Abstract

This paper describes the development of a Modular Plenoptic Adaptor (MPA) for rapid and reversible conversion of high-speed cameras into plenoptic imaging systems, with the primary goal of enabling single-camera, time-resolved 3D flow-measurements. The MPA consists of a regular imaging lens, a microlens array, a tilt-adjustable microlens mount and an optical relay, which are collectively installed onto a high-speed camera through a standard lens mount. Each component within the system is swappable to optimize for specific imaging applications. In this study, multiple configurations of the MPA were tested and they demonstrated the ability to refocus and shift perspectives within high-speed scenes after capture. Additionally, the MPA demonstrated 3D reconstruction of captured scenes with <1% spatial error across a volume spanning approximately 50×30×50mm3. Finally, the MPA also demonstrated reconstruction of a 3D droplets-field with sufficient quality to support qualitatively accurate plenoptic particle image velocimetry (PPIV) calculations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical and experimental validation of a single-camera 3D velocimetry based on endoscopic tomography

Jianan Zhao, Hecong Liu, and Weiwei Cai
Appl. Opt. 58(6) 1363-1373 (2019)

High-speed light field camera and frequency division multiplexing for fast multi-plane velocity measurements

Andreas Fischer, Christian Kupsch, Johannes Gürtler, and Jürgen Czarske
Opt. Express 23(19) 24910-24922 (2015)

Development and uncertainty characterization of 3D particle location from perspective shifted plenoptic images

Elise Munz Hall, Daniel R. Guildenbecher, and Brian S. Thurow
Opt. Express 27(6) 7997-8010 (2019)

