125 (2013).
[Crossref]

Koike, T.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Visual. Comput. Graphics 15(5), 841–852 (2009).
[Crossref]

Koo, G. H.

D. Shin, J. Kim, C. Kim, J. Lee, G. H. Koo, J. H. Sim, and Y. H. Won, “3-D image Crosstalk Reduction by Controlling the Width of the Electrode in a Liquid Lenticular Lens,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

Krueger, M. W.

Kuiper, S.

B. H. W. Hendriks, S. Kuiper, M. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Kwon, K. C.

Lanman, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).

Lee, B.

Lee, J.

D. Shin, J. Kim, C. Kim, J. Lee, G. H. Koo, J. H. Sim, and Y. H. Won, “3-D image Crosstalk Reduction by Controlling the Width of the Electrode in a Liquid Lenticular Lens,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

Lee, M.

Li, B.

Li, D. H.

H. Deng, Q. H. Wang, and D. H. Li, “The realization of computer generated integral imaging based on two step pickup method,” In 2010 Symposium on Photonics and Optoelectronics (pp. 1–3). IEEE (2010, June).

Li, X.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Li, Y.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Liu, S.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Liu, Y.

Luebke, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).

Luebke, D. P.

F. C. Huang, D. P. Luebke, and G. Wetzstein, “The light field stereoscope,” In SIGGRAPH Emerging Technologies (pp. 24-1) (2015, July).

MacIntyre, B.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Grap. Appl. 21(6), 34–47 (2001).
[Crossref]

Martinez-Corral, M.

McQuaide, S. C.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Min, S. W.

Moon, E.

Naemura, T.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Visual. Comput. Graphics 15(5), 841–852 (2009).
[Crossref]

Nahmens, I.

K. M. Stanney, K. S. Hale, I. Nahmens, and R. S. Kennedy, “What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience,” Hum. Factors 45(3), 504–520 (2003).
[Crossref]

Napoli, J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” In Cockpit Displays IX: Displays for Defense Applications (Vol. 4712, pp. 300–313). International Society for Optics and Photonics (2002, August).

Nussbaum, P.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Oh, J. M.

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in DC electrowetting,” Langmuir 29(29), 9118–9125 (2013).
[Crossref]

Park, J. H.

Pham, D. Q.

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[Crossref]

Renders, C. A.

B. H. W. Hendriks, S. Kuiper, M. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Richmond, M. J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” In Cockpit Displays IX: Displays for Defense Applications (Vol. 4712, pp. 300–313). International Society for Optics and Photonics (2002, August).

Roh, J.

Rolland, J. P.

Rong, N.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Schor, C. M.

C. M. Schor and T. K. Tsuetaki, “Fatigue of accommodation and vergence modifies their mutual interactions,” Invest. Ophthalmol. Visual Sci. 28(8), 1250–1259 (1987).

Schowengerdt, B. T.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Schwarz, A. J.

B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Visual. Comput. Graphics 8(1), 66–75 (2002).
[Crossref]

Seibel, E. J.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[Crossref]

Shen, X.

Shin, D.

D. Shin, J. Kim, C. Kim, J. Lee, G. H. Koo, J. H. Sim, and Y. H. Won, “3-D image Crosstalk Reduction by Controlling the Width of the Electrode in a Liquid Lenticular Lens,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

Sim, J. H.

D. Shin, J. Kim, C. Kim, J. Lee, G. H. Koo, J. H. Sim, and Y. H. Won, “3-D image Crosstalk Reduction by Controlling the Width of the Electrode in a Liquid Lenticular Lens,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

Smith, N. R.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

Song, W.

Stanney, K. M.

K. M. Stanney, K. S. Hale, I. Nahmens, and R. S. Kennedy, “What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience,” Hum. Factors 45(3), 504–520 (2003).
[Crossref]

K. M. Stanney and K. S. Hale, Handbook of virtual environments: Design, implementation, and applications. CRC Press (2014).

Stern, A.

Su, Y.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Sullivan, A.

A. Sullivan, “58.3: A Solid-state Multi-planar Volumetric Display,” In SID symposium digest of technical papers (Vol. 34, No. 1, pp. 1531–1533). Oxford, UK: Blackwell Publishing Ltd (2003, May).

Taguchi, Y.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Visual. Comput. Graphics 15(5), 841–852 (2009).
[Crossref]

Takahashi, K.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Visual. Comput. Graphics 15(5), 841–852 (2009).
[Crossref]

Tsuetaki, T. K.

