Abstract

Integration of acoustic and optical techniques prompted the need for transparent ultrasonic transducers to guide the light through the transducer and improve the signal to noise ratio. In the presented paper, capacitive micromachined ultrasound transducers (CMUTs) using glass substrate and indium-tin-oxide electrodes were fabricated by adhesive wafer bonding technique presenting a transparency of up to 82% in the visible range. A receive sensitivity of 65.5 μV/Pa was measured with noise equivalent sensitivity of 95 Pa. Capacity of the produced CMUTs for photoacoustic imaging was also demonstrated by successfully detecting the photoacoustic signal from an aluminum foil target, which was irradiated by a 532-nm pulse laser transmitted through the CMUT. The centre frequency of the detected photoacoustic signal was at 2 MHz with 52.3% −6-dB fractional bandwidth.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of a multi-band photoacoustic tomography imaging system based on a capacitive micromachined ultrasonic transducer array

Jian Zhang, Sio Hang Pun, Yuanyu Yu, Duyang Gao, Jiujiang Wang, Peng Un Mak, Kin Fong Lei, Ching-Hsiang Cheng, and Zhen Yuan
Appl. Opt. 56(14) 4012-4018 (2017)

Lithium niobate-based transparent ultrasound transducers for photoacoustic imaging

Ajay Dangi, Sumit Agrawal, and Sri-Rajasekhar Kothapalli
Opt. Lett. 44(21) 5326-5329 (2019)

Photoacoustic and ultrasonic coimage with a linear transducer array

Yaguang Zeng, Da Xing, Yi Wang, Bangzhen Yin, and Qun Chen
Opt. Lett. 29(15) 1760-1762 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. scientific instruments 77, 041101 (2006).
    [Crossref]
  2. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. optics 47, 561–577 (2008).
    [Crossref]
  3. P. Hajireza, K. Krause, M. Brett, and R. Zemp, “Glancing angle deposited nanostructured film fabry-perot etalons for optical detection of ultrasound,” Opt. express 21, 6391–6400 (2013).
    [Crossref] [PubMed]
  4. J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
    [Crossref]
  5. J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
    [Crossref]
  6. E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a fabry perot polymer film sensor,” ieee transactions on ultrasonics, ferroelectrics, frequency control 53, 1330–1338 (2006).
    [Crossref] [PubMed]
  7. S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3, 143–150 (2015).
    [Crossref]
  8. S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
    [Crossref]
  9. N. Huynh, E. Zhang, M. Betcke, S. R. Arridge, P. Beard, and B. Cox, “A real-time ultrasonic field mapping system using a fabry pérot single pixel camera for 3d photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2015, vol. 9323 (International Society for Optics and Photonics, 2015), p. 93231O.
  10. J. Gelly and F. Lanteri, “Comparison of piezoelectric (thickness mode) and mems transducers,” in Ultrasonics, 2003 IEEE Symposium on, vol. 2 (IEEE, 2003), pp. 1965–1974.
    [Crossref]
  11. M. Torndahl, M. Almqvist, L. Wallman, H. W. Persson, and K. Lindstrom, “Characterisation and comparison of a cmut versus a piezoelectric transducer for air applications,” in Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, vol. 2 (IEEE, 2002), pp. 1023–1026.
    [Crossref]
  12. M. I. Haller and B. T. Khuri-Yakub, “A surface micromachined electrostatic ultrasonic air transducer,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 43, 1–6 (1996).
    [Crossref]
  13. A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, and R. J. Zemp, “Multi-frequency cmut arrays for imaging-therapy applications,” in Ultrasonics Symposium (IUS), 2013 IEEE International, (IEEE, 2013), pp. 1991–1993.
    [Crossref]
  14. Z. Li, L. L. Wong, A. I. Chen, S. Na, J. Sun, and J. T. Yeow, “Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique,” J. Micromechanics Microengineering 26, 115019 (2016).
    [Crossref]
  15. F. Y. Yamaner, X. Zhang, and Ö. Oralkan, “A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 62, 972–982 (2015).
    [Crossref] [PubMed]
  16. A. S. Logan, L. L. Wong, and J. T. Yeow, “A 1-d capacitive micromachined ultrasonic transducer imaging array fabricated with a silicon-nitride-based fusion process,” IEEE/ASME Transactions on Mechatronics 16, 861–865 (2011).
    [Crossref]
  17. Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. Khuri-Yakub, “Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology,” J. microelectromechanical systems 12, 128–137 (2003).
    [Crossref]
  18. A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: Fabrication technology,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 52, 2242–2258 (2005).
    [Crossref]
  19. X. Zhang, X. Wu, O. J. Adelegan, F. Y. Yamaner, and Ö. Oralkan, “Backward-mode photoacoustic imaging using illumination through a cmut with improved transparency,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 65, 85–94 (2018).
    [Crossref]
  20. C. D. Gerardo, E. Cretu, and R. Rohling, “Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging,” Microsystems & Nanoeng. 4, 19 (2018).
    [Crossref]
  21. D.-C. Pang and C.-M. Chang, “Development of a novel transparent flexible capacitive micromachined ultrasonic transducer,” Sensors 17, 1443 (2017).
    [Crossref]
  22. Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
    [Crossref]
  23. A. N. Yaroslavsky and I. Yaroslavsky, “Optics of blood,” (2016).
  24. C. Livermore and J. Voldman, “6.777 j/2.751 j material properties database,” (2016).
  25. D. Chemicals, “Processing prodecures for cyclotene 4000 series photo bcb resins-ds2100 puddle develop process,” (2009).
  26. I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, “Analytically calculating membrane displacement and the equivalent circuit model of a circular cmut cell,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE, (IEEE, 2008), pp. 2111–2114.
    [Crossref]
  27. E. Ventsel and T. Krauthammer, Thin plates and shells (Marcel Dekker, 2001).
    [Crossref]