References

  • View by:
  • |
  • |
  • |

  1. I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of light field imaging: briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
    [Crossref]
  2. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech Report CTSR, 1–11 (2005).
  3. T.-C. Wang, A. A. Efros, and R. Ramamoorthi, “Occlusion-aware depth estimation using light-field cameras,” in the Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3487–3495.
    [Crossref]
  4. L. Labios, “4D camera could improve robot vision, virtual reality and self-driving cars” (UC San Diego News Center, 2017) https://ucsdnews.ucsd.edu/pressrelease/4d_camera_could_improve_robot_vision_virtual_reality_and_self_driving_cars .
  5. G. M. Schuster, I. P. Agurok, J. E. Ford, D. G. Dansereau, and G. Wetzstein, “Panoramic Monocentric Light Field Camera,” in Proceedings of the International Optical Design Conference (2017), pp. 1–2.
  6. K. P. Lynch, Development of a 3-D Fluid Velocimetry Technique Based On Light Field Imaging (Auburn University, 2011).
  7. T. W. Fahringer and B. S. Thurow, “Tomographic reconstruction of a 3-D flow field using a plenoptic camera,” in Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit (AIAA, 2012), pp. 1–13.
    [Crossref]
  8. T. W. Fahringer and B. S. Thurow, “On the development of filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” in Proceedings of the 11th International Symposium on Particle Image Velocimetry (2015), pp. 1–11.
  9. T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
    [Crossref]
  10. K. C. Johnson, B. S. Thurow, T. Kim, G. Blois, and K. T. Christensen, “Three dimensional plenoptic PIV measurements of a turbulent boundary layer overlying rough and permeable surfaces,” presented at the 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 4–7 July 2016.
  11. T. W. Fahringer and B. S. Thurow, “Plenoptic particle image velocimetry with multiple plenoptic cameras,” Meas. Sci. Technol. 29(7), 075202 (2018).
    [Crossref]
  12. E. M. Hall, D. R. Guildenbecher, and B. S. Thurow, “3D particle location from perspective-shifted plenoptic images,” presented at the 19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 16–19 July 2018.
  13. A. Bichal, Development of 3D Background Oriented Schlieren with a Plenoptic Camera (Auburn University, 2015).
  14. J. N. Klemkowsky, B. S. Thurow, and R. Mejia-Alvarez, “3D visualization of density gradients using a plenoptic camera and background oriented schlieren imaging,” in Proceedings of the AIAA SciTech Forum and Exposition (AIAA, 2016), pp. 1–12.
  15. J. N. Klemkowsky, T. W. Fahringer, C. J. Clifford, B. F. Bathel, and B. S. Thurow, “Plenoptic background oriented schlieren imaging,” Meas. Sci. Technol. 28(9), 095404 (2017).
    [Crossref]
  16. J. Sun, M. M. Hossain, C. Xu, and B. Zhang, “Investigation of flame radiation sampling and temperature measurement through light field cameras,” Int. J. of Heat Mass Transf. 121, 1281–1296 (2018).
    [Crossref]
  17. X. Huang, H. Qi, X.-L. Zhang, Y.-T. Ren, L.-M. Ruan, and H.-P. Tan, “Application of Landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique,” J. Heat Transfer 140(8), 082701 (2018).
    [Crossref]
  18. A. Fischer, C. Kupsch, J. Gürtler, and J. Czarske, “High-speed light field camera and frequency division multiplexing for fast multi-plane velocity measurements,” Opt. Express 23(19), 24910–24922 (2015).
    [Crossref] [PubMed]
  19. Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. 48(1), 34–40 (2005).
    [Crossref]
  20. J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
    [Crossref]
  21. W. Cai, X. Li, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
    [Crossref] [PubMed]
  22. X. Li and L. Ma, “Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence,” Combust. Flame 162(3), 642–651 (2015).
    [Crossref]
  23. J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1–2), 7–15 (1999).
    [Crossref]
  24. S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12(2), 188–200 (2001).
    [Crossref]
  25. J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44(6), 851–863 (2008).
    [Crossref]
  26. Y. Wu, W. Xu, Q. Lei, and L. Ma, “Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine,” Opt. Express 23(26), 33408–33418 (2015).
    [Crossref] [PubMed]
  27. L. Ma, Q. Lei, T. Capil, S. D. Hammack, and C. D. Carter, “Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames,” Opt. Lett. 42(2), 267–270 (2017).
    [Crossref] [PubMed]
  28. E. Goldhahn and J. Seume, “The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field,” Exp. Fluids 43(2–3), 241–249 (2007).
    [Crossref]
  29. F. Scarano, “Tomographic PIV: principles and practice,” Meas. Sci. Technol. 24(1), 012001 (2013).
    [Crossref]
  30. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
    [Crossref]
  31. B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55(6), 1743 (2014).
    [Crossref]
  32. C. Brücker, D. Hess, and J. Kitzhofer, “Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM),” Meas. Sci. Technol. 24(2), 024001 (2013).
    [Crossref]
  33. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
    [Crossref]
  34. A. A. Aguirre-Pablo, A. B. Aljedaani, J. Xiong, R. Idoughi, W. Heidrich, and S. T. Thoroddsen, “Single-camera 3D PTV using particle intensities and structured light,” Exp. Fluids 60(2), 25 (2019).
    [Crossref]
  35. E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Alden, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
    [Crossref]
  36. B. R. Halls, P. S. Hsu, S. Roy, T. R. Meyer, and J. R. Gord, “Two-color volumetric laser-induced fluorescence for 3D OH and temperature fields in turbulent reacting flows,” Opt. Lett. 43(12), 2961–2964 (2018).
    [Crossref] [PubMed]
  37. T. R. Meyer, B. R. Halls, N. Jiang, M. N. Slipchenko, S. Roy, and J. R. Gord, “High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames,” Opt. Express 24(26), 29547–29555 (2016).
    [Crossref] [PubMed]
  38. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  39. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (1996), pp. 31–42.
  40. M. Levoy, “Light fields and computational imaging,” Computer 39(8), 46–55 (2006).
    [Crossref]
  41. A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of the IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.
  42. G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
    [Crossref]
  43. V. Drazic, J.-J. Sacre, A. Schubert, J. Bertrand, and E. Blonde, “Optimal design and critical analysis of a high-resolution video plenoptic demonstrator,” J. Electron. Imaging 21(1), 011007 (2012).
    [Crossref]
  44. Y. Liu, M. M. Hossain, J. Sun, C. Xu, B. Zhang, and S. Wang, “Design a cage-typed light field camera system for flame measurement,” in Proceedings of IEEE Sensors (IEEE, 2017), pp. 1–4.
  45. E. M. Hall, T. W. Fahringer, D. R. Guildenbecher, and B. S. Thurow, “Volumetric calibration of a plenoptic camera,” Appl. Opt. 57(4), 914–923 (2018).
    [Crossref] [PubMed]
  46. T. W. Fahringer and B. S. Thurow, “The effect of microlens size on the performance of single-camera plenoptic PIV,” presented at the 19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 16–19 July 2018.
  47. E. M. Hall, D. R. Guildenbecher, and B. S. Thurow, “Development and uncertainty characterization of 3D particle location from perspective shifted plenoptic images,” Opt. Express 27(6), 7997–8010 (2019).
    [Crossref]

2019 (2)

A. A. Aguirre-Pablo, A. B. Aljedaani, J. Xiong, R. Idoughi, W. Heidrich, and S. T. Thoroddsen, “Single-camera 3D PTV using particle intensities and structured light,” Exp. Fluids 60(2), 25 (2019).
[Crossref]

