Abstract

Holographic lithography is widely used as an effective approach for two-dimensional (2D) photonic crystal fabrication. However, for the fabrication of 2D polarization structures based on photoaligned liquid crystals (LCs), holographic lithography method is limited. The fabrication requires full coverage of light intensity, 2D chiral distribution and continuously varying polarization direction, which could be hardly guaranteed by multi-beam interference of circularly polarized light (CPL). Herein, we introduce a linearly polarized light (LPL) into a three-CPL interference configuration to improve the interference field and fulfill the critical requirement. The introduced LPL intensity is chosen to be 1/5 of the CPL to guarantee both full coverage of light intensity and well photoalignment defined LC directors. Moreover, the introduction of the weak LPL into multiple CPL interference is shown to give little disturbance to the desired diffraction properties.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry

Yue Shi, Yan Jun Liu, Feng Song, Vladimir G. Chigrinov, Hoi-Sing Kwok, Minggang Hu, Dan Luo, and Xiao Wei Sun
Opt. Express 26(6) 7683-7692 (2018)

Diffraction properties of a vector grating liquid crystal cell fabricated using a one-step exposure of a nonorthogonal elliptically polarized interference beam

Kotaro Kawai, Tomoyuki Sasaki, Moritsugu Sakamoto, Kohei Noda, Nobuhiro Kawatsuki, and Hiroshi Ono
J. Opt. Soc. Am. B 32(12) 2435-2440 (2015)

Polarization independent beam fanning using a multi-domain liquid crystal cell

Hongwen Ren and Shin-Tson Wu
Opt. Express 17(14) 11530-11536 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [Crossref] [PubMed]
  2. J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Control over topological insulator photocurrents with light polarization,” Nat. Nanotechnol. 7(2), 96–100 (2011).
    [Crossref] [PubMed]
  3. P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
    [Crossref] [PubMed]
  4. S. Stenholm, “Polarization coding of quantum information,” Opt. Commun. 123(1–3), 287–296 (1996).
    [Crossref]
  5. S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
    [Crossref]
  6. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999).
    [Crossref] [PubMed]
  7. J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25(11), 785–786 (2000).
    [Crossref] [PubMed]
  8. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  9. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
    [Crossref] [PubMed]
  10. M. J. Escuti and W. M. Jones, “A polarization-independent liquid crystal spatial light modulator,” Proc. SPIE 6332, 63320M (2006).
    [Crossref]
  11. M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
    [Crossref]
  12. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
    [Crossref]
  13. W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
    [Crossref]
  14. V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
    [Crossref] [PubMed]
  15. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15(9), 5872–5878 (2007).
    [Crossref] [PubMed]
  16. K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
    [Crossref]
  17. H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photo cross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
    [Crossref]
  18. S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31(22), 3336–3338 (2006).
    [Crossref] [PubMed]
  19. U. Ruiz, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Pure two-dimensional polarization patterns for holographic recording,” Opt. Lett. 37(3), 311–313 (2012).
    [Crossref] [PubMed]
  20. U. Ruiz, P. Pagliusi, C. Provenzano, V. P. Shibaev, and G. Cipparrone, “Supramolecular chiral structures: smart polymer organization guided by 2D polarization light patterns,” Adv. Funct. Mater. 22(14), 2964–2970 (2012).
    [Crossref]
  21. M. Campbell, N. D. Sharp, and T. M. Harrison, “Fabrication of photonic crystals for the visible spectrum by holographic lithography” Nature ‖London|404, 53–56 ‖2000|.
  22. Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
    [Crossref]
  23. D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from adye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
    [Crossref]
  24. Y. Shi, Y. J. Liu, F. Song, V. G. Chigrinov, H. S. Kwok, M. Hu, D. Luo, and X. W. Sun, “Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry,” Opt. Express 26(6), 7683–7692 (2018).
    [Crossref] [PubMed]
  25. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).
  26. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  27. V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
    [Crossref]
  28. J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
    [Crossref]
  29. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).
  30. L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
    [Crossref]
  31. V. G. Chigrinov, Liquid Crystal Photonics (Nova Science Publishers Inc.: New York, 2014).
  32. H. Wu, W. Hu, H.-C. Hu, X.-W. Lin, G. Zhu, J.-W. Choi, V. Chigrinov, and Y.-Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
    [Crossref]
  33. Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
    [Crossref] [PubMed]
  34. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
    [Crossref] [PubMed]
  35. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley Publishing, 2008).
  36. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
    [Crossref] [PubMed]
  37. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
    [Crossref] [PubMed]
  38. H. Park, E. P. J. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
    [Crossref] [PubMed]
  39. F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
    [Crossref]

2018 (1)

2017 (3)

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

2014 (1)

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

2012 (5)

2011 (1)