2018 (3)

X. Zhang, X. Wu, O. J. Adelegan, F. Y. Yamaner, and Ö. Oralkan, “Backward-mode photoacoustic imaging using illumination through a cmut with improved transparency,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 65, 85–94 (2018).
[Crossref]

C. D. Gerardo, E. Cretu, and R. Rohling, “Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging,” Microsystems & Nanoeng. 4, 19 (2018).
[Crossref]

Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
[Crossref]

2017 (3)

D.-C. Pang and C.-M. Chang, “Development of a novel transparent flexible capacitive micromachined ultrasonic transducer,” Sensors 17, 1443 (2017).
[Crossref]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
[Crossref]

2016 (2)

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

Z. Li, L. L. Wong, A. I. Chen, S. Na, J. Sun, and J. T. Yeow, “Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique,” J. Micromechanics Microengineering 26, 115019 (2016).
[Crossref]

2015 (2)

F. Y. Yamaner, X. Zhang, and Ö. Oralkan, “A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 62, 972–982 (2015).
[Crossref] [PubMed]

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3, 143–150 (2015).
[Crossref]

2013 (1)

2011 (1)

A. S. Logan, L. L. Wong, and J. T. Yeow, “A 1-d capacitive micromachined ultrasonic transducer imaging array fabricated with a silicon-nitride-based fusion process,” IEEE/ASME Transactions on Mechatronics 16, 861–865 (2011).
[Crossref]

2008 (1)

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. optics 47, 561–577 (2008).
[Crossref]

2006 (2)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. scientific instruments 77, 041101 (2006).
[Crossref]

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a fabry perot polymer film sensor,” ieee transactions on ultrasonics, ferroelectrics, frequency control 53, 1330–1338 (2006).
[Crossref] [PubMed]

2005 (1)

A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: Fabrication technology,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 52, 2242–2258 (2005).
[Crossref]

2003 (1)

Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. Khuri-Yakub, “Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology,” J. microelectromechanical systems 12, 128–137 (2003).
[Crossref]

1996 (1)

M. I. Haller and B. T. Khuri-Yakub, “A surface micromachined electrostatic ultrasonic air transducer,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 43, 1–6 (1996).
[Crossref]

Adelegan, O. J.