E. M. Hall, D. R. Guildenbecher, and B. S. Thurow, “Development and uncertainty characterization of 3D particle location from perspective shifted plenoptic images,” Opt. Express 27(6), 7997–8010 (2019).
[Crossref]

2018 (5)

E. M. Hall, T. W. Fahringer, D. R. Guildenbecher, and B. S. Thurow, “Volumetric calibration of a plenoptic camera,” Appl. Opt. 57(4), 914–923 (2018).
[Crossref] [PubMed]

B. R. Halls, P. S. Hsu, S. Roy, T. R. Meyer, and J. R. Gord, “Two-color volumetric laser-induced fluorescence for 3D OH and temperature fields in turbulent reacting flows,” Opt. Lett. 43(12), 2961–2964 (2018).
[Crossref] [PubMed]

T. W. Fahringer and B. S. Thurow, “Plenoptic particle image velocimetry with multiple plenoptic cameras,” Meas. Sci. Technol. 29(7), 075202 (2018).
[Crossref]

J. Sun, M. M. Hossain, C. Xu, and B. Zhang, “Investigation of flame radiation sampling and temperature measurement through light field cameras,” Int. J. of Heat Mass Transf. 121, 1281–1296 (2018).
[Crossref]

X. Huang, H. Qi, X.-L. Zhang, Y.-T. Ren, L.-M. Ruan, and H.-P. Tan, “Application of Landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique,” J. Heat Transfer 140(8), 082701 (2018).
[Crossref]

2017 (4)

J. N. Klemkowsky, T. W. Fahringer, C. J. Clifford, B. F. Bathel, and B. S. Thurow, “Plenoptic background oriented schlieren imaging,” Meas. Sci. Technol. 28(9), 095404 (2017).
[Crossref]

L. Ma, Q. Lei, T. Capil, S. D. Hammack, and C. D. Carter, “Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames,” Opt. Lett. 42(2), 267–270 (2017).
[Crossref] [PubMed]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Alden, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

2016 (2)

2015 (4)

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

A. Fischer, C. Kupsch, J. Gürtler, and J. Czarske, “High-speed light field camera and frequency division multiplexing for fast multi-plane velocity measurements,” Opt. Express 23(19), 24910–24922 (2015).
[Crossref] [PubMed]

X. Li and L. Ma, “Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence,” Combust. Flame 162(3), 642–651 (2015).
[Crossref]

Y. Wu, W. Xu, Q. Lei, and L. Ma, “Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine,” Opt. Express 23(26), 33408–33418 (2015).
[Crossref] [PubMed]

2014 (1)

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55(6), 1743 (2014).
[Crossref]

2013 (3)

C. Brücker, D. Hess, and J. Kitzhofer, “Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM),” Meas. Sci. Technol. 24(2), 024001 (2013).
[Crossref]

F. Scarano, “Tomographic PIV: principles and practice,” Meas. Sci. Technol. 24(1), 012001 (2013).
[Crossref]

W. Cai, X. Li, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
[Crossref] [PubMed]

2012 (1)

V. Drazic, J.-J. Sacre, A. Schubert, J. Bertrand, and E. Blonde, “Optimal design and critical analysis of a high-resolution video plenoptic demonstrator,” J. Electron. Imaging 21(1), 011007 (2012).
[Crossref]

2011 (1)

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

2008 (1)

J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44(6), 851–863 (2008).
[Crossref]

2007 (1)

E. Goldhahn and J. Seume, “The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field,” Exp. Fluids 43(2–3), 241–249 (2007).
[Crossref]

2006 (2)

M. Levoy, “Light fields and computational imaging,” Computer 39(8), 46–55 (2006).
[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

2005 (1)

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. 48(1), 34–40 (2005).
[Crossref]

2004 (1)

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

2001 (1)

S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12(2), 188–200 (2001).
[Crossref]

1999 (1)

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1–2), 7–15 (1999).
[Crossref]

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Adrian, R. J.

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1–2), 7–15 (1999).
[Crossref]

Aguirre-Pablo, A. A.

A. A. Aguirre-Pablo, A. B. Aljedaani, J. Xiong, R. Idoughi, W. Heidrich, and S. T. Thoroddsen, “Single-camera 3D PTV using particle intensities and structured light,” Exp. Fluids 60(2), 25 (2019).
[Crossref]

Agurok, I. P.

G. M. Schuster, I. P. Agurok, J. E. Ford, D. G. Dansereau, and G. Wetzstein, “Panoramic Monocentric Light Field Camera,” in Proceedings of the International Optical Design Conference (2017), pp. 1–2.

