Abstract

We demonstrate an isotope 87Rb Faraday anomalous dispersion optical filter (FADOF) with a single transmission peak resonant with the 5S1/2, F = 2 → 5P3/2, F’ = 1, 2, 3 transitions at 780 nm with an enriched 87Rb isotope at low temperature. The isotope 87Rb FADOF achieves a single peak transmission of 74.8% with a bandwidth of 0.96 GHz. Compared with most of FADOFs operated at frequencies far from absorption, the isotope 87Rb FADOF that we have achieved can provide a transmission band exactly covering atomic transitions for many practical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm

Yanfei Wang, Xiaogang Zhang, Dongying Wang, Zhiming Tao, Wei Zhuang, and Jingbiao Chen
Opt. Express 20(23) 25817-25825 (2012)

Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780  nm

Zhiming Tao, Yelong Hong, Bin Luo, Jingbiao Chen, and Hong Guo
Opt. Lett. 40(18) 4348-4351 (2015)

Isotope 87Rb Faraday anomalous dispersion optical filter at 420  nm

Li Ling and Gang Bi
Opt. Lett. 39(11) 3324-3327 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16(11), 846–848 (1991).
    [Crossref] [PubMed]
  2. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16(11), 867–869 (1991).
    [Crossref] [PubMed]
  3. S. D. Harrell, C. Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B 26(4), 659–670 (2009).
    [Crossref]
  4. A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
    [Crossref]
  5. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82(8), 086106 (2011).
    [Crossref] [PubMed]
  6. X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
    [Crossref] [PubMed]
  7. B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun. 94(1–3), 30–32 (1992).
    [Crossref]
  8. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron. 37(3), 372–375 (2001).
    [Crossref]
  9. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194(1–3), 147–150 (2001).
    [Crossref]
  10. Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett. 36(23), 4611–4613 (2011).
    [Crossref] [PubMed]
  11. X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett. 37(12), 2274–2276 (2012).
    [Crossref] [PubMed]
  12. J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett. 37(4), 524–526 (2012).
    [Crossref] [PubMed]
  13. Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
    [Crossref]
  14. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “Optical isolator using an atomic vapor in the hyperfine Paschen-Back regime,” Opt. Lett. 37(16), 3405–3407 (2012).
    [Crossref] [PubMed]
  15. Z. Tao, Y. Hong, B. Luo, J. Chen, and H. Guo, “Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm,” Opt. Lett. 40(18), 4348–4351 (2015).
    [Crossref] [PubMed]
  16. Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37(19), 4059–4061 (2012).
    [Crossref] [PubMed]
  17. Y. Wang, X. Zhang, D. Wang, Z. Tao, W. Zhuang, and J. Chen, “Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm,” Opt. Express 20(23), 25817–25825 (2012).
    [Crossref] [PubMed]
  18. Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
    [Crossref]
  19. Z. Xu, X. Xue, D. Pan, X. Zhang, W. Zhuang, and J. Chen, “Narrower atomic filter at 422.7 nm based on thermal Ca beam,” Chin. Sci. Bull. 59(28), 3543–3548 (2014).
    [Crossref]
  20. Y. C. Chan, M. D. Tabat, and J. A. Gelbwachs, “Experimental demonstration of internal wavelength conversion in the magnesium atomic filter,” Opt. Lett. 14(14), 722–724 (1989).
    [Crossref] [PubMed]
  21. J. A. Gelbwachs and Y. C. Chan, “Passive fraunhofer-Wavelength Atomic Filter at 460.7 nm,” IEEE J. Quantum Electron. 28(11), 2577–2581 (1992).
    [Crossref]
  22. T. Junxiong, W. Qingji, L. Yimin, Z. Liang, G. Jianhua, D. Minghao, K. Jiankun, and Z. Lemin, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34(15), 2619–2622 (1995).
    [Crossref] [PubMed]
  23. Y. Li, L. Zhang, J. Tang, and Q. Wang, “Study of Linked Faraday anomalous dispersion optical filter,” Acta. Electron. Sinica. 24(6), 38–40 (1996).
  24. B. Yin, L. S. Alvarez, and T. M. Shay, “The Rb 780-Nanometer Faraday anomalous dispersion optical filter: theory and experiment,” TDA Progress Report 42(116), 71–85 (1994).
  25. S. Zhang, Y. Wang, T. Zhang, W. Zhuang, and J. Chen, “A potassium atom four-level active optical clock scheme,” Chin. Phys. Lett. 30(4), 040601 (2013).
    [Crossref]
  26. Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Sci. China Phys. Mech. Astron. 56(6), 1107–1110 (2013).
    [Crossref]
  27. T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, “Active optical clock based on four-level quantum system,” Chin. Sci. Bull. 58(17), 2033–2038 (2013).
    [Crossref]

