Abstract

We propose two hyperentanglement concentration protocols (hyper-ECPs) for two-photon entangled states in the polarization and orbital angular momentum degrees of freedom. The two cases distilling a maximally hyperentangled state from partially entangled pure state with unknown parameters and known parameters are dissected respectively. Both of the protocols require only linear optical elements which make our protocols more feasible for current technologies. In our protocols, the remote parties perform different local operations, which will reduce everyone’s operation and improve the total efficiency. Each of them has the theoretical maximum success probability in the corresponding situation. The hyper-ECPs can be exploited simply to hyperentangled Greenberger-Horne-Zeilinger states.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics

Tie-Jun Wang and Gui Lu Long
J. Opt. Soc. Am. B 30(4) 1069-1076 (2013)

Hyperentanglement purification using imperfect spatial entanglement

Tie-Jun Wang, Si-Chen Mi, and Chuan Wang
Opt. Express 25(3) 2969-2982 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
    [Crossref]
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,”Phys. Rev. Lett. 67,661–663 (1991).
    [Crossref] [PubMed]
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
    [Crossref] [PubMed]
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
    [Crossref] [PubMed]
  5. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
    [Crossref] [PubMed]
  6. X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
    [Crossref]
  7. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
    [Crossref]
  8. F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
    [Crossref]
  9. W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
    [Crossref] [PubMed]
  10. F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
    [Crossref]
  11. S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
    [Crossref]
  12. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
    [Crossref]
  13. P. G. Kwiat, “Hyper-entangled states,”J. Mod. Opt. 44,2173–2184 (1997).
    [Crossref]
  14. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
    [Crossref]
  15. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
    [Crossref]
  16. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).
  17. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
    [Crossref]
  18. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,”Phys. Rev. A 82,044304 (2010).
    [Crossref]
  19. F. Deng, “One-step error correction for multipartite polarization entanglement,”Phys. Rev. A 83,062316 (2011).
    [Crossref]
  20. M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
    [Crossref] [PubMed]
  21. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
    [Crossref]
  22. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
    [Crossref] [PubMed]
  23. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
    [Crossref]
  24. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
    [Crossref]
  25. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
    [Crossref] [PubMed]
  26. B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
    [Crossref]
  27. H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
    [Crossref]
  28. H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
    [Crossref]
  29. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
    [Crossref] [PubMed]
  30. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
    [Crossref] [PubMed]
  31. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
    [Crossref] [PubMed]
  32. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
    [Crossref]
  33. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
    [Crossref] [PubMed]
  34. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
    [Crossref]
  35. D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
    [Crossref]
  36. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
    [Crossref]
  37. W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
    [Crossref]
  38. A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
    [Crossref]
  39. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
    [Crossref] [PubMed]
  40. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
    [Crossref] [PubMed]
  41. L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
    [Crossref]
  42. F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
    [Crossref]
  43. L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
    [Crossref]
  44. H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
    [Crossref]
  45. Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
    [Crossref] [PubMed]
  46. J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
    [Crossref] [PubMed]
  47. X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
    [Crossref]
  48. C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
    [Crossref]
  49. C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
    [Crossref]
  50. C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
    [Crossref]
  51. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
    [Crossref] [PubMed]
  52. T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
    [Crossref]
  53. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
    [Crossref] [PubMed]
  54. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
    [Crossref]
  55. F. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,”Phys. Rev. A 85,022311 (2012).
    [Crossref]
  56. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
    [Crossref]
  57. Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
    [Crossref]
  58. J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
    [Crossref]
  59. A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
    [Crossref] [PubMed]
  60. B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
    [Crossref]
  61. X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
    [Crossref]
  62. C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
    [Crossref]
  63. L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,”Phys. Rev. A 85,012311 (2012).
    [Crossref]
  64. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
    [Crossref]
  65. L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
    [Crossref]
  66. S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
    [Crossref]
  67. L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
    [Crossref]
  68. Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
    [Crossref]
  69. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
    [Crossref] [PubMed]
  70. I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
    [Crossref]

2018 (3)

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

2017 (5)

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

2016 (4)

L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
[Crossref]

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

2015 (5)

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
[Crossref]

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

2014 (1)

L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
[Crossref]

2013 (2)

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

2012 (8)

F. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,”Phys. Rev. A 85,022311 (2012).
[Crossref]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
[Crossref]

L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,”Phys. Rev. A 85,012311 (2012).
[Crossref]

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
[Crossref] [PubMed]

2011 (3)

F. Deng, “One-step error correction for multipartite polarization entanglement,”Phys. Rev. A 83,062316 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
[Crossref]

C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
[Crossref]

2010 (3)

C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
[Crossref]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
[Crossref]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,”Phys. Rev. A 82,044304 (2010).
[Crossref]

2009 (1)

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

2008 (3)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

2007 (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

2006 (2)

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

2005 (2)

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

2004 (2)

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

2003 (5)

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

2002 (2)

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
[Crossref]

2001 (3)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

1998 (3)

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
[Crossref]

1997 (1)

P. G. Kwiat, “Hyper-entangled states,”J. Mod. Opt. 44,2173–2184 (1997).
[Crossref]

1996 (3)

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

1994 (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

1993 (2)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

1992 (3)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,”Phys. Rev. Lett. 67,661–663 (1991).
[Crossref] [PubMed]

Abouraddy, A. F.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

Agarwal, G. S.