Alden, M.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Alden, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

Aljedaani, A. B.

A. A. Aguirre-Pablo, A. B. Aljedaani, J. Xiong, R. Idoughi, W. Heidrich, and S. T. Thoroddsen, “Single-camera 3D PTV using particle intensities and structured light,” Exp. Fluids 60(2), 25 (2019).
[Crossref]

Bathel, B. F.

J. N. Klemkowsky, T. W. Fahringer, C. J. Clifford, B. F. Bathel, and B. S. Thurow, “Plenoptic background oriented schlieren imaging,” Meas. Sci. Technol. 28(9), 095404 (2017).
[Crossref]

Berrocal, E.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Alden, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

Bertrand, J.

V. Drazic, J.-J. Sacre, A. Schubert, J. Bertrand, and E. Blonde, “Optimal design and critical analysis of a high-resolution video plenoptic demonstrator,” J. Electron. Imaging 21(1), 011007 (2012).
[Crossref]

Blonde, E.

V. Drazic, J.-J. Sacre, A. Schubert, J. Bertrand, and E. Blonde, “Optimal design and critical analysis of a high-resolution video plenoptic demonstrator,” J. Electron. Imaging 21(1), 011007 (2012).
[Crossref]

Brücker, C.

C. Brücker, D. Hess, and J. Kitzhofer, “Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM),” Meas. Sci. Technol. 24(2), 024001 (2013).
[Crossref]

Cai, W.

Capil, T.

Carter, C. D.

Chai, T.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

Clifford, C. J.

J. N. Klemkowsky, T. W. Fahringer, C. J. Clifford, B. F. Bathel, and B. S. Thurow, “Plenoptic background oriented schlieren imaging,” Meas. Sci. Technol. 28(9), 095404 (2017).
[Crossref]

Coriton, B.

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55(6), 1743 (2014).
[Crossref]

Crimaldi, J. P.

J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44(6), 851–863 (2008).
[Crossref]

Czarske, J.

Dai, Q.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

Dansereau, D. G.

G. M. Schuster, I. P. Agurok, J. E. Ford, D. G. Dansereau, and G. Wetzstein, “Panoramic Monocentric Light Field Camera,” in Proceedings of the International Optical Design Conference (2017), pp. 1–2.

Deusch, S.

S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12(2), 188–200 (2001).
[Crossref]

Dracos, T.

S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12(2), 188–200 (2001).
[Crossref]

Drazic, V.

V. Drazic, J.-J. Sacre, A. Schubert, J. Bertrand, and E. Blonde, “Optimal design and critical analysis of a high-resolution video plenoptic demonstrator,” J. Electron. Imaging 21(1), 011007 (2012).
[Crossref]

Elsinga, G. E.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Fahringer, T. W.

T. W. Fahringer and B. S. Thurow, “Plenoptic particle image velocimetry with multiple plenoptic cameras,” Meas. Sci. Technol. 29(7), 075202 (2018).
[Crossref]

E. M. Hall, T. W. Fahringer, D. R. Guildenbecher, and B. S. Thurow, “Volumetric calibration of a plenoptic camera,” Appl. Opt. 57(4), 914–923 (2018).
[Crossref] [PubMed]

J. N. Klemkowsky, T. W. Fahringer, C. J. Clifford, B. F. Bathel, and B. S. Thurow, “Plenoptic background oriented schlieren imaging,” Meas. Sci. Technol. 28(9), 095404 (2017).
[Crossref]

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

T. W. Fahringer and B. S. Thurow, “Tomographic reconstruction of a 3-D flow field using a plenoptic camera,” in Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit (AIAA, 2012), pp. 1–13.
[Crossref]

T. W. Fahringer and B. S. Thurow, “On the development of filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” in Proceedings of the 11th International Symposium on Particle Image Velocimetry (2015), pp. 1–11.

Fischer, A.

Floyd, J.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

Ford, J. E.

G. M. Schuster, I. P. Agurok, J. E. Ford, D. G. Dansereau, and G. Wetzstein, “Panoramic Monocentric Light Field Camera,” in Proceedings of the International Optical Design Conference (2017), pp. 1–2.

Frank, J. H.

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55(6), 1743 (2014).
[Crossref]

Geipel, P.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

Georgiev, T.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of the IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.

Goldhahn, E.

E. Goldhahn and J. Seume, “The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field,” Exp. Fluids 43(2–3), 241–249 (2007).
[Crossref]

Gord, J. R.

Guildenbecher, D. R.

Gürtler, J.

Hall, E. M.

Halls, B. R.

Hammack, S. D.