X. Zhang, X. Wu, O. J. Adelegan, F. Y. Yamaner, and Ö. Oralkan, “Backward-mode photoacoustic imaging using illumination through a cmut with improved transparency,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 65, 85–94 (2018).
[Crossref]

Allen, T. J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Almqvist, M.

M. Torndahl, M. Almqvist, L. Wallman, H. W. Persson, and K. Lindstrom, “Characterisation and comparison of a cmut versus a piezoelectric transducer for air applications,” in Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, vol. 2 (IEEE, 2002), pp. 1023–1026.
[Crossref]

Arridge, S.

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

Arridge, S. R.

N. Huynh, E. Zhang, M. Betcke, S. R. Arridge, P. Beard, and B. Cox, “A real-time ultrasonic field mapping system using a fabry pérot single pixel camera for 3d photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2015, vol. 9323 (International Society for Optics and Photonics, 2015), p. 93231O.

Badi, M. H.

Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. Khuri-Yakub, “Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology,” J. microelectromechanical systems 12, 128–137 (2003).
[Crossref]

Beard, P.

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. optics 47, 561–577 (2008).
[Crossref]

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a fabry perot polymer film sensor,” ieee transactions on ultrasonics, ferroelectrics, frequency control 53, 1330–1338 (2006).
[Crossref] [PubMed]

N. Huynh, E. Zhang, M. Betcke, S. R. Arridge, P. Beard, and B. Cox, “A real-time ultrasonic field mapping system using a fabry pérot single pixel camera for 3d photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2015, vol. 9323 (International Society for Optics and Photonics, 2015), p. 93231O.

Betcke, M.

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

N. Huynh, E. Zhang, M. Betcke, S. R. Arridge, P. Beard, and B. Cox, “A real-time ultrasonic field mapping system using a fabry pérot single pixel camera for 3d photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2015, vol. 9323 (International Society for Optics and Photonics, 2015), p. 93231O.

Brett, M.

Buchmann, J.

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
[Crossref]

Chang, C.-M.

D.-C. Pang and C.-M. Chang, “Development of a novel transparent flexible capacitive micromachined ultrasonic transducer,” Sensors 17, 1443 (2017).
[Crossref]

Chee, R.

A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, and R. J. Zemp, “Multi-frequency cmut arrays for imaging-therapy applications,” in Ultrasonics Symposium (IUS), 2013 IEEE International, (IEEE, 2013), pp. 1991–1993.
[Crossref]

Chemicals, D.

D. Chemicals, “Processing prodecures for cyclotene 4000 series photo bcb resins-ds2100 puddle develop process,” (2009).

Chen, A. I.

Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
[Crossref]

Z. Li, L. L. Wong, A. I. Chen, S. Na, J. Sun, and J. T. Yeow, “Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique,” J. Micromechanics Microengineering 26, 115019 (2016).
[Crossref]

Chen, S.-L.

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3, 143–150 (2015).
[Crossref]

Colchester, R. J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Cox, B.

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

N. Huynh, E. Zhang, M. Betcke, S. R. Arridge, P. Beard, and B. Cox, “A real-time ultrasonic field mapping system using a fabry pérot single pixel camera for 3d photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2015, vol. 9323 (International Society for Optics and Photonics, 2015), p. 93231O.

Cretu, E.

C. D. Gerardo, E. Cretu, and R. Rohling, “Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging,” Microsystems & Nanoeng. 4, 19 (2018).
[Crossref]

Desjardins, A. E.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Ergun, A. S.

Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. Khuri-Yakub, “Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology,” J. microelectromechanical systems 12, 128–137 (2003).
[Crossref]

Erguri, A.

A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: Fabrication technology,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 52, 2242–2258 (2005).
[Crossref]

Forbrich, A.

A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, and R. J. Zemp, “Multi-frequency cmut arrays for imaging-therapy applications,” in Ultrasonics Symposium (IUS), 2013 IEEE International, (IEEE, 2013), pp. 1991–1993.
[Crossref]

Gelly, J.