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

Aiello, A.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

Alsaedi, A.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

Alzahrani, F.

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

Annabestani, R.

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

Barbieri, M.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Barreiro, J. T.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

Bartlett, S. D.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
[Crossref] [PubMed]

Bernstein, H. J.

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

Bertani, P.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

Bhatti, D.

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

Boileau, J. C.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

Briegel, H. J.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

Brukner, C.

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

Cabello, A.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Calderbank, A. R.

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Cao, C.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

Chan, P.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Chen, L.

L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,”Phys. Rev. A 85,012311 (2012).
[Crossref]

Chen, L. X.

L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
[Crossref]

Chen, S.

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

Chen, Y. A.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

Chen, Z. B.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

Cirac, J. I.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

Dalton, R. B.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Deng, F.

F. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,”Phys. Rev. A 85,022311 (2012).
[Crossref]

F. Deng, “One-step error correction for multipartite polarization entanglement,”Phys. Rev. A 83,062316 (2011).
[Crossref]

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

Deng, F. G.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
[Crossref] [PubMed]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

Ding, D.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

Du, F. F.

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

Dür, W.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

Ekert, A.

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
[Crossref]

Ekert, A. K.

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,”Phys. Rev. Lett. 67,661–663 (1991).
[Crossref] [PubMed]

Eliel, E. R.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Ghose, S.

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
[Crossref]

Gilchrist, A.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Gottesman, D.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Gu, S. P.

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Guo, G.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

Guo, R.

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

Harvey, M. D.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Hayat, T.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

Hobiny, A.

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

Hooft, G. W. ’t

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Horne, M. A.

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

Hosier, S.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Hua, M.

Huang, Y. D.

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

Huber, G.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

Imoto, N.

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

Jennewein, T.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

Jiang, M. S.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Jin, G. S.

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

Jozsa, R.

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
[Crossref]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

Koashi, M.

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

Kurtsiefer, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

Kwiat, P. G.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
[Crossref]

P. G. Kwiat, “Hyper-entangled states,”J. Mod. Opt. 44,2173–2184 (1997).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

Laflamme, R.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Li, C. Y.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
[Crossref]

C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
[Crossref]

Li, F.

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

Li, T.

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
[Crossref] [PubMed]

Li, X. H.

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
[Crossref]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,”Phys. Rev. A 82,044304 (2010).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

Li, Y. S.

C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
[Crossref]

C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
[Crossref]

Liang, L. M.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Liu, X.

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

Liu, X. S.

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

Long, G. L.

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
[Crossref]

Lu, C. Y.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

Lu, Y.

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

Lucio-Martinez, I.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Lütkenhaus, N.

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

Ma, X.

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

Martini, F. D.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Mataloni, P.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

Mi, S. C.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

Mo, X.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

Monken, C. H.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

O’Brien, J. L.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Oemrawsingh, S. S. R.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
[Crossref]

Pádua, S.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

Pan, J.

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

Pan, J. W.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

Pan, J.-W.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

Popescu, S.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

Poulin, D.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Pryde, G. J.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Rains, E. M.

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Reck, M.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

Ren, B. C.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
[Crossref] [PubMed]

Saleh, B. E. A.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

Schuck, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

Sergienko, A. V.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

Sheng, Y.

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
[Crossref]

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

Sheng, Y. B.

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
[Crossref]

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
[Crossref]

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
[Crossref]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

Shi, B.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

Shor, P. M.

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Simon, C.

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

Sloane, N. J. A.

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

Spekkens, R. W.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

Stacey, W.

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

Sun, S. H.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Teich, M. C.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

Tittel, W.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Tong, D. M.

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

Vallone, G.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Vaziri, A.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

Voigt, D.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

von Zanthier, J.

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

Walborn, S. P.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

Walton, Z. D.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

Wang, A. H.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

Wang, C.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

Wang, H.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

Wang, Q.

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Wang, T. J.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

Wang, X. F.

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

Wei, H. R.

Wei, T. C.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

Weihs, G.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

Weinfurter, H.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

White, A. G.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
[Crossref] [PubMed]

Woerdman, J. P.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

Wu, Q. P.

L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
[Crossref]

Yamamoto, T.

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

Yang, T.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
[Crossref]

Zeilinger, A.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

Zhang, A. N.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

Zhang, R.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

Zhang, W.

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

Zhang, Z. R.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Zhao, S.

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

Zhao, S. M.

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Zhao, Z.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

Zheng, B.

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

Zhong, W.

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

Zhou, H. Y.

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

Zhou, L.

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
[Crossref]

L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
[Crossref]

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
[Crossref]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

Zhu, F.

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

Zoller, P.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

Zukowski, M.