Hanrahan, P.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (1996), pp. 31–42.

Heidrich, W.

A. A. Aguirre-Pablo, A. B. Aljedaani, J. Xiong, R. Idoughi, W. Heidrich, and S. T. Thoroddsen, “Single-camera 3D PTV using particle intensities and structured light,” Exp. Fluids 60(2), 25 (2019).
[Crossref]

Hess, D.

C. Brücker, D. Hess, and J. Kitzhofer, “Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM),” Meas. Sci. Technol. 24(2), 024001 (2013).
[Crossref]

Hossain, M. M.

J. Sun, M. M. Hossain, C. Xu, and B. Zhang, “Investigation of flame radiation sampling and temperature measurement through light field cameras,” Int. J. of Heat Mass Transf. 121, 1281–1296 (2018).
[Crossref]

Hsu, P. S.

Huang, X.

X. Huang, H. Qi, X.-L. Zhang, Y.-T. Ren, L.-M. Ruan, and H.-P. Tan, “Application of Landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique,” J. Heat Transfer 140(8), 082701 (2018).
[Crossref]

Idoughi, R.

A. A. Aguirre-Pablo, A. B. Aljedaani, J. Xiong, R. Idoughi, W. Heidrich, and S. T. Thoroddsen, “Single-camera 3D PTV using particle intensities and structured light,” Exp. Fluids 60(2), 25 (2019).
[Crossref]

Ihrke, I.

I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of light field imaging: briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
[Crossref]

Ishino, Y.

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. 48(1), 34–40 (2005).
[Crossref]

Jarabo, A.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

Jiang, N.

Kempf, A. M.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

Kitzhofer, J.

C. Brücker, D. Hess, and J. Kitzhofer, “Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM),” Meas. Sci. Technol. 24(2), 024001 (2013).
[Crossref]

Klemkowsky, J. N.

J. N. Klemkowsky, T. W. Fahringer, C. J. Clifford, B. F. Bathel, and B. S. Thurow, “Plenoptic background oriented schlieren imaging,” Meas. Sci. Technol. 28(9), 095404 (2017).
[Crossref]

J. N. Klemkowsky, B. S. Thurow, and R. Mejia-Alvarez, “3D visualization of density gradients using a plenoptic camera and background oriented schlieren imaging,” in Proceedings of the AIAA SciTech Forum and Exposition (AIAA, 2016), pp. 1–12.

Kristensson, E.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Alden, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

Kupsch, C.

Lei, Q.

Levoy, M.

M. Levoy, “Light fields and computational imaging,” Computer 39(8), 46–55 (2006).
[Crossref]

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (1996), pp. 31–42.

Li, F.

Li, X.

X. Li and L. Ma, “Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence,” Combust. Flame 162(3), 642–651 (2015).
[Crossref]

W. Cai, X. Li, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
[Crossref] [PubMed]

Li, Z.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Alden, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

Liu, Y.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

Lumsdaine, A.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of the IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.

Lynch, K. P.

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

Ma, L.

Masia, B.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

Mejia-Alvarez, R.

J. N. Klemkowsky, B. S. Thurow, and R. Mejia-Alvarez, “3D visualization of density gradients using a plenoptic camera and background oriented schlieren imaging,” in Proceedings of the AIAA SciTech Forum and Exposition (AIAA, 2016), pp. 1–12.

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Meyer, T. R.

Mignard-Debise, L.

I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of light field imaging: briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
[Crossref]

Ohiwa, N.

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. 48(1), 34–40 (2005).
[Crossref]

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Qi, H.

X. Huang, H. Qi, X.-L. Zhang, Y.-T. Ren, L.-M. Ruan, and H.-P. Tan, “Application of Landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique,” J. Heat Transfer 140(8), 082701 (2018).
[Crossref]

Ren, Y.-T.

X. Huang, H. Qi, X.-L. Zhang, Y.-T. Ren, L.-M. Ruan, and H.-P. Tan, “Application of Landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique,” J. Heat Transfer 140(8), 082701 (2018).
[Crossref]

Restrepo, J.

I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of light field imaging: briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
[Crossref]

Richter, M.

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Alden, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

Roy, S.

Ruan, L.-M.

X. Huang, H. Qi, X.-L. Zhang, Y.-T. Ren, L.-M. Ruan, and H.-P. Tan, “Application of Landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique,” J. Heat Transfer 140(8), 082701 (2018).
[Crossref]

Sacre, J.-J.

V. Drazic, J.-J. Sacre, A. Schubert, J. Bertrand, and E. Blonde, “Optimal design and critical analysis of a high-resolution video plenoptic demonstrator,” J. Electron. Imaging 21(1), 011007 (2012).
[Crossref]

Sakakibara, J.