J. Gelly and F. Lanteri, “Comparison of piezoelectric (thickness mode) and mems transducers,” in Ultrasonics, 2003 IEEE Symposium on, vol. 2 (IEEE, 2003), pp. 1965–1974.
[Crossref]

Gerardo, C. D.

C. D. Gerardo, E. Cretu, and R. Rohling, “Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging,” Microsystems & Nanoeng. 4, 19 (2018).
[Crossref]

Guggenheim, J.

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
[Crossref]

Guggenheim, J. A.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Guo, L. J.

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3, 143–150 (2015).
[Crossref]

Haeggstrom, E.

Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. Khuri-Yakub, “Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology,” J. microelectromechanical systems 12, 128–137 (2003).
[Crossref]

Hajireza, P.

Haller, M. I.

M. I. Haller and B. T. Khuri-Yakub, “A surface micromachined electrostatic ultrasonic air transducer,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 43, 1–6 (1996).
[Crossref]

Huang, Y.

A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: Fabrication technology,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 52, 2242–2258 (2005).
[Crossref]

Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. Khuri-Yakub, “Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology,” J. microelectromechanical systems 12, 128–137 (2003).
[Crossref]

Huynh, N.

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

N. Huynh, E. Zhang, M. Betcke, S. R. Arridge, P. Beard, and B. Cox, “A real-time ultrasonic field mapping system using a fabry pérot single pixel camera for 3d photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2015, vol. 9323 (International Society for Optics and Photonics, 2015), p. 93231O.

Khuri-Yakub, B. T.

A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: Fabrication technology,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 52, 2242–2258 (2005).
[Crossref]

Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. Khuri-Yakub, “Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology,” J. microelectromechanical systems 12, 128–137 (2003).
[Crossref]

M. I. Haller and B. T. Khuri-Yakub, “A surface micromachined electrostatic ultrasonic air transducer,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 43, 1–6 (1996).
[Crossref]

I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, “Analytically calculating membrane displacement and the equivalent circuit model of a circular cmut cell,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE, (IEEE, 2008), pp. 2111–2114.
[Crossref]

Krause, K.

Krauthammer, T.

E. Ventsel and T. Krauthammer, Thin plates and shells (Marcel Dekker, 2001).
[Crossref]

Kshirsagar, A.

A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, and R. J. Zemp, “Multi-frequency cmut arrays for imaging-therapy applications,” in Ultrasonics Symposium (IUS), 2013 IEEE International, (IEEE, 2013), pp. 1991–1993.
[Crossref]

Kupnik, M.

I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, “Analytically calculating membrane displacement and the equivalent circuit model of a circular cmut cell,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE, (IEEE, 2008), pp. 2111–2114.
[Crossref]

Lanteri, F.

J. Gelly and F. Lanteri, “Comparison of piezoelectric (thickness mode) and mems transducers,” in Ultrasonics, 2003 IEEE Symposium on, vol. 2 (IEEE, 2003), pp. 1965–1974.
[Crossref]

Laufer, J.

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. optics 47, 561–577 (2008).
[Crossref]

Li, J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Li, Z.

Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
[Crossref]

Z. Li, L. L. Wong, A. I. Chen, S. Na, J. Sun, and J. T. Yeow, “Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique,” J. Micromechanics Microengineering 26, 115019 (2016).
[Crossref]

Lindstrom, K.

M. Torndahl, M. Almqvist, L. Wallman, H. W. Persson, and K. Lindstrom, “Characterisation and comparison of a cmut versus a piezoelectric transducer for air applications,” in Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, vol. 2 (IEEE, 2002), pp. 1023–1026.
[Crossref]

Liu, P.

Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
[Crossref]

Livermore, C.

C. Livermore and J. Voldman, “6.777 j/2.751 j material properties database,” (2016).

Logan, A. S.

A. S. Logan, L. L. Wong, and J. T. Yeow, “A 1-d capacitive micromachined ultrasonic transducer imaging array fabricated with a silicon-nitride-based fusion process,” IEEE/ASME Transactions on Mechatronics 16, 861–865 (2011).
[Crossref]

Lucka, F.

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

Moussa, W.