2016 (1)

Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
[Crossref]

2015 (1)

2014 (1)

Z. Xu, X. Xue, D. Pan, X. Zhang, W. Zhuang, and J. Chen, “Narrower atomic filter at 422.7 nm based on thermal Ca beam,” Chin. Sci. Bull. 59(28), 3543–3548 (2014).
[Crossref]

2013 (4)

S. Zhang, Y. Wang, T. Zhang, W. Zhuang, and J. Chen, “A potassium atom four-level active optical clock scheme,” Chin. Phys. Lett. 30(4), 040601 (2013).
[Crossref]

Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Sci. China Phys. Mech. Astron. 56(6), 1107–1110 (2013).
[Crossref]

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, “Active optical clock based on four-level quantum system,” Chin. Sci. Bull. 58(17), 2033–2038 (2013).
[Crossref]

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (2)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82(8), 086106 (2011).
[Crossref] [PubMed]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett. 36(23), 4611–4613 (2011).
[Crossref] [PubMed]

2010 (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

2009 (1)

2001 (2)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron. 37(3), 372–375 (2001).
[Crossref]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194(1–3), 147–150 (2001).
[Crossref]

1996 (1)

Y. Li, L. Zhang, J. Tang, and Q. Wang, “Study of Linked Faraday anomalous dispersion optical filter,” Acta. Electron. Sinica. 24(6), 38–40 (1996).

1995 (1)

1994 (1)

B. Yin, L. S. Alvarez, and T. M. Shay, “The Rb 780-Nanometer Faraday anomalous dispersion optical filter: theory and experiment,” TDA Progress Report 42(116), 71–85 (1994).

1992 (2)

J. A. Gelbwachs and Y. C. Chan, “Passive fraunhofer-Wavelength Atomic Filter at 460.7 nm,” IEEE J. Quantum Electron. 28(11), 2577–2581 (1992).
[Crossref]

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun. 94(1–3), 30–32 (1992).
[Crossref]

1991 (2)

1989 (1)

Adams, C. S.

Alvarez, L. S.

B. Yin, L. S. Alvarez, and T. M. Shay, “The Rb 780-Nanometer Faraday anomalous dispersion optical filter: theory and experiment,” TDA Progress Report 42(116), 71–85 (1994).

Beduini, F. A.

Benson, K.

Bloom, S. H.

Chan, Y. C.

J. A. Gelbwachs and Y. C. Chan, “Passive fraunhofer-Wavelength Atomic Filter at 460.7 nm,” IEEE J. Quantum Electron. 28(11), 2577–2581 (1992).
[Crossref]

Y. C. Chan, M. D. Tabat, and J. A. Gelbwachs, “Experimental demonstration of internal wavelength conversion in the magnesium atomic filter,” Opt. Lett. 14(14), 722–724 (1989).
[Crossref] [PubMed]

Chen, H.

Chen, J.

Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
[Crossref]

Z. Tao, Y. Hong, B. Luo, J. Chen, and H. Guo, “Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm,” Opt. Lett. 40(18), 4348–4351 (2015).
[Crossref] [PubMed]

Z. Xu, X. Xue, D. Pan, X. Zhang, W. Zhuang, and J. Chen, “Narrower atomic filter at 422.7 nm based on thermal Ca beam,” Chin. Sci. Bull. 59(28), 3543–3548 (2014).
[Crossref]

S. Zhang, Y. Wang, T. Zhang, W. Zhuang, and J. Chen, “A potassium atom four-level active optical clock scheme,” Chin. Phys. Lett. 30(4), 040601 (2013).
[Crossref]

Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Sci. China Phys. Mech. Astron. 56(6), 1107–1110 (2013).
[Crossref]

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, “Active optical clock based on four-level quantum system,” Chin. Sci. Bull. 58(17), 2033–2038 (2013).
[Crossref]

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref] [PubMed]

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett. 37(12), 2274–2276 (2012).
[Crossref] [PubMed]

Y. Wang, X. Zhang, D. Wang, Z. Tao, W. Zhuang, and J. Chen, “Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm,” Opt. Express 20(23), 25817–25825 (2012).
[Crossref] [PubMed]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37(19), 4059–4061 (2012).
[Crossref] [PubMed]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett. 36(23), 4611–4613 (2011).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82(8), 086106 (2011).
[Crossref] [PubMed]

Chen, M.

Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
[Crossref]

Chen, S. S.

