Abstract

Silicon carbide (SiC) exhibits promising material properties for nonlinear integrated optics. We report on a SiC-on-insulator platform based on crystalline 4H-SiC and demonstrate high-confinement SiC microring resonators with sub-micron waveguide cross-sectional dimensions. The Q factor of SiC microring resonators in such a sub-micron waveguide dimension is improved by a factor of six after surface roughness reduction by applying a wet oxidation process. We achieve a high Q factor (73,000) for such devices and show engineerable dispersion from normal to anomalous dispersion by controlling the waveguide cross-sectional dimension, which paves the way toward nonlinear applications in SiC microring resonators.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh-quality-factor silicon-on-insulator microring resonator

Jan Niehusmann, Andreas Vörckel, Peter Haring Bolivar, Thorsten Wahlbrink, Wolfgang Henschel, and Heinrich Kurz
Opt. Lett. 29(24) 2861-2863 (2004)

High-Q suspended optical resonators in 3C silicon carbide obtained by thermal annealing

Keith Powell, Amirhassan Shams-Ansari, Smit Desai, Mitchell Austin, Jiangdong Deng, Neil Sinclair, Marko Lončar, and Xiaoke Yi
Opt. Express 28(4) 4938-4949 (2020)

High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform

Tianren Fan, Hesam Moradinejad, Xi Wu, Ali A. Eftekhar, and Ali Adibi
Opt. Express 26(20) 25814-25826 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
    [Crossref]
  2. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
    [Crossref]
  3. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
    [Crossref]
  4. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
    [Crossref] [PubMed]
  5. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
    [Crossref]
  6. I. J. Wu and G. Y. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
    [Crossref]
  7. R. Adair, L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337 (1989).
    [Crossref]
  8. S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
    [Crossref] [PubMed]
  9. J. Cardenas, S. Miller, Y. Okawachi, S. Ramelow, A. G. Griffith, A. Farsi, A. L. Gaeta, and M. Lipson, “Parametric frequency conversion in silicon carbide waveguides,” in CLEO: 2015, (Optical Society of America, 2015), paper SF1D.7.
  10. J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
    [Crossref] [PubMed]
  11. V. Chelnokov and A. Syrkin, “High temperature electronics using SiC: actual situation and unsolved problems,” Mater. Sci. Eng. B 46, 248–253 (1997).
    [Crossref]
  12. S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
    [Crossref]
  13. C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
    [Crossref]
  14. S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
    [Crossref]
  15. A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
    [Crossref] [PubMed]
  16. P. Absil, J. Hryniewicz, B. Little, P. Cho, R. Wilson, L. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs microring resonators,” Opt. Lett. 25, 554–556 (2000).
    [Crossref]
  17. M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
    [Crossref]
  18. J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21, 16882–16887 (2013).
    [Crossref] [PubMed]
  19. F. Martini and A. Politi, “Linear integrated optics in 3C silicon carbide,” Opt. Express 25, 10735–10742 (2017).
    [Crossref] [PubMed]
  20. X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
    [Crossref]
  21. T. Fan, H. Moradinejad, X. Wu, A. A. Eftekhar, and A. Adibi, “High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform,” Opt. Express 26, 25814–25826 (2018).
    [Crossref] [PubMed]
  22. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref] [PubMed]
  23. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  24. H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
    [Crossref]
  25. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
    [Crossref] [PubMed]
  26. W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
    [Crossref] [PubMed]
  27. L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32, 1144–1145 (1996).
    [Crossref]
  28. L. Zhou, V. Audurier, P. Pirouz, and J. A. Powell, “Chemomechanical polishing of silicon carbide,” J. Electrochem. Soc. 144, L161–L163 (1997).
    [Crossref]
  29. L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett. 41, 3996–3999 (2016).
    [Crossref] [PubMed]
  30. Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor algaas-on-sapphire microring resonators,” J. Light. Technol. 37, 868–874 (2019).
    [Crossref]
  31. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
    [Crossref]
  32. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the rayleigh scattering limit in high-q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref] [PubMed]
  33. R. Gregory, T. Wetteroth, S. Wilson, O. Holland, and D. Thomas, “Effects of irradiation temperature and dose on exfoliation of H+-implanted silicon carbide,” Appl. Phys. Lett. 75, 2623–2625 (1999).
    [Crossref]
  34. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric ocscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [Crossref]
  35. T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
    [Crossref] [PubMed]
  36. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
    [Crossref] [PubMed]
  37. N. Somasiri and B. A. Rahman, “Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls,” J. Light. Technol. 21, 54–60 (2003).
    [Crossref]