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
[Crossref]

Annals Phys. (5)

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

Chin. Phys. Lett. (1)

C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
[Crossref]

Front. Phys. (1)

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

Ieee Photonics J. (1)

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

IEEE Transactions on Inf. Theory (1)

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Int. J. Quantum Inf. (1)

C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
[Crossref]

J. Mod. Opt. (1)

P. G. Kwiat, “Hyper-entangled states,”J. Mod. Opt. 44,2173–2184 (1997).
[Crossref]

J. Opt. Soc. Am. B-Optical Phys. (1)

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Laser Phys. Lett. (1)

L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
[Crossref]

Nat. Phys. (2)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Opt. Express (1)

Phys. Rev. A (23)

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
[Crossref]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
[Crossref]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,”Phys. Rev. A 82,044304 (2010).
[Crossref]

F. Deng, “One-step error correction for multipartite polarization entanglement,”Phys. Rev. A 83,062316 (2011).
[Crossref]

L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
[Crossref]

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,”Phys. Rev. A 85,012311 (2012).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
[Crossref]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

F. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,”Phys. Rev. A 85,022311 (2012).
[Crossref]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

Phys. Rev. Lett. (19)

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,”Phys. Rev. Lett. 67,661–663 (1991).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
[Crossref] [PubMed]

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

Quantum Inf. Process. (3)

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

Rev. Mod. Phys. (2)

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
[Crossref]

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

Sci. Bull. (1)

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

Sci. Reports (1)

L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
[Crossref]

SCIENCE CHINA Physics, Mech. & Astron. (1)

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 The schematic illustration of the Hyper-ECP with unknown parameters. BS: beam splitter; PBS: polarization beam splitter;
Fig. 2
Fig. 2 The schematic illustration of the Hyper-ECP for an initial state with known parameters. (a) This part is used to concentrate the Bell state of polarization DOF. UBS1 is an adjustable beam splitting with transmittance T, and can be replaced by an adjustable intensity modulator. (b) This part is used to concentrate the maximal entangled state of OAM. The UBS2 has transmittance here.
Fig. 3
Fig. 3 (a) and (b) depict the success probability of our hyper-ECP for each two-photon four-qubit system with unknown and known parameters, respectively. The dash line in (b) corresponds to the highest probability 12.5% in unknown parameters case.

Tables (1)

Tables Icon

Table 1 The Relationship of Operations and Measurement Results of D 1 A , D 2 A , D 1 B , and D 2 B .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

| ϕ A B = ( α | H H + β | V V ) A B ( δ | l , l + η | l , l ) A B .
| Φ A B = 1 2 ( | H H + | V V ) A B ( | l , l + | l , l ) A B .
| Φ A l i c e B o b = | ϕ A 1 B 1 | ϕ A 2 B 2 = [ ( α | H H + β | V V ) ( δ | l , l + η | l , l ) ] A 1 B 1 [ ( α | H H + β | V V ) ( δ | l , l + η | l , l ) ] A 2 B 2 .
[ α 2 | H H V V + β 2 | V V H H + α β ( | H H H H + | V V V V ) _ ] A 1 B 1 A 2 B 2 [ ( δ | l , l + η | l , l ) ( δ | l , l + η | l , l ) ] A 1 B 1 A 2 B 2 .
α β ( | H H 2 H H 1 + | V V 1 V V 2 ) A 1 B 1 A 2 B 2 [ ( δ | l , l + η | l , l ) ( δ | l , l + η | l , l ) ] A 1 B 1 A 2 B 2 .
α β ( | H H 2 H H 1 + | V V 1 V V 2 ) A 1 B 1 A 2 B 2 [ ( δ | 0 u , l + η | 0 d , l ) ( δ | 0 u , l + η | 0 d , l ) ] A 1 B 1 A 2 B 2
α β δ η 2 2 | H | H b | H | H ( | l a 2 + i | l a 1 ) | l ( | 0 D 1 A + i | 0 D 2 A ) ( | 0 D 1 B + i | 0 D 2 B ) + α β δ η 2 2 | H | H b | H | H ( | l a 1 + i | l a 2 ) | l ( | 0 D 2 A + i | 0 D 1 A ) ( | 0 D 2 B + i | 0 D 1 B ) + α β δ η 2 2 | V | V b | V | V ( | l a 2 + i | l a 1 ) | l ( | 0 D 1 A + i | 0 D 2 A ) ( | 0 D 2 B + i | 0 D 1 B ) + α β δ η 2 2 | V | V b | V | V ( | l a 1 + i | l a 2 ) | l ( | 0 D 2 A + i | 0 D 1 A ) ( | 0 D 1 B + i | 0 D 2 B ) .
| ϕ A B = α δ 2 ( | H H + | V V ) A B ( | l , l + | l , l ) A B ,
| ϕ A B = α δ 2 ( | H H + | V V ) A B ( | l , l | l , l ) A B .
| ϕ 1 , 2 , , N = ( α | H H H + β | V V V ) 1 , 2 , , N ( δ | l , l , , l + η | l , l , , l ) 1 , 2 , , N .
| Φ 1 , 2 , , N = 1 2 ( | H H H + | V V V ) 1 , 2 , , N ( | l , l , , l + | l , l , , l ) 1 , 2 , , N .

Metrics