A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, and R. J. Zemp, “Multi-frequency cmut arrays for imaging-therapy applications,” in Ultrasonics Symposium (IUS), 2013 IEEE International, (IEEE, 2013), pp. 1991–1993.
[Crossref]

Na, S.

Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
[Crossref]

Z. Li, L. L. Wong, A. I. Chen, S. Na, J. Sun, and J. T. Yeow, “Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique,” J. Micromechanics Microengineering 26, 115019 (2016).
[Crossref]

Noimark, S.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Ogunlade, O.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

Oralkan, O.

A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: Fabrication technology,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 52, 2242–2258 (2005).
[Crossref]

Oralkan, Ö.

X. Zhang, X. Wu, O. J. Adelegan, F. Y. Yamaner, and Ö. Oralkan, “Backward-mode photoacoustic imaging using illumination through a cmut with improved transparency,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 65, 85–94 (2018).
[Crossref]

F. Y. Yamaner, X. Zhang, and Ö. Oralkan, “A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 62, 972–982 (2015).
[Crossref] [PubMed]

Pang, D.-C.

D.-C. Pang and C.-M. Chang, “Development of a novel transparent flexible capacitive micromachined ultrasonic transducer,” Sensors 17, 1443 (2017).
[Crossref]

Papakonstantinou, I.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Parkin, I. P.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Persson, H. W.

M. Torndahl, M. Almqvist, L. Wallman, H. W. Persson, and K. Lindstrom, “Characterisation and comparison of a cmut versus a piezoelectric transducer for air applications,” in Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, vol. 2 (IEEE, 2002), pp. 1023–1026.
[Crossref]

Rishi, D.

A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, and R. J. Zemp, “Multi-frequency cmut arrays for imaging-therapy applications,” in Ultrasonics Symposium (IUS), 2013 IEEE International, (IEEE, 2013), pp. 1991–1993.
[Crossref]

Rohling, R.

C. D. Gerardo, E. Cretu, and R. Rohling, “Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging,” Microsystems & Nanoeng. 4, 19 (2018).
[Crossref]

Sampaleanu, A.

A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, and R. J. Zemp, “Multi-frequency cmut arrays for imaging-therapy applications,” in Ultrasonics Symposium (IUS), 2013 IEEE International, (IEEE, 2013), pp. 1991–1993.
[Crossref]

Scharfenorth, C.

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
[Crossref]

Spannekrebs, B.

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
[Crossref]

Sun, J.

Z. Li, L. L. Wong, A. I. Chen, S. Na, J. Sun, and J. T. Yeow, “Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique,” J. Micromechanics Microengineering 26, 115019 (2016).
[Crossref]

Sun, Z.

Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
[Crossref]

Torndahl, M.

M. Torndahl, M. Almqvist, L. Wallman, H. W. Persson, and K. Lindstrom, “Characterisation and comparison of a cmut versus a piezoelectric transducer for air applications,” in Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, vol. 2 (IEEE, 2002), pp. 1023–1026.
[Crossref]

Ventsel, E.

E. Ventsel and T. Krauthammer, Thin plates and shells (Marcel Dekker, 2001).
[Crossref]

Villringer, C.

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
[Crossref]

Voldman, J.

C. Livermore and J. Voldman, “6.777 j/2.751 j material properties database,” (2016).

Wallman, L.

M. Torndahl, M. Almqvist, L. Wallman, H. W. Persson, and K. Lindstrom, “Characterisation and comparison of a cmut versus a piezoelectric transducer for air applications,” in Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, vol. 2 (IEEE, 2002), pp. 1023–1026.
[Crossref]

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. scientific instruments 77, 041101 (2006).
[Crossref]

Wang, X.

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3, 143–150 (2015).
[Crossref]

Wong, L. L.

Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
[Crossref]

Z. Li, L. L. Wong, A. I. Chen, S. Na, J. Sun, and J. T. Yeow, “Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique,” J. Micromechanics Microengineering 26, 115019 (2016).
[Crossref]

A. S. Logan, L. L. Wong, and J. T. Yeow, “A 1-d capacitive micromachined ultrasonic transducer imaging array fabricated with a silicon-nitride-based fusion process,” IEEE/ASME Transactions on Mechatronics 16, 861–865 (2011).
[Crossref]

Wu, X.