2019 (1)

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor algaas-on-sapphire microring resonators,” J. Light. Technol. 37, 868–874 (2019).
[Crossref]

2018 (3)

T. Fan, H. Moradinejad, X. Wu, A. A. Eftekhar, and A. Adibi, “High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform,” Opt. Express 26, 25814–25826 (2018).
[Crossref] [PubMed]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
[Crossref]

2017 (2)

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref] [PubMed]

F. Martini and A. Politi, “Linear integrated optics in 3C silicon carbide,” Opt. Express 25, 10735–10742 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

2014 (5)

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
[Crossref] [PubMed]

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref] [PubMed]

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

2013 (3)

2011 (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

2010 (3)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
[Crossref]

2008 (1)

I. J. Wu and G. Y. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
[Crossref]

2005 (2)

2004 (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric ocscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

2003 (2)

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

N. Somasiri and B. A. Rahman, “Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls,” J. Light. Technol. 21, 54–60 (2003).
[Crossref]

2000 (2)

1999 (2)

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

R. Gregory, T. Wetteroth, S. Wilson, O. Holland, and D. Thomas, “Effects of irradiation temperature and dose on exfoliation of H+-implanted silicon carbide,” Appl. Phys. Lett. 75, 2623–2625 (1999).
[Crossref]

1997 (2)

L. Zhou, V. Audurier, P. Pirouz, and J. A. Powell, “Chemomechanical polishing of silicon carbide,” J. Electrochem. Soc. 144, L161–L163 (1997).
[Crossref]

V. Chelnokov and A. Syrkin, “High temperature electronics using SiC: actual situation and unsolved problems,” Mater. Sci. Eng. B 46, 248–253 (1997).
[Crossref]

1996 (1)

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32, 1144–1145 (1996).
[Crossref]

1989 (1)

R. Adair, L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337 (1989).
[Crossref]

Absil, P.

Adair, R.

R. Adair, L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337 (1989).
[Crossref]

Adibi, A.

Allen, S.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Amma, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Asano, T.

Audurier, V.

L. Zhou, V. Audurier, P. Pirouz, and J. A. Powell, “Chemomechanical polishing of silicon carbide,” J. Electrochem. Soc. 144, L161–L163 (1997).
[Crossref]

Biancalana, F.

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Borselli, M.

Brady, M.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Brasch, V.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref] [PubMed]

Bruel, M.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32, 1144–1145 (1996).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Cao, Q.

Cardenas, J.

Carter, C.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Castelletto, S.

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref] [PubMed]

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Chase, L.

R. Adair, L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337 (1989).
[Crossref]

Chelnokov, V.

V. Chelnokov and A. Syrkin, “High temperature electronics using SiC: actual situation and unsolved problems,” Mater. Sci. Eng. B 46, 248–253 (1997).
[Crossref]

Chen, X.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Cho, P.

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
[Crossref]

da Silva, E. P.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Di Cioccio, L.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32, 1144–1145 (1996).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
[Crossref]

Dutt, A.

Edmond, J.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Efimov, A.

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Eftekhar, A. A.

Fan, T.

Farsi, A.

J. Cardenas, S. Miller, Y. Okawachi, S. Ramelow, A. G. Griffith, A. Farsi, A. L. Gaeta, and M. Lipson, “Parametric frequency conversion in silicon carbide waveguides,” in CLEO: 2015, (Optical Society of America, 2015), paper SF1D.7.

Feng, P. X.-L.

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
[Crossref]

Fong, K. Y.

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
[Crossref] [PubMed]

Gaeta, A. L.

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
[Crossref] [PubMed]

J. Cardenas, S. Miller, Y. Okawachi, S. Ramelow, A. G. Griffith, A. Farsi, A. L. Gaeta, and M. Lipson, “Parametric frequency conversion in silicon carbide waveguides,” in CLEO: 2015, (Optical Society of America, 2015), paper SF1D.7.

Gali, A.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Galili, M.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Geiselmann, M.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Glass, R.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Gorodetsky, M.

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref] [PubMed]

Gorodetsky, M. L.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Gregory, R.

R. Gregory, T. Wetteroth, S. Wilson, O. Holland, and D. Thomas, “Effects of irradiation temperature and dose on exfoliation of H+-implanted silicon carbide,” Appl. Phys. Lett. 75, 2623–2625 (1999).
[Crossref]

Griffith, A. G.