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1–2), 7–15 (1999).
[Crossref]

Scarano, F.

F. Scarano, “Tomographic PIV: principles and practice,” Meas. Sci. Technol. 24(1), 012001 (2013).
[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Schubert, A.

V. Drazic, J.-J. Sacre, A. Schubert, J. Bertrand, and E. Blonde, “Optimal design and critical analysis of a high-resolution video plenoptic demonstrator,” J. Electron. Imaging 21(1), 011007 (2012).
[Crossref]

Schuster, G. M.

G. M. Schuster, I. P. Agurok, J. E. Ford, D. G. Dansereau, and G. Wetzstein, “Panoramic Monocentric Light Field Camera,” in Proceedings of the International Optical Design Conference (2017), pp. 1–2.

Seume, J.

E. Goldhahn and J. Seume, “The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field,” Exp. Fluids 43(2–3), 241–249 (2007).
[Crossref]

Slipchenko, M. N.

Steinberg, A. M.

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55(6), 1743 (2014).
[Crossref]

Sun, J.

J. Sun, M. M. Hossain, C. Xu, and B. Zhang, “Investigation of flame radiation sampling and temperature measurement through light field cameras,” Int. J. of Heat Mass Transf. 121, 1281–1296 (2018).
[Crossref]

Tan, H.-P.

X. Huang, H. Qi, X.-L. Zhang, Y.-T. Ren, L.-M. Ruan, and H.-P. Tan, “Application of Landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique,” J. Heat Transfer 140(8), 082701 (2018).
[Crossref]

Thoroddsen, S. T.

A. A. Aguirre-Pablo, A. B. Aljedaani, J. Xiong, R. Idoughi, W. Heidrich, and S. T. Thoroddsen, “Single-camera 3D PTV using particle intensities and structured light,” Exp. Fluids 60(2), 25 (2019).
[Crossref]

Thurow, B. S.

E. M. Hall, D. R. Guildenbecher, and B. S. Thurow, “Development and uncertainty characterization of 3D particle location from perspective shifted plenoptic images,” Opt. Express 27(6), 7997–8010 (2019).
[Crossref]

E. M. Hall, T. W. Fahringer, D. R. Guildenbecher, and B. S. Thurow, “Volumetric calibration of a plenoptic camera,” Appl. Opt. 57(4), 914–923 (2018).
[Crossref] [PubMed]

T. W. Fahringer and B. S. Thurow, “Plenoptic particle image velocimetry with multiple plenoptic cameras,” Meas. Sci. Technol. 29(7), 075202 (2018).
[Crossref]

J. N. Klemkowsky, T. W. Fahringer, C. J. Clifford, B. F. Bathel, and B. S. Thurow, “Plenoptic background oriented schlieren imaging,” Meas. Sci. Technol. 28(9), 095404 (2017).
[Crossref]

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

T. W. Fahringer and B. S. Thurow, “On the development of filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” in Proceedings of the 11th International Symposium on Particle Image Velocimetry (2015), pp. 1–11.

T. W. Fahringer and B. S. Thurow, “Tomographic reconstruction of a 3-D flow field using a plenoptic camera,” in Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit (AIAA, 2012), pp. 1–13.
[Crossref]

J. N. Klemkowsky, B. S. Thurow, and R. Mejia-Alvarez, “3D visualization of density gradients using a plenoptic camera and background oriented schlieren imaging,” in Proceedings of the AIAA SciTech Forum and Exposition (AIAA, 2016), pp. 1–12.

van Oudheusden, B. W.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wang, L.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

Wetzstein, G.

G. M. Schuster, I. P. Agurok, J. E. Ford, D. G. Dansereau, and G. Wetzstein, “Panoramic Monocentric Light Field Camera,” in Proceedings of the International Optical Design Conference (2017), pp. 1–2.

Wieneke, B.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Wu, G.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

Wu, Y.

Xiong, J.

A. A. Aguirre-Pablo, A. B. Aljedaani, J. Xiong, R. Idoughi, W. Heidrich, and S. T. Thoroddsen, “Single-camera 3D PTV using particle intensities and structured light,” Exp. Fluids 60(2), 25 (2019).
[Crossref]

Xu, C.

J. Sun, M. M. Hossain, C. Xu, and B. Zhang, “Investigation of flame radiation sampling and temperature measurement through light field cameras,” Int. J. of Heat Mass Transf. 121, 1281–1296 (2018).
[Crossref]

Xu, W.

Zhang, B.