C. M. Schor and T. K. Tsuetaki, “Fatigue of accommodation and vergence modifies their mutual interactions,” Invest. Ophthalmol. Visual Sci. 28(8), 1250–1259 (1987).

Tukker, T. W.

B. H. W. Hendriks, S. Kuiper, M. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Voelkel, R.

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Wang, Q. H.

H. Deng, Q. H. Wang, and D. H. Li, “The realization of computer generated integral imaging based on two step pickup method,” In 2010 Symposium on Photonics and Optoelectronics (pp. 1–3). IEEE (2010, June).

Wang, Y.

Wetzstein, G.

F. C. Huang, D. P. Luebke, and G. Wetzstein, “The light field stereoscope,” In SIGGRAPH Emerging Technologies (pp. 24-1) (2015, July).

Won, Y. H.

D. Shin, J. Kim, C. Kim, J. Lee, G. H. Koo, J. H. Sim, and Y. H. Won, “3-D image Crosstalk Reduction by Controlling the Width of the Electrode in a Liquid Lenticular Lens,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

C. J. Kim, M. Chang, M. Lee, J. Kim, and Y. H. Won, “Depth plane adaptive integral imaging using a varifocal liquid lens array,” Appl. Opt. 54(10), 2565–2571 (2015).
[Crossref]

Xiao, X.

Yeom, H. J.

Zhang, H.

Zhang, J.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

Zhou, P.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

ACM Trans. Graph. (1)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 220 (2013).

Appl. Opt. (5)

Chin. Opt. Lett. (1)

Displays (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Hum. Factors (1)

K. M. Stanney, K. S. Hale, I. Nahmens, and R. S. Kennedy, “What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience,” Hum. Factors 45(3), 504–520 (2003).
[Crossref]

IEEE Comput. Grap. Appl. (1)

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Grap. Appl. 21(6), 34–47 (2001).
[Crossref]

IEEE Photonics J. (1)

D. Shin, J. Kim, C. Kim, J. Lee, G. H. Koo, J. H. Sim, and Y. H. Won, “3-D image Crosstalk Reduction by Controlling the Width of the Electrode in a Liquid Lenticular Lens,” IEEE Photonics J. 10(4), 1–12 (2018).
[Crossref]

IEEE Trans. Visual. Comput. Graphics (2)

B. G. Blundell and A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Visual. Comput. Graphics 8(1), 66–75 (2002).
[Crossref]

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of viewing parameters,” IEEE Trans. Visual. Comput. Graphics 15(5), 841–852 (2009).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

C. M. Schor and T. K. Tsuetaki, “Fatigue of accommodation and vergence modifies their mutual interactions,” Invest. Ophthalmol. Visual Sci. 28(8), 1250–1259 (1987).

J. Disp. Technol. (1)

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5(11), 411–413 (2009).
[Crossref]

J. Phys. Theor. Appl. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[Crossref]

J. Soc. Inf. Disp. (1)

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

J. Vision (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vision 8(3), 33 (2008).
[Crossref]

Langmuir (1)

J. Hong, Y. K. Kim, K. H. Kang, J. M. Oh, and I. S. Kang, “Effects of drop size and viscosity on spreading dynamics in DC electrowetting,” Langmuir 29(29), 9118–9125 (2013).
[Crossref]

Multimed. Tools Appl. (1)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimed. Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Rev. (1)

B. H. W. Hendriks, S. Kuiper, M. V. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005).
[Crossref]

Pure Appl. Opt. (1)

P. Nussbaum, R. Voelkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref]

Other (6)

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. Giovinco, M. J. Richmond, and W. S. Chun, “100-million-voxel volumetric display,” In Cockpit Displays IX: Displays for Defense Applications (Vol. 4712, pp. 300–313). International Society for Optics and Photonics (2002, August).

A. Sullivan, “58.3: A Solid-state Multi-planar Volumetric Display,” In SID symposium digest of technical papers (Vol. 34, No. 1, pp. 1531–1533). Oxford, UK: Blackwell Publishing Ltd (2003, May).

H. Hua, Augmented Virtual Environments. Optics and photonics News, OSN, Ekim, 26–33 (2006).

K. M. Stanney and K. S. Hale, Handbook of virtual environments: Design, implementation, and applications. CRC Press (2014).

H. Deng, Q. H. Wang, and D. H. Li, “The realization of computer generated integral imaging based on two step pickup method,” In 2010 Symposium on Photonics and Optoelectronics (pp. 1–3). IEEE (2010, June).