J. Cardenas, S. Miller, Y. Okawachi, S. Ramelow, A. G. Griffith, A. Farsi, A. L. Gaeta, and M. Lipson, “Parametric frequency conversion in silicon carbide waveguides,” in CLEO: 2015, (Optical Society of America, 2015), paper SF1D.7.

Guan, P.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Guha, B.

Guo, G. Y.

I. J. Wu and G. Y. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Henshall, D.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Herr, T.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref] [PubMed]

Ho, P.-T.

Holland, O.

R. Gregory, T. Wetteroth, S. Wilson, O. Holland, and D. Thomas, “Effects of irradiation temperature and dose on exfoliation of H+-implanted silicon carbide,” Appl. Phys. Lett. 75, 2623–2625 (1999).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Hryniewicz, J.

Hu, H.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Hvam, J. M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Ingerslev, K.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Irvine, K.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Ivády, V.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Jaussaud, C.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32, 1144–1145 (1996).
[Crossref]

Jeon, S.

Johnson, B.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Johnson, B. C.

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref] [PubMed]

Johnson, T. J.

Joneckis, L.

Jost, J.

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref] [PubMed]

Jung, H.

Kippenberg, T.

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref] [PubMed]

Kippenberg, T. J.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric ocscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

Knight, J. C.

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Kong, H.-S.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Kordina, O.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Lau, R. K. W.

Le Tiec, Y.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32, 1144–1145 (1996).
[Crossref]

Lee, J. Y.

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

Letertre, F.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32, 1144–1145 (1996).
[Crossref]

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Lihachev, G.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref] [PubMed]

Lin, Q.

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

Lipson, M.

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref] [PubMed]

J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21, 16882–16887 (2013).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

J. Cardenas, S. Miller, Y. Okawachi, S. Ramelow, A. G. Griffith, A. Farsi, A. L. Gaeta, and M. Lipson, “Parametric frequency conversion in silicon carbide waveguides,” in CLEO: 2015, (Optical Society of America, 2015), paper SF1D.7.

Little, B.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
[Crossref]

P. Absil, J. Hryniewicz, B. Little, P. Cho, R. Wilson, L. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs microring resonators,” Opt. Lett. 25, 554–556 (2000).
[Crossref]

Liu, C.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Liu, L.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Liu, Y.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Lohrmann, A.

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref] [PubMed]

Loncar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Lu, X.

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

Martini, F.

McCallum, J. C.

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref] [PubMed]

Miller, S.

J. Cardenas, S. Miller, Y. Okawachi, S. Ramelow, A. G. Griffith, A. Farsi, A. L. Gaeta, and M. Lipson, “Parametric frequency conversion in silicon carbide waveguides,” in CLEO: 2015, (Optical Society of America, 2015), paper SF1D.7.

Mirgorodskiy, I.

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref] [PubMed]

Miyamoto, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Mizuno, T.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Mo, St G

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Moradinejad, H.

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
[Crossref]

Morioka, T.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Moss, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
[Crossref]

Noda, S.

Nooruzzaman, M.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Ohshima, T.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Okawachi, Y.

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref] [PubMed]

J. Cardenas, S. Miller, Y. Okawachi, S. Ramelow, A. G. Griffith, A. Farsi, A. L. Gaeta, and M. Lipson, “Parametric frequency conversion in silicon carbide waveguides,” in CLEO: 2015, (Optical Society of America, 2015), paper SF1D.7.

Omenetto, F.

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Ottaviano, L.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
[Crossref]

L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett. 41, 3996–3999 (2016).
[Crossref] [PubMed]

Ou, H.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Oxenløwe, L. K.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
[Crossref]

Painter, O.

Palmour, J.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Payne, S. A.

R. Adair, L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337 (1989).
[Crossref]

Pfeiffer, M. H.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Phare, C. T.

Pirouz, P.

L. Zhou, V. Audurier, P. Pirouz, and J. A. Powell, “Chemomechanical polishing of silicon carbide,” J. Electrochem. Soc. 144, L161–L163 (1997).
[Crossref]

Poitras, C. B.

Politi, A.

Powell, J. A.

L. Zhou, V. Audurier, P. Pirouz, and J. A. Powell, “Chemomechanical polishing of silicon carbide,” J. Electrochem. Soc. 144, L161–L163 (1997).
[Crossref]

Pu, M.

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor algaas-on-sapphire microring resonators,” J. Light. Technol. 37, 868–874 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
[Crossref]

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
[Crossref]

L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett. 41, 3996–3999 (2016).
[Crossref] [PubMed]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Rahman, B. A.