X. Zhang, X. Wu, O. J. Adelegan, F. Y. Yamaner, and Ö. Oralkan, “Backward-mode photoacoustic imaging using illumination through a cmut with improved transparency,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 65, 85–94 (2018).
[Crossref]

Wygant, I. O.

I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, “Analytically calculating membrane displacement and the equivalent circuit model of a circular cmut cell,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE, (IEEE, 2008), pp. 2111–2114.
[Crossref]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. scientific instruments 77, 041101 (2006).
[Crossref]

Yamaner, F. Y.

X. Zhang, X. Wu, O. J. Adelegan, F. Y. Yamaner, and Ö. Oralkan, “Backward-mode photoacoustic imaging using illumination through a cmut with improved transparency,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 65, 85–94 (2018).
[Crossref]

F. Y. Yamaner, X. Zhang, and Ö. Oralkan, “A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 62, 972–982 (2015).
[Crossref] [PubMed]

Yarahoglu, G. G.

A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: Fabrication technology,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 52, 2242–2258 (2005).
[Crossref]

Yaroslavsky, A. N.

A. N. Yaroslavsky and I. Yaroslavsky, “Optics of blood,” (2016).

Yaroslavsky, I.

A. N. Yaroslavsky and I. Yaroslavsky, “Optics of blood,” (2016).

Yeow, J. T.

Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
[Crossref]

Z. Li, L. L. Wong, A. I. Chen, S. Na, J. Sun, and J. T. Yeow, “Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique,” J. Micromechanics Microengineering 26, 115019 (2016).
[Crossref]

A. S. Logan, L. L. Wong, and J. T. Yeow, “A 1-d capacitive micromachined ultrasonic transducer imaging array fabricated with a silicon-nitride-based fusion process,” IEEE/ASME Transactions on Mechatronics 16, 861–865 (2011).
[Crossref]

Zemp, R.

Zemp, R. J.

A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, and R. J. Zemp, “Multi-frequency cmut arrays for imaging-therapy applications,” in Ultrasonics Symposium (IUS), 2013 IEEE International, (IEEE, 2013), pp. 1991–1993.
[Crossref]

Zhang, E.

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
[Crossref]

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. optics 47, 561–577 (2008).
[Crossref]

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a fabry perot polymer film sensor,” ieee transactions on ultrasonics, ferroelectrics, frequency control 53, 1330–1338 (2006).
[Crossref] [PubMed]

N. Huynh, E. Zhang, M. Betcke, S. R. Arridge, P. Beard, and B. Cox, “A real-time ultrasonic field mapping system using a fabry pérot single pixel camera for 3d photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2015, vol. 9323 (International Society for Optics and Photonics, 2015), p. 93231O.

Zhang, E. Z.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Zhang, X.

X. Zhang, X. Wu, O. J. Adelegan, F. Y. Yamaner, and Ö. Oralkan, “Backward-mode photoacoustic imaging using illumination through a cmut with improved transparency,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 65, 85–94 (2018).
[Crossref]

F. Y. Yamaner, X. Zhang, and Ö. Oralkan, “A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 62, 972–982 (2015).
[Crossref] [PubMed]

Zhuang, X.

A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: Fabrication technology,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 52, 2242–2258 (2005).
[Crossref]

Appl. optics (2)

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. optics 47, 561–577 (2008).
[Crossref]

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of fabry–perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. optics 56, 5039–5046 (2017).
[Crossref]

ieee transactions on ultrasonics, ferroelectrics, frequency control (1)

E. Zhang and P. Beard, “Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a fabry perot polymer film sensor,” ieee transactions on ultrasonics, ferroelectrics, frequency control 53, 1330–1338 (2006).
[Crossref] [PubMed]

A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: Fabrication technology,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 52, 2242–2258 (2005).
[Crossref]