Dang, A.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82(8), 086106 (2011).
[Crossref] [PubMed]

Dick, D. J.

Gelbwachs, J. A.

J. A. Gelbwachs and Y. C. Chan, “Passive fraunhofer-Wavelength Atomic Filter at 460.7 nm,” IEEE J. Quantum Electron. 28(11), 2577–2581 (1992).
[Crossref]

Y. C. Chan, M. D. Tabat, and J. A. Gelbwachs, “Experimental demonstration of internal wavelength conversion in the magnesium atomic filter,” Opt. Lett. 14(14), 722–724 (1989).
[Crossref] [PubMed]

Godbout, N.

Guo, H.

Harrell, S. D.

Hong, Y.

Hu, Z. L.

Hughes, I. G.

Jia, X.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron. 37(3), 372–375 (2001).
[Crossref]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194(1–3), 147–150 (2001).
[Crossref]

Jianhua, G.

Jiankun, K.

Junxiong, T.

Kleinbach, K. S.

Knappe, S.

Korevaar, E.

Krueger, D. A.

Lemin, Z.

Li, Y.

Y. Li, L. Zhang, J. Tang, and Q. Wang, “Study of Linked Faraday anomalous dispersion optical filter,” Acta. Electron. Sinica. 24(6), 38–40 (1996).

Liang, Z.

Liu, C. S.

Liu, Z.

Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
[Crossref]

Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
[Crossref]

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett. 36(23), 4611–4613 (2011).
[Crossref] [PubMed]

Luo, B.

Ma, Z.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194(1–3), 147–150 (2001).
[Crossref]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron. 37(3), 372–375 (2001).
[Crossref]

Menders, J.

Miao, X.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82(8), 086106 (2011).
[Crossref] [PubMed]

Minghao, D.

Mitchell, M. W.

Pan, D.

Z. Xu, X. Xue, D. Pan, X. Zhang, W. Zhuang, and J. Chen, “Narrower atomic filter at 422.7 nm based on thermal Ca beam,” Chin. Sci. Bull. 59(28), 3543–3548 (2014).
[Crossref]

Popescu, A.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

Qingji, W.

Shay, T. M.

B. Yin, L. S. Alvarez, and T. M. Shay, “The Rb 780-Nanometer Faraday anomalous dispersion optical filter: theory and experiment,” TDA Progress Report 42(116), 71–85 (1994).

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun. 94(1–3), 30–32 (1992).
[Crossref]

D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16(11), 867–869 (1991).
[Crossref] [PubMed]

She, C. Y.

Sun, Q.

Tabat, M. D.

Tang, J.

Y. Li, L. Zhang, J. Tang, and Q. Wang, “Study of Linked Faraday anomalous dispersion optical filter,” Acta. Electron. Sinica. 24(6), 38–40 (1996).

Tao, Z.

Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
[Crossref]

Z. Tao, Y. Hong, B. Luo, J. Chen, and H. Guo, “Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm,” Opt. Lett. 40(18), 4348–4351 (2015).
[Crossref] [PubMed]

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref] [PubMed]

Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Sci. China Phys. Mech. Astron. 56(6), 1107–1110 (2013).
[Crossref]

Y. Wang, X. Zhang, D. Wang, Z. Tao, W. Zhuang, and J. Chen, “Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm,” Opt. Express 20(23), 25817–25825 (2012).
[Crossref] [PubMed]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37(19), 4059–4061 (2012).
[Crossref] [PubMed]

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett. 37(12), 2274–2276 (2012).
[Crossref] [PubMed]

Walther, T.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

Wang, D.

Wang, Q.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194(1–3), 147–150 (2001).
[Crossref]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron. 37(3), 372–375 (2001).
[Crossref]

Y. Li, L. Zhang, J. Tang, and Q. Wang, “Study of Linked Faraday anomalous dispersion optical filter,” Acta. Electron. Sinica. 24(6), 38–40 (1996).

Wang, Y.

S. Zhang, Y. Wang, T. Zhang, W. Zhuang, and J. Chen, “A potassium atom four-level active optical clock scheme,” Chin. Phys. Lett. 30(4), 040601 (2013).
[Crossref]

Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Sci. China Phys. Mech. Astron. 56(6), 1107–1110 (2013).
[Crossref]

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, “Active optical clock based on four-level quantum system,” Chin. Sci. Bull. 58(17), 2033–2038 (2013).
[Crossref]

Y. Wang, X. Zhang, D. Wang, Z. Tao, W. Zhuang, and J. Chen, “Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm,” Opt. Express 20(23), 25817–25825 (2012).
[Crossref] [PubMed]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37(19), 4059–4061 (2012).
[Crossref] [PubMed]

Weller, L.