N. Somasiri and B. A. Rahman, “Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls,” J. Light. Technol. 21, 54–60 (2003).
[Crossref]

Ramelow, S.

J. Cardenas, S. Miller, Y. Okawachi, S. Ramelow, A. G. Griffith, A. Farsi, A. L. Gaeta, and M. Lipson, “Parametric frequency conversion in silicon carbide waveguides,” in CLEO: 2015, (Optical Society of America, 2015), paper SF1D.7.

Ranka, J. K.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
[Crossref]

Reeves, W.

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Ros, F. Da

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Russell, P. S. J.

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Sahoo, H. K.

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor algaas-on-sapphire microring resonators,” J. Light. Technol. 37, 868–874 (2019).
[Crossref]

Sasaki, Y.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Semenova, E.

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor algaas-on-sapphire microring resonators,” J. Light. Technol. 37, 868–874 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
[Crossref]

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
[Crossref]

L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett. 41, 3996–3999 (2016).
[Crossref] [PubMed]

Shah, S. Y.

Singh, R.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Skryabin, D. V.

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Somasiri, N.

N. Somasiri and B. A. Rahman, “Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls,” J. Light. Technol. 21, 54–60 (2003).
[Crossref]

Song, B.-S.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric ocscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

Stavrias, N.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Stentz, A. J.

Syrkin, A.

V. Chelnokov and A. Syrkin, “High temperature electronics using SiC: actual situation and unsolved problems,” Mater. Sci. Eng. B 46, 248–253 (1997).
[Crossref]

Tanaka, Y.

Tang, H. X.

Taylor, A.

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Thomas, D.

R. Gregory, T. Wetteroth, S. Wilson, O. Holland, and D. Thomas, “Effects of irradiation temperature and dose on exfoliation of H+-implanted silicon carbide,” Appl. Phys. Lett. 75, 2623–2625 (1999).
[Crossref]

Trebino, R.

Tsvetkov, V.

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Umeda, T.

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Upham, J.

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric ocscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Vukovic, D.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
[Crossref]

Wang, G.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Wang, S.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Wei, Z.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Wetteroth, T.

R. Gregory, T. Wetteroth, S. Wilson, O. Holland, and D. Thomas, “Effects of irradiation temperature and dose on exfoliation of H+-implanted silicon carbide,” Appl. Phys. Lett. 75, 2623–2625 (1999).
[Crossref]

Wilson, R.

Wilson, S.

R. Gregory, T. Wetteroth, S. Wilson, O. Holland, and D. Thomas, “Effects of irradiation temperature and dose on exfoliation of H+-implanted silicon carbide,” Appl. Phys. Lett. 75, 2623–2625 (1999).
[Crossref]

Windeler, R. S.

Wu, I. J.

I. J. Wu and G. Y. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
[Crossref]

Wu, X.

Xiong, C.

Xu, C.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Xuan, H.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Yamada, S.

Ye, F.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Yu, M.

Yvind, K.

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor algaas-on-sapphire microring resonators,” J. Light. Technol. 37, 868–874 (2019).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
[Crossref]

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
[Crossref]

L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett. 41, 3996–3999 (2016).
[Crossref] [PubMed]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Zhan, M.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Zhang, M.

Zhang, W.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Zhang, X.

Zheng, Y.

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor algaas-on-sapphire microring resonators,” J. Light. Technol. 37, 868–874 (2019).
[Crossref]

Zhou, L.

L. Zhou, V. Audurier, P. Pirouz, and J. A. Powell, “Chemomechanical polishing of silicon carbide,” J. Electrochem. Soc. 144, L161–L163 (1997).
[Crossref]

Zibar, D.

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Appl. Phys. Lett. (2)

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

R. Gregory, T. Wetteroth, S. Wilson, O. Holland, and D. Thomas, “Effects of irradiation temperature and dose on exfoliation of H+-implanted silicon carbide,” Appl. Phys. Lett. 75, 2623–2625 (1999).
[Crossref]

Electron. Lett. (1)

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32, 1144–1145 (1996).
[Crossref]

J. Electrochem. Soc. (1)

L. Zhou, V. Audurier, P. Pirouz, and J. A. Powell, “Chemomechanical polishing of silicon carbide,” J. Electrochem. Soc. 144, L161–L163 (1997).
[Crossref]

J. Light. Technol. (2)

N. Somasiri and B. A. Rahman, “Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls,” J. Light. Technol. 21, 54–60 (2003).
[Crossref]

Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor algaas-on-sapphire microring resonators,” J. Light. Technol. 37, 868–874 (2019).
[Crossref]