X. Zhang, X. Wu, O. J. Adelegan, F. Y. Yamaner, and Ö. Oralkan, “Backward-mode photoacoustic imaging using illumination through a cmut with improved transparency,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 65, 85–94 (2018).
[Crossref]

M. I. Haller and B. T. Khuri-Yakub, “A surface micromachined electrostatic ultrasonic air transducer,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 43, 1–6 (1996).
[Crossref]

F. Y. Yamaner, X. Zhang, and Ö. Oralkan, “A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding,” IEEE transactions on ultrasonics, ferroelectrics, frequency control 62, 972–982 (2015).
[Crossref] [PubMed]

IEEE/ASME Transactions on Mechatronics (1)

A. S. Logan, L. L. Wong, and J. T. Yeow, “A 1-d capacitive micromachined ultrasonic transducer imaging array fabricated with a silicon-nitride-based fusion process,” IEEE/ASME Transactions on Mechatronics 16, 861–865 (2011).
[Crossref]

J. microelectromechanical systems (1)

Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. Khuri-Yakub, “Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology,” J. microelectromechanical systems 12, 128–137 (2003).
[Crossref]

J. Micromechanics Microengineering (1)

Z. Li, L. L. Wong, A. I. Chen, S. Na, J. Sun, and J. T. Yeow, “Fabrication of capacitive micromachined ultrasonic transducers based on adhesive wafer bonding technique,” J. Micromechanics Microengineering 26, 115019 (2016).
[Crossref]

Microsystems & Nanoeng. (1)

C. D. Gerardo, E. Cretu, and R. Rohling, “Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging,” Microsystems & Nanoeng. 4, 19 (2018).
[Crossref]

Nat. Photonics (1)

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and et al., “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11, 714 (2017).
[Crossref]

Opt. express (1)

Photoacoustics (1)

S.-L. Chen, L. J. Guo, and X. Wang, “All-optical photoacoustic microscopy,” Photoacoustics 3, 143–150 (2015).
[Crossref]

Phys. Medicine & Biol. (1)

S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, and E. Zhang, “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Medicine & Biol. 61, 8908 (2016).
[Crossref]

Rev. scientific instruments (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. scientific instruments 77, 041101 (2006).
[Crossref]

Sensors (1)

D.-C. Pang and C.-M. Chang, “Development of a novel transparent flexible capacitive micromachined ultrasonic transducer,” Sensors 17, 1443 (2017).
[Crossref]

Sensors Actuators A: Phys. (1)

Z. Li, S. Na, A. I. Chen, L. L. Wong, Z. Sun, P. Liu, and J. T. Yeow, “Optimization on benzocyclobutene-based cmut fabrication with an inverse structure,” Sensors Actuators A: Phys. 281, 1–8 (2018).
[Crossref]

Other (9)

A. N. Yaroslavsky and I. Yaroslavsky, “Optics of blood,” (2016).

C. Livermore and J. Voldman, “6.777 j/2.751 j material properties database,” (2016).

D. Chemicals, “Processing prodecures for cyclotene 4000 series photo bcb resins-ds2100 puddle develop process,” (2009).

I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, “Analytically calculating membrane displacement and the equivalent circuit model of a circular cmut cell,” in Ultrasonics Symposium, 2008. IUS 2008. IEEE, (IEEE, 2008), pp. 2111–2114.
[Crossref]

E. Ventsel and T. Krauthammer, Thin plates and shells (Marcel Dekker, 2001).
[Crossref]

N. Huynh, E. Zhang, M. Betcke, S. R. Arridge, P. Beard, and B. Cox, “A real-time ultrasonic field mapping system using a fabry pérot single pixel camera for 3d photoacoustic imaging,” in Photons Plus Ultrasound: Imaging and Sensing 2015, vol. 9323 (International Society for Optics and Photonics, 2015), p. 93231O.