F. C. Huang, D. P. Luebke, and G. Wetzstein, “The light field stereoscope,” In SIGGRAPH Emerging Technologies (pp. 24-1) (2015, July).

Supplementary Material (1)

NameDescription
» Visualization 1       eye tracking method demonstration

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. Concept of the depth plane adaptive integral imaging system.
Fig. 2.
Fig. 2. Design of the depth plane adaptive integral imaging system.
Fig. 3.
Fig. 3. (a) Design of liquid lens array combined with solid lens. (b) The theoretical position and range of the intermediate image plane of hybrid lens array according to thickness of conductive liquid.
Fig. 4.
Fig. 4. The fabrication process of the electro-wetting liquid lens array. (a) Exposure. (b) Baking. (c) Wet etching. (d) Electrode and insulation layer deposition. (e) Glass and gasket bonding. (f) Assembling and dosing. (g) Immersion. (h) Sealing.
Fig. 5.
Fig. 5. (a) The photosensitive glass with hole arrays. (b) The final prototype of the liquid lens array.
Fig. 6.
Fig. 6. (a) Optical set up for measuring the focal length of the liquid lens array on the table top. (b) The beam spot was measured when the CCD camera was focused on the surface of the liquid lens array. (c) After moving the objective lens and the CCD camera toward the liquid lens array, the minimum beam spot was found. The moved distance was focal length of the liquid lens array.
Fig. 7.
Fig. 7. (a) Microscopic images and schematic diagram of the lens array. The top is the liquid lens array and the bottom is the hybrid lens array. (b) The value of the dioptric power and focal length of the hybrid lens array depending on the voltage. (c) Graph comparing the dioptric power of the hybrid lens array with that of the liquid lens array.
Fig. 8.
Fig. 8. (a) Optical setup for measuring the aberration of the liquid lens array on the table top. (b) Schematic diagram of optical setup for calibration and (c) for lens aberration measurement.
Fig. 9.
Fig. 9. The wavefront shape of (a) liquid lens and (b) hybrid lens depending on the voltage. (c) Wavefront error of liquid and hybrid lens array depending on the voltages.
Fig. 10.
Fig. 10. Response time measurement with a high speed camera (1200fps).
Fig. 11.
Fig. 11. (a) The optimization process of hybrid lens array. (b) Experimental position and range of the intermediate image plane of hybrid lens array according to thickness of conductive liquid.
Fig. 12.
Fig. 12. Captured virtual images when different voltages were applied to the each sample having (a) 0.55 mm, (b) 0.85 mm, and (c) 1.15 mm conductive liquid thickness. (d) Magnified images for each letter.
Fig. 13.
Fig. 13. (a) Optical set up for AR system. Captured images both real and virtual images after applying (b) 40 V (c) 50 V (d) 60 V while the camera focusing on (b) 30 cm, (c) 50 cm, (d) 100 cm. (e) Captured images located at 100 cm when CDP sets at 30 cm. (f) Captured images located at 30 cm when CDP sets at 100 cm.
Fig. 14.
Fig. 14. (a) Captured rectangular images located at 30 cm and (b) line contrast at rectangular boundary by applying voltage from 40 V to 60 V. (c) Captured rectangular images located at 100 cm and (d) line contrast at rectangular boundary by applying voltage from 40 V to 60 V.
Fig. 15.
Fig. 15. (a) Frame 1 image when applying 60 V while the camera focusing on 100 cm. (b) Frame 2 image when applying 40 V while the camera focusing on 30 cm. (c) Captured images through time-multiplexing method. In order to focus on the both depth, the DOF of camera is increased intentionally.
Fig. 16.
Fig. 16. Captured images of both real and virtual letter through eye-tracking method. When the eye focus on (a) letter ‘A’ (b) letter ‘B’ and (c) letter ‘C’, the 40 V, 50 V and 60 V was applied. (see Visualization 1)
Fig. 17.
Fig. 17. Captured USAF chart images at (a) 30 cm, (b) 50 cm and (c) 100 cm with the camera focusing on 30 cm, 50 cm and 100 cm.

Tables (1)

Tables Icon

Table 1. Specification for the proposed integral imaging system

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 d e p 1 d o d e = 1 f e p d o = f e p d e p f e p d e p + d e , for 0 < d e p < f e p
α = 2 arctan [ min ( w e p 2 d e , M o w d 2 d o ) ] , M o = d o d e d e p
N = 2 arctan ( p M I M o 2 d o ) , M I = d I d L

Metrics