Xie, X.

Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Sci. China Phys. Mech. Astron. 56(6), 1107–1110 (2013).
[Crossref]

Xu, Z.

Z. Xu, X. Xue, D. Pan, X. Zhang, W. Zhuang, and J. Chen, “Narrower atomic filter at 422.7 nm based on thermal Ca beam,” Chin. Sci. Bull. 59(28), 3543–3548 (2014).
[Crossref]

Xue, X.

Yimin, L.

Yin, B.

B. Yin, L. S. Alvarez, and T. M. Shay, “The Rb 780-Nanometer Faraday anomalous dispersion optical filter: theory and experiment,” TDA Progress Report 42(116), 71–85 (1994).

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun. 94(1–3), 30–32 (1992).
[Crossref]

Yin, L.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82(8), 086106 (2011).
[Crossref] [PubMed]

Yuan, T.

Zang, X.

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, “Active optical clock based on four-level quantum system,” Chin. Sci. Bull. 58(17), 2033–2038 (2013).
[Crossref]

Zentile, M. A.

Zhang, L.

Y. Li, L. Zhang, J. Tang, and Q. Wang, “Study of Linked Faraday anomalous dispersion optical filter,” Acta. Electron. Sinica. 24(6), 38–40 (1996).

Zhang, S.

S. Zhang, Y. Wang, T. Zhang, W. Zhuang, and J. Chen, “A potassium atom four-level active optical clock scheme,” Chin. Phys. Lett. 30(4), 040601 (2013).
[Crossref]

Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Sci. China Phys. Mech. Astron. 56(6), 1107–1110 (2013).
[Crossref]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37(19), 4059–4061 (2012).
[Crossref] [PubMed]

Zhang, T.

Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Sci. China Phys. Mech. Astron. 56(6), 1107–1110 (2013).
[Crossref]

S. Zhang, Y. Wang, T. Zhang, W. Zhuang, and J. Chen, “A potassium atom four-level active optical clock scheme,” Chin. Phys. Lett. 30(4), 040601 (2013).
[Crossref]

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, “Active optical clock based on four-level quantum system,” Chin. Sci. Bull. 58(17), 2033–2038 (2013).
[Crossref]

Zhang, X.

Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
[Crossref]

Z. Xu, X. Xue, D. Pan, X. Zhang, W. Zhuang, and J. Chen, “Narrower atomic filter at 422.7 nm based on thermal Ca beam,” Chin. Sci. Bull. 59(28), 3543–3548 (2014).
[Crossref]

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref] [PubMed]

Y. Wang, X. Zhang, D. Wang, Z. Tao, W. Zhuang, and J. Chen, “Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm,” Opt. Express 20(23), 25817–25825 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194(1–3), 147–150 (2001).
[Crossref]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron. 37(3), 372–375 (2001).
[Crossref]

Zhu, C.

Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
[Crossref]

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref] [PubMed]

Zhuang, W.

Z. Xu, X. Xue, D. Pan, X. Zhang, W. Zhuang, and J. Chen, “Narrower atomic filter at 422.7 nm based on thermal Ca beam,” Chin. Sci. Bull. 59(28), 3543–3548 (2014).
[Crossref]

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, “Active optical clock based on four-level quantum system,” Chin. Sci. Bull. 58(17), 2033–2038 (2013).
[Crossref]

S. Zhang, Y. Wang, T. Zhang, W. Zhuang, and J. Chen, “A potassium atom four-level active optical clock scheme,” Chin. Phys. Lett. 30(4), 040601 (2013).
[Crossref]

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy,” Opt. Express 21(23), 28010–28018 (2013).
[Crossref] [PubMed]

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett. 37(12), 2274–2276 (2012).
[Crossref] [PubMed]

Y. Wang, X. Zhang, D. Wang, Z. Tao, W. Zhuang, and J. Chen, “Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm,” Opt. Express 20(23), 25817–25825 (2012).
[Crossref] [PubMed]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett. 36(23), 4611–4613 (2011).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82(8), 086106 (2011).
[Crossref] [PubMed]

Zielinska, J. A.

Acta. Electron. Sinica. (1)

Y. Li, L. Zhang, J. Tang, and Q. Wang, “Study of Linked Faraday anomalous dispersion optical filter,” Acta. Electron. Sinica. 24(6), 38–40 (1996).