J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Control over topological insulator photocurrents with light polarization,” Nat. Nanotechnol. 7(2), 96–100 (2011).
[Crossref] [PubMed]

2009 (2)

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from adye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (6)

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31(22), 3336–3338 (2006).
[Crossref] [PubMed]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref] [PubMed]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photo cross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

M. J. Escuti and W. M. Jones, “A polarization-independent liquid crystal spatial light modulator,” Proc. SPIE 6332, 63320M (2006).
[Crossref]

2005 (2)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

2004 (1)

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
[Crossref] [PubMed]

2003 (1)

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

2002 (1)

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

2000 (1)

1999 (1)

1996 (2)

1995 (1)

M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
[Crossref]

1991 (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

1988 (1)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

1986 (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Aastuen, D.

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

An, Z.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Aoki, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Asatryan, K.

Belov, P. A.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Bruzzone, C.

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Che, Z.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Chigrinov, V.

Chigrinov, V. G.

Choi, J.-W.

Cipparrone, G.

Cloutier, S. G.

Crawford, G. P.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals,” Opt. Lett. 31(22), 3336–3338 (2006).
[Crossref] [PubMed]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Crne, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Dai, H. T.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from adye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Eckhardt, S.

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

Emoto, A.

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photo cross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

Escuti, M. J.

M. J. Escuti and W. M. Jones, “A polarization-independent liquid crystal spatial light modulator,” Proc. SPIE 6332, 63320M (2006).
[Crossref]

Fan, F.

Filonov, D. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Galstian, T.

Gedik, N.

J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Control over topological insulator photocurrents with light polarization,” Nat. Nanotechnol. 7(2), 96–100 (2011).
[Crossref] [PubMed]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Ginzburg, P.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Gori, F.

Gorkhali, S. P.

Han, H.

Hasegawa, M.

M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
[Crossref]

Ho, J.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
[Crossref] [PubMed]

Ho, J. Y.

L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
[Crossref]

Ho, J. Y.-L.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Hosoki, A.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Hsieh, D.

J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Control over topological insulator photocurrents with light polarization,” Nat. Nanotechnol. 7(2), 96–100 (2011).
[Crossref] [PubMed]

Hu, H.-C.

Hu, M.

Y. Shi, Y. J. Liu, F. Song, V. G. Chigrinov, H. S. Kwok, M. Hu, D. Luo, and X. W. Sun, “Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry,” Opt. Express 26(6), 7683–7692 (2018).
[Crossref] [PubMed]

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Hu, W.

Huang, D. D.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
[Crossref] [PubMed]

Ichimura, K.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Jarillo-Herrero, P.

J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Control over topological insulator photocurrents with light polarization,” Nat. Nanotechnol. 7(2), 96–100 (2011).
[Crossref] [PubMed]

Ji, W.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from adye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Jones, W. M.

M. J. Escuti and W. M. Jones, “A polarization-independent liquid crystal spatial light modulator,” Proc. SPIE 6332, 63320M (2006).
[Crossref]

Kapitanova, P. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Kawai, K.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Kawatsuki, N.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photo cross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

Khazimullin, M.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
[Crossref] [PubMed]

Kivshar, Y. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Kozenkov, V.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
[Crossref] [PubMed]

Kwok, H. S.

Kwok, H.-S.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
[Crossref]

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
[Crossref] [PubMed]

Li, J.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Lim, M.

Lin, X.-W.

Liu, Y. J.

Y. Shi, Y. J. Liu, F. Song, V. G. Chigrinov, H. S. Kwok, M. Hu, D. Luo, and X. W. Sun, “Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry,” Opt. Express 26(6), 7683–7692 (2018).
[Crossref] [PubMed]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from adye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

Lu, Y.-Q.

Luo, D.

Y. Shi, Y. J. Liu, F. Song, V. G. Chigrinov, H. S. Kwok, M. Hu, D. Luo, and X. W. Sun, “Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry,” Opt. Express 26(6), 7683–7692 (2018).
[Crossref] [PubMed]

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from adye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Ma, J.

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

McIver, J. W.

J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Control over topological insulator photocurrents with light polarization,” Nat. Nanotechnol. 7(2), 96–100 (2011).
[Crossref] [PubMed]

Mo, L.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Noda, K.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Ono, H.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photo cross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

Pagliusi, P.

Park, H.

Park, J. O.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Parrott, E. P. J.

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Pickwell-MacPherson, E.

Pikin, S.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
[Crossref] [PubMed]

Poddubny, A. N.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Presnyakov, V.

Provenzano, C.

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Rodríguez-Fortuño, F. J.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Ruiz, U.