Laser Photon. Rev. (2)

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photon. Rev. 12, 1800111 (2018).
[Crossref]

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Mater. Sci. Eng. B (2)

C. Carter, V. Tsvetkov, R. Glass, D. Henshall, M. Brady, St G Mo, O. Kordina, K. Irvine, J. Edmond, H.-S. Kong, R. Singh, S. Allen, and J. Palmour, “Progress in SiC: from material growth to commercial device development,” Mater. Sci. Eng. B 61, 1–8 (1999).
[Crossref]

V. Chelnokov and A. Syrkin, “High temperature electronics using SiC: actual situation and unsolved problems,” Mater. Sci. Eng. B 46, 248–253 (1997).
[Crossref]

Nat. Mater. (1)

S. Castelletto, B. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).
[Crossref]

Nat. Photonics (4)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41 (2010).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

H. Hu, F. Da Ros, M. Pu, F. Ye, K. Ingerslev, E. P. da Silva, M. Nooruzzaman, Y. Amma, Y. Sasaki, T. Mizuno, Y. Miyamoto, L. Ottaviano, E. Semenova, P. Guan, D. Zibar, M. Galili, K. Yvind, T. Morioka, and L. K. Oxenløwe, “Single-source chip-based frequency comb enabling extreme parallel data transmission,” Nat. Photonics 12, 469–473 (2018).
[Crossref]

Nature (1)

W. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. Omenetto, A. Efimov, and A. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Optica (1)

Phys. Rev. B (2)

I. J. Wu and G. Y. Guo, “Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes,” Phys. Rev. B 78, 035447 (2008).
[Crossref]

R. Adair, L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337 (1989).
[Crossref]

Phys. Rev. Lett. (2)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric ocscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref]

T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev, M. Gorodetsky, and T. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

A. Lohrmann, B. C. Johnson, J. C. McCallum, and S. Castelletto, “A review on single photon sources in silicon carbide,” Rep. Prog. Phys. 80, 034502 (2017).
[Crossref] [PubMed]

Science (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Other (1)

J. Cardenas, S. Miller, Y. Okawachi, S. Ramelow, A. G. Griffith, A. Farsi, A. L. Gaeta, and M. Lipson, “Parametric frequency conversion in silicon carbide waveguides,” in CLEO: 2015, (Optical Society of America, 2015), paper SF1D.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 AFM pictures of the SiC top surface of three device samples (a) Sample 1: only dry-etching was applied; (b) Sample 2: dry-etching and wet oxidation were applied; (c) Sample 3: wet oxidation was applied both before and after device patterning.
Fig. 2
Fig. 2 SEM pictures of the fabricated microring resonator with a 16.5-μm radius (a), its coupling region (b) and cross-section of a SiC waveguide (cross-sectional dimension: 750 × 500 nm2) (c), where the SiO2 upcladding has been removed.
Fig. 3
Fig. 3 Measured (normalized) transmission spectra for a 16.5-μm radius microring resonator for the fundamental TE mode (a) and TM mode (e). (b, c, d) and (f, g, h) are resonance fittings for fundamental TE and TM modes of microring resonators fabricated under different processes corresponding to (a, b, c) in Fig. 1. Blue circles are data points and red lines are Lorentzian fitting of those resonances. The insets in (a) and (e) are simulated mode profile of the fundamental TE mode and TM mode, respectively.
Fig. 4
Fig. 4 Schematic view of the dispersion measurement setup for SiCOI microring resonators. The experimental setup consists of the continuous wave generated by an external cavity laser (ECL) coupled to a free space cavity (FSC) and a SiCOI photonic chip through a 1:10 splitter. A polarization controller (PC) is used to adjust the polarization of the output from the lensed fiber. The output of the FSC and the chip are detected by two photodiodes (PDs) which are connected to an oscilloscope.
Fig. 5
Fig. 5 (a) Calculated GVD of the fundamental TE (solid) and TM mode (dashed) for different waveguide widths. Measured GVD values at 1580 nm for TE (circles) and TM modes (triangles). Measured (colored dots) and fitted (grey curves) are Dint of TE modes for waveguide widths of (b) 350 nm, (c) 750 nm and (d) 1065 nm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω μ = ω 0 + μ D 1 + μ 2 D 2 / 2 ! + μ 3 D 3 / 3 ! +
D int ( μ ) = ω μ ( ω 0 + D 1 μ ) = μ 2 D 2 / 2 ! + μ 3 D 3 / 3 ! +

Metrics