Appl. Opt. (1)

Appl. Phys. B (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

Chin. Phys. Lett. (1)

S. Zhang, Y. Wang, T. Zhang, W. Zhuang, and J. Chen, “A potassium atom four-level active optical clock scheme,” Chin. Phys. Lett. 30(4), 040601 (2013).
[Crossref]

Chin. Sci. Bull. (2)

T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, “Active optical clock based on four-level quantum system,” Chin. Sci. Bull. 58(17), 2033–2038 (2013).
[Crossref]

Z. Xu, X. Xue, D. Pan, X. Zhang, W. Zhuang, and J. Chen, “Narrower atomic filter at 422.7 nm based on thermal Ca beam,” Chin. Sci. Bull. 59(28), 3543–3548 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

J. A. Gelbwachs and Y. C. Chan, “Passive fraunhofer-Wavelength Atomic Filter at 460.7 nm,” IEEE J. Quantum Electron. 28(11), 2577–2581 (1992).
[Crossref]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron. 37(3), 372–375 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun. 94(1–3), 30–32 (1992).
[Crossref]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194(1–3), 147–150 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (9)

Z. Tao, Y. Hong, B. Luo, J. Chen, and H. Guo, “Diode laser operating on an atomic transition limited by an isotope 87Rb Faraday filter at 780 nm,” Opt. Lett. 40(18), 4348–4351 (2015).
[Crossref] [PubMed]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett. 36(23), 4611–4613 (2011).
[Crossref] [PubMed]

J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett. 37(4), 524–526 (2012).
[Crossref] [PubMed]

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett. 37(12), 2274–2276 (2012).
[Crossref] [PubMed]

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “Optical isolator using an atomic vapor in the hyperfine Paschen-Back regime,” Opt. Lett. 37(16), 3405–3407 (2012).
[Crossref] [PubMed]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37(19), 4059–4061 (2012).
[Crossref] [PubMed]

Y. C. Chan, M. D. Tabat, and J. A. Gelbwachs, “Experimental demonstration of internal wavelength conversion in the magnesium atomic filter,” Opt. Lett. 14(14), 722–724 (1989).
[Crossref] [PubMed]

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16(11), 846–848 (1991).
[Crossref] [PubMed]

D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16(11), 867–869 (1991).
[Crossref] [PubMed]

Phys. Lett. A (1)

Z. Tao, X. Zhang, M. Chen, Z. Liu, C. Zhu, Z. Liu, and J. Chen, “Cs 728 nm excited state Faraday anomalous dispersion optical filter with indirect pump,” Phys. Lett. A 380(25–26), 2150–2153 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82(8), 086106 (2011).
[Crossref] [PubMed]

Sci. China Phys. Mech. Astron. (1)

Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Sci. China Phys. Mech. Astron. 56(6), 1107–1110 (2013).
[Crossref]

TDA Progress Report (1)

B. Yin, L. S. Alvarez, and T. M. Shay, “The Rb 780-Nanometer Faraday anomalous dispersion optical filter: theory and experiment,” TDA Progress Report 42(116), 71–85 (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Relevant 87Rb energy levels
Fig. 2
Fig. 2 Experimental schematics. ECDL, 780 nm external cavity diode laser; ISO, optical isolator; BS, beam splitter; G, Glan-Taylor prism; R, high reflection mirror for 780 nm; PD, photodiode.
Fig. 3
Fig. 3 Transmission spectra of the isotope 87Rb FADOF with a single transmission peak at 250 G and 75°C. The upper line is the saturated absorption spectrum of natural Rb and the bottom line is the transmission spectrum of the isotope 87Rb FADOF.
Fig. 4
Fig. 4 Transmission spectra of the isotope 87Rb FADOF corresponding to 87Rb F = 2, 1 transitions at different cell temperature. The magnetic field is 70 G. The upper line is the saturated absorption spectrum of natural Rb. The five bottom lines are the transmission spectra of the isotope 87Rb FADOF at 60°C, 65°C, 70°C, 75°C and 86°C, respectively.
Fig. 5
Fig. 5 Transmission of the isotope 87Rb FADOF corresponding to 87Rb F = 2 transition as a function of cell temperature. The magnetic field of the isotope 87Rb cell is 70 G.
Fig. 6
Fig. 6 Transmission spectra of the isotope 87Rb FADOF corresponding to 87Rb F = 2, 1 transitions as a function of magnetic field at 75°C. The upper line is the saturated absorption spectrum of natural Rb. The five bottom lines are the transmission spectra of the 87Rb FADOF at 80 G, 150 G, 250 G, 400 G, 470G, respectively.
Fig. 7
Fig. 7 Transmission of the isotope 87Rb FADOF corresponding to 87Rb F = 2 transition as a function of magnetic field. The temperature of the isotope 87Rb cell is 75°C.

Metrics