U. Ruiz, P. Pagliusi, C. Provenzano, V. P. Shibaev, and G. Cipparrone, “Supramolecular chiral structures: smart polymer organization guided by 2D polarization light patterns,” Adv. Funct. Mater. 22(14), 2964–2970 (2012).
[Crossref]

U. Ruiz, C. Provenzano, P. Pagliusi, and G. Cipparrone, “Pure two-dimensional polarization patterns for holographic recording,” Opt. Lett. 37(3), 311–313 (2012).
[Crossref] [PubMed]

Sakamoto, M.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Sambles, J. R.

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

Sasaki, T.

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

Schadt, M.

Seki, T.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Sharma, V.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Shi, Y.

Y. Shi, Y. J. Liu, F. Song, V. G. Chigrinov, H. S. Kwok, M. Hu, D. Luo, and X. W. Sun, “Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry,” Opt. Express 26(6), 7683–7692 (2018).
[Crossref] [PubMed]

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Shibaev, V. P.

U. Ruiz, P. Pagliusi, C. Provenzano, V. P. Shibaev, and G. Cipparrone, “Supramolecular chiral structures: smart polymer organization guided by 2D polarization light patterns,” Adv. Funct. Mater. 22(14), 2964–2970 (2012).
[Crossref]

Song, F.

Y. Shi, Y. J. Liu, F. Song, V. G. Chigrinov, H. S. Kwok, M. Hu, D. Luo, and X. W. Sun, “Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry,” Opt. Express 26(6), 7683–7692 (2018).
[Crossref] [PubMed]

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Srinivasarao, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

Srivastava, A. K.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Stalder, M.

Steinberg, H.

J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Control over topological insulator photocurrents with light polarization,” Nat. Nanotechnol. 7(2), 96–100 (2011).
[Crossref] [PubMed]

Stenholm, S.

S. Stenholm, “Polarization coding of quantum information,” Opt. Commun. 123(1–3), 287–296 (1996).
[Crossref]

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Sun, X. W.

Y. Shi, Y. J. Liu, F. Song, V. G. Chigrinov, H. S. Kwok, M. Hu, D. Luo, and X. W. Sun, “Photoalignment-induced two-dimensional liquid crystal polarization structure via multi-beam polarization interferometry,” Opt. Express 26(6), 7683–7692 (2018).
[Crossref] [PubMed]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from adye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

Suzuki, Y.

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Taira, Y.

M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
[Crossref]

Takada, H.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Takatsu, H.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Tan, L.

L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
[Crossref]

Tervo, J.

Turunen, J.

Vashchenko, V. V.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Verevochnikov, A.

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
[Crossref] [PubMed]

Voroshilov, P. M.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Wu, H.

Wu, S.-T.

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Wurtz, G. A.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Yang, F.

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

Yang, H. Z.

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from adye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

Yang, X.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Zayats, A. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Zhang, L.

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Zhao, C.

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Zhu, G.

Adv. Funct. Mater. (1)

U. Ruiz, P. Pagliusi, C. Provenzano, V. P. Shibaev, and G. Cipparrone, “Supramolecular chiral structures: smart polymer organization guided by 2D polarization light patterns,” Adv. Funct. Mater. 22(14), 2964–2970 (2012).
[Crossref]

Appl. Phys. Lett. (3)

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

D. Luo, X. W. Sun, H. T. Dai, Y. J. Liu, H. Z. Yang, and W. Ji, “Two-directional lasing from adye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 95(15), 151115 (2009).
[Crossref]

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

J. Appl. Phys. (3)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, and H. Ono, “Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry,” J. Appl. Phys. 121(1), 013102 (2017).
[Crossref]

H. Ono, A. Emoto, and N. Kawatsuki, “Anisotropic photonic grating formed in photo cross-linkable polymer liquid crystals,” J. Appl. Phys. 100(1), 013522 (2006).
[Crossref]

J. Photopolym. Sci. Technol. (1)

M. Hasegawa and Y. Taira, “Nematic homogeneous photo alignment by polyimide exposure to linearly polarized UV,” J. Photopolym. Sci. Technol. 8(2), 241–248 (1995).
[Crossref]

Langmuir (2)

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4(5), 1214–1216 (1988).
[Crossref]

Y. Shi, C. Zhao, J. Y.-L. Ho, V. V. Vashchenko, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, F. Song, and D. Luo, “Exotic property of azobenzenesulfonic photoalignment material based on relative humidity,” Langmuir 33(16), 3968–3974 (2017).
[Crossref] [PubMed]

Liq. Cryst. (1)

J. Li, J. Li, M. Hu, Z. Che, L. Mo, X. Yang, Z. An, and L. Zhang, “The effect of locations of triple bond at terphenyl skeleton on the properties of isothiocyanate liquid crystals,” Liq. Cryst. 44(9), 1374–1383 (2017).
[Crossref]

Liquid Crystals Today (1)