J. Gelly and F. Lanteri, “Comparison of piezoelectric (thickness mode) and mems transducers,” in Ultrasonics, 2003 IEEE Symposium on, vol. 2 (IEEE, 2003), pp. 1965–1974.
[Crossref]

M. Torndahl, M. Almqvist, L. Wallman, H. W. Persson, and K. Lindstrom, “Characterisation and comparison of a cmut versus a piezoelectric transducer for air applications,” in Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, vol. 2 (IEEE, 2002), pp. 1023–1026.
[Crossref]

A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, and R. J. Zemp, “Multi-frequency cmut arrays for imaging-therapy applications,” in Ultrasonics Symposium (IUS), 2013 IEEE International, (IEEE, 2013), pp. 1991–1993.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Fabrication process of transparent CMUTs.
Fig. 2
Fig. 2 Effect of ITO annealing on transparency and sheet resistivity.
Fig. 3
Fig. 3 XRD results comparison of the ITO before and after annealing demonstrating the crystalline structure reorganization of the ITO film.
Fig. 4
Fig. 4 Photos of the fabricated CMUTs. The photos on the top were taken by a camera showing the dimensions of the die and the active area. The transparency in visible range is also intuitively presented as the printed name of University of Alberta can be directly see through the CMUTs that were placed on the top. The bottom two optical microscopy images show a closer view of the cavities in the active area. Diameter of the cavities are shown, along with the cell-to-cell distance.
Fig. 5
Fig. 5 Helium ion microscopy image for cross-sectional structure inspection. Insulating layer made of Photo BCB was not cut through with ion beam.
Fig. 6
Fig. 6 C–V curve of the fabricated CMUT with DC voltage applied to the top and bottom electrodes. Capacitance increased by the increase of voltage from 0 to 200 V. The measurement result is compared with the values obtained through theoretical calculation using the structural dimensions in Table 1.
Fig. 7
Fig. 7 Transparency measurement by spectrophotometer of the fabricated CMUT.
Fig. 8
Fig. 8 Illustration of receive sensitivity measurement setup.
Fig. 9
Fig. 9 Results of receive sensitivity measurements. (a) signal from signal generator for driving the piezo transducer generating acoustic waves; (b) hydrophone signal corresponding to the acoustic wave from the piezo transducer; (c) CMUT signals when it is biased at 50 and 100 V and positioned at the same position of the hydrophone.
Fig. 10
Fig. 10 Illustration of photoacoustic test setup.
Fig. 11
Fig. 11 Photoacoustic signals detected by CMUT (a and b) and a hydrophone (c and d) with different laser power applied.
Fig. 12
Fig. 12 Frequency analysis of the photoacoustic signal when CMUT was biased at 100 V and the laser power was set to 50 mW.
Fig. 13
Fig. 13 An illustration of the CMUT structure for C–V calculation.

Tables (3)

Tables Icon

Table 1 Structural dimensions.

Tables Icon

Table 2 Receive sensitivity test results.

Tables Icon

Table 3 Explanation of notations in the Fig. 13

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

C 1 = ε S 1 g 01
g 01 = ( t Cavity + t BCB ) ε BCB + t Nitride ε Nitride
u a = u p 3
k = 192 π D a 2 = F m i u a
D = E ITO t ITO 3 3 ( 1 ν ITO 2 ) + E Nitride [ ( t ITO + t Nitride ) 3 t ITO 3 ] 3 ( 1 ν Nitride 2 ) { E ITO t ITO 2 2 ( 1 ν ITO 2 ) + E Nitride [ ( t ITO + t Nitride ) 2 + t ITO 2 ] 2 ( 1 ν Nitride 2 ) } 2 E ITO t ITO 1 ν ITO 2 + E Nitride t Nitride 1 ν Nitride 2
C 2 i = C 2 i 0 tanh 1 ( u p g 02 ) u P g 02
g 02 = t Cavity + t BCB ε Nitride + t Nitride ε Nitride
C 2 i 0 = ε π a 2 g 02
d C 2 i d u a = ε π a 2 2 g 02 u a ( 1 u p g 02 ) C 2 i 2 u a
F ei = 1 2 d C 2 i d u a V 2
F = F m i + F e i + F p i = F m i + ( 1 2 d C 2 i d u a V 2 ) + ( p 0 π a 2 ) = 0
C = C 1 + N C 2 i

Metrics