J. Sun, M. M. Hossain, C. Xu, and B. Zhang, “Investigation of flame radiation sampling and temperature measurement through light field cameras,” Int. J. of Heat Mass Transf. 121, 1281–1296 (2018).
[Crossref]

Zhang, X.-L.

X. Huang, H. Qi, X.-L. Zhang, Y.-T. Ren, L.-M. Ruan, and H.-P. Tan, “Application of Landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique,” J. Heat Transfer 140(8), 082701 (2018).
[Crossref]

Zhang, Y.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

Appl. Opt. (1)

Combust. Flame (2)

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

X. Li and L. Ma, “Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence,” Combust. Flame 162(3), 642–651 (2015).
[Crossref]

Computer (1)

M. Levoy, “Light fields and computational imaging,” Computer 39(8), 46–55 (2006).
[Crossref]

Exp. Fluids (6)

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1–2), 7–15 (1999).
[Crossref]

J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44(6), 851–863 (2008).
[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

B. Coriton, A. M. Steinberg, and J. H. Frank, “High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows,” Exp. Fluids 55(6), 1743 (2014).
[Crossref]

E. Goldhahn and J. Seume, “The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field,” Exp. Fluids 43(2–3), 241–249 (2007).
[Crossref]

A. A. Aguirre-Pablo, A. B. Aljedaani, J. Xiong, R. Idoughi, W. Heidrich, and S. T. Thoroddsen, “Single-camera 3D PTV using particle intensities and structured light,” Exp. Fluids 60(2), 25 (2019).
[Crossref]

IEEE J. Sel. Top. Signal Process. (1)

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926 (2017).
[Crossref]

IEEE Signal Process. Mag. (1)

I. Ihrke, J. Restrepo, and L. Mignard-Debise, “Principles of light field imaging: briefly revisiting 25 years of research,” IEEE Signal Process. Mag. 33(5), 59–69 (2016).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Int. J. of Heat Mass Transf. (1)

J. Sun, M. M. Hossain, C. Xu, and B. Zhang, “Investigation of flame radiation sampling and temperature measurement through light field cameras,” Int. J. of Heat Mass Transf. 121, 1281–1296 (2018).
[Crossref]

J. Electron. Imaging (1)

V. Drazic, J.-J. Sacre, A. Schubert, J. Bertrand, and E. Blonde, “Optimal design and critical analysis of a high-resolution video plenoptic demonstrator,” J. Electron. Imaging 21(1), 011007 (2012).
[Crossref]

J. Heat Transfer (1)

X. Huang, H. Qi, X.-L. Zhang, Y.-T. Ren, L.-M. Ruan, and H.-P. Tan, “Application of Landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique,” J. Heat Transfer 140(8), 082701 (2018).
[Crossref]

JSME Int. J. (1)

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. 48(1), 34–40 (2005).
[Crossref]

Meas. Sci. Technol. (7)

J. N. Klemkowsky, T. W. Fahringer, C. J. Clifford, B. F. Bathel, and B. S. Thurow, “Plenoptic background oriented schlieren imaging,” Meas. Sci. Technol. 28(9), 095404 (2017).
[Crossref]

S. Deusch and T. Dracos, “Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence (LIF) in moving liquids,” Meas. Sci. Technol. 12(2), 188–200 (2001).
[Crossref]

F. Scarano, “Tomographic PIV: principles and practice,” Meas. Sci. Technol. 24(1), 012001 (2013).
[Crossref]

C. Brücker, D. Hess, and J. Kitzhofer, “Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM),” Meas. Sci. Technol. 24(2), 024001 (2013).
[Crossref]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a single plenoptic camera,” Meas. Sci. Technol. 26(11), 115201 (2015).
[Crossref]

T. W. Fahringer and B. S. Thurow, “Plenoptic particle image velocimetry with multiple plenoptic cameras,” Meas. Sci. Technol. 29(7), 075202 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. Combust. Inst. (1)

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Alden, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

Other (15)

K. C. Johnson, B. S. Thurow, T. Kim, G. Blois, and K. T. Christensen, “Three dimensional plenoptic PIV measurements of a turbulent boundary layer overlying rough and permeable surfaces,” presented at the 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 4–7 July 2016.

E. M. Hall, D. R. Guildenbecher, and B. S. Thurow, “3D particle location from perspective-shifted plenoptic images,” presented at the 19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 16–19 July 2018.

A. Bichal, Development of 3D Background Oriented Schlieren with a Plenoptic Camera (Auburn University, 2015).

J. N. Klemkowsky, B. S. Thurow, and R. Mejia-Alvarez, “3D visualization of density gradients using a plenoptic camera and background oriented schlieren imaging,” in Proceedings of the AIAA SciTech Forum and Exposition (AIAA, 2016), pp. 1–12.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech Report CTSR, 1–11 (2005).