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: physics and applications,” Liquid Crystals Today 14(4), 1–15 (2005).
[Crossref]

Nat. Commun. (1)

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226–3233 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Control over topological insulator photocurrents with light polarization,” Nat. Nanotechnol. 7(2), 96–100 (2011).
[Crossref] [PubMed]

Nature (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Opt. Commun. (1)

S. Stenholm, “Polarization coding of quantum information,” Opt. Commun. 123(1–3), 287–296 (1996).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. A Gen. Phys. (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H.-S. Kwok, “Diffusion model of photoaligning in azo-dye layers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 1), 061713 (2004).
[Crossref] [PubMed]

Proc. SPIE (2)

S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
[Crossref]

M. J. Escuti and W. M. Jones, “A polarization-independent liquid crystal spatial light modulator,” Proc. SPIE 6332, 63320M (2006).
[Crossref]

Science (1)

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325(5939), 449–451 (2009).
[Crossref] [PubMed]

SID Dig. (1)

L. Tan, J. Y. Ho, and H.-S. Kwok, “22.1: Binary alignment pattern induced by single step exposure of laser beam polarization interference,” SID Dig. 43(1), 286–288 (2012).
[Crossref]

Other (6)

V. G. Chigrinov, Liquid Crystal Photonics (Nova Science Publishers Inc.: New York, 2014).

M. Campbell, N. D. Sharp, and T. M. Harrison, “Fabrication of photonic crystals for the visible spectrum by holographic lithography” Nature ‖London|404, 53–56 ‖2000|.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley Publishing, 2008).

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic, 2002).

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Simulation results of three-CPL interference. (a) Schematic diagram of the three-beam arrangement. (b) Intensity and(c) polarization distribution of the interference field, where Λ = λ / 2 sin θ . The black dashed ellipses indicate the areas where the directions of polarization ellipses have 90° sudden change in y-direction. Different colors indicate different polarization states. Blue: left-handed polarization; Red: right-handed polarization. (d) Diffraction of the ideal 2D LCPG at half-wave condition. (f) Phase of the main diffracted beams.
Fig. 2
Fig. 2 Simulation results of light interference by introducing a LP beam. (a) Schematic diagram of the beam arrangement. (b) Intensity ratio Imax/ Imin of the interference field varies with the intensity ratio of LPL and CPL.Polarization distribution of the interference field when (c) ILPL = ICPL/5, and (d) ILPL = ICPL.
Fig. 3
Fig. 3 2D LC texture under POM when ILPL = ICPL/5.(a) Simulated LC texture. (b) Simulated LC texture with director configuration (green short lines) in one period. (c) LC texture realized experimentally. The scale bar is 10 μm.
Fig. 4
Fig. 4 Diffraction of the 2D LCPG. (a) Diffraction intensity distribution based on simulation at half-wave condition. The 0th, 1st and 2nd orders are marked respectively. (b) Diffraction efficiency of the 0th, 1st and 2nd orders with different LC phase retardation. Lines are the simulation results, and the scattered dots are from experiments. (c) Diffraction of the 2D LCPG from experiments.(d) Diffraction efficiency of the 0th and 1st orders as a function of applied electric field in a 2D LCPG cell (f = 1 kHz).All given voltages are the peak to peak values. The transmittance of a uniformly aligned LC polymer or LC cell is used as 100% efficiency reference. (e) and (f) Diffraction patterns of the 2D LCPG cell at different voltages respectively.
Fig. 5
Fig. 5 Polarization selectivity of the 2D LCPG diffraction. (a-c) Simulated diffraction intensity with different polarization incidence at half-wave condition. (d-f) Experimental diffraction with different polarization incidence.(g) Photograph of a Plusiotis gloriosa under unpolarized light, which selectively reflects LCP light. (h) The scattered image of the beetle by a 2D LCPG. (i) Diffraction of the background stray light from the 2D LCPG without the beetle.
Fig. 6
Fig. 6 The 1st order diffraction phase of the 2D LCPG. (a) The diffraction phase distribution. (b) The diffraction phases δdiff with different incident polarization. The phases don’t change with the LC phase retardation. Inset: normalized δdiff of diffractions from CP and LP incidence.
Fig. 7
Fig. 7 Ellipticitymeasurements (normalized intensity vs. polarization angle) of the 1st order diffraction from the 2D LCPG. (a) and (b) The diffraction ellipticity measurements of the 2D LCPG fabricated with ILPL = ICPL/5 using different incident wavelengths λ = 532 nm and λ = 633 nm respectively. (c) and (d) The diffraction ellipticity measurements of the LCPG fabricated with different intensity ratio of ILPL/ICPL. (I) and (II) Diffractions of −1 and + 1 orders with LP (open symbols) and CP incidence (closed symbols) respectively.

Metrics