T.-C. Wang, A. A. Efros, and R. Ramamoorthi, “Occlusion-aware depth estimation using light-field cameras,” in the Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2015), pp. 3487–3495.
[Crossref]

L. Labios, “4D camera could improve robot vision, virtual reality and self-driving cars” (UC San Diego News Center, 2017) https://ucsdnews.ucsd.edu/pressrelease/4d_camera_could_improve_robot_vision_virtual_reality_and_self_driving_cars .

G. M. Schuster, I. P. Agurok, J. E. Ford, D. G. Dansereau, and G. Wetzstein, “Panoramic Monocentric Light Field Camera,” in Proceedings of the International Optical Design Conference (2017), pp. 1–2.

K. P. Lynch, Development of a 3-D Fluid Velocimetry Technique Based On Light Field Imaging (Auburn University, 2011).

T. W. Fahringer and B. S. Thurow, “Tomographic reconstruction of a 3-D flow field using a plenoptic camera,” in Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit (AIAA, 2012), pp. 1–13.
[Crossref]

T. W. Fahringer and B. S. Thurow, “On the development of filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV,” in Proceedings of the 11th International Symposium on Particle Image Velocimetry (2015), pp. 1–11.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (1996), pp. 31–42.

Y. Liu, M. M. Hossain, J. Sun, C. Xu, B. Zhang, and S. Wang, “Design a cage-typed light field camera system for flame measurement,” in Proceedings of IEEE Sensors (IEEE, 2017), pp. 1–4.

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in Proceedings of the IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.

T. W. Fahringer and B. S. Thurow, “The effect of microlens size on the performance of single-camera plenoptic PIV,” presented at the 19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 16–19 July 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Left: Optical configuration of a plenoptic camera. Right: Comparison of a traditional camera’s image with a raw plenoptic image, which shows the grid of microlens sub-images.
Fig. 2
Fig. 2 Plenoptic camera developed by Auburn University. Further details [6,9].
Fig. 3
Fig. 3 General configuration of a relayed plenoptic system for an intensified high-speed camera.
Fig. 4
Fig. 4 Schematic and photo of the developed MPA connected to a high-speed camera.
Fig. 5
Fig. 5 Quality of the relayed microlens image. Left: image of the microlenses’ centers. Right: image of the microlens sub-images when the main lens F-number is correctly adjusted.
Fig. 6
Fig. 6 Comparison of raw plenoptic images at the z = −23, 3, 23mm, θ = 40 o planes (left) with their refocused and de-warped counterparts (center), and the distributions of % error magnitudes across the images (right). Errors in regions without dots cannot be characterized.
Fig. 7
Fig. 7 Variation of mean spatial-errors as a function of plane location and angle.
Fig. 8
Fig. 8 Comparison of image resolution between the 4MP/Rectangular, 9MP/Rectangular and 9MP/Hexagonal cases. All three Figs. show the de-warped images of dot-plates at the nominal focal-plane, at 20 o relative to the optical axis. Arrows: observable plate rims. Circles: plane of worst resolution.
Fig. 9
Fig. 9 Left: a sequence from 1000Hz plenoptic video of free-falling ball-bearings, focused on the nominal focal-plane. Middle: refocusing of Frame 5 from background to foreground. (Arrows: area of rulers in focus. Solid boxes: examples of subjects in focus. Dotted boxes: subjects out-of-focus.) Right: vertical perspective-shifts. (Outlines: examples of subjects that shifted relative to each other between perspectives.)
Fig. 10
Fig. 10 Top: photo of the intensified high-speed plenoptic-imaging system. Middle row: an intensified image refocused to different depths (see arrow). Bottom: the identically-lit scene imaged without an intensifier.
Fig. 11
Fig. 11 Reconstruction of a droplets-field from high-speed footage. Common constellations of droplets between the refocused footage (left) and the reconstruction’s xy-view (center) are outlined. Right: top-down xz-view of the droplets-field.
Fig. 12
Fig. 12 Streamlines of the velocity-field calculated from frames 1 and 2 of Fig. 11. Light particles: droplet at t. Dark particles: droplets at t + 1.

Tables (1)

Tables Icon

Table 1 Test cases for the assessment of reconstruction accuracy.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

e m a g , i = e E u c l i d e a n w 2 + h 2 × 100 %
e E u c l i d e a n = ( x t r u e x r e c o n ) 2 + ( y t r u e y r e c o n ) 2

Metrics