Abstract

Injecting a weak narrow-linewidth CW trigger to control the picosecond pulse pumped supercontinuum (SC) generation in a highly nonlinear dispersion shifted fiber (HNL-DSF), the Raman soliton at 2 μm is experimentally observed. We demonstrate that the cascaded four-wave mixing (FWM) caused by the weak CW trigger accelerates soliton fission and collision, and the large red-shift by the Raman effect in fibers induces obvious Raman soliton occurring in the long wavelength range of SC. A reduced effect on spectral modification on the SC spectrum at higher pump powers is also observed in the experiment. Simulations of the spectral evolution and spectrogram are carried out to verify the experimental observation. Both experiment and simulation results show the SC characteristics in the mid-infrared region can be greatly improved by the triggering effect.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation

Qian Li, Feng Li, Kenneth K. Y. Wong, Alan Pak Tao Lau, Kevin K. Tsia, and P. K. A. Wai
Opt. Express 19(15) 13757-13769 (2011)

Effect of a weak CW trigger on optical rogue waves in the femtosecond supercontinuum generation

Qian Li and Xiaoqi Duan
Opt. Express 23(12) 16364-16371 (2015)

Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation

Michael H. Frosz, Ole Bang, and Anders Bjarklev
Opt. Express 14(20) 9391-9407 (2006)

References

  • View by:
  • |
  • |
  • |

  1. C. K. Hitzenberger, “Optical coherence tomography in Optics Express,” Opt. Express 26(18), 24240–24259 (2018).
    [Crossref] [PubMed]
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  3. E. S. Lamb, D. R. Carlson, D. D. Hickstein, J. R. Stone, S. A. Diddams, and S. B. Papp, “Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum,” Phys. Rev. Appl. 9(2), 024030 (2018).
    [Crossref]
  4. D. M. Brown, K. Shi, Z. Liu, and C. R. Philbrick, “Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents,” Opt. Express 16(12), 8457–8471 (2008).
    [Crossref] [PubMed]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  6. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  7. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687–693 (2005).
    [Crossref]
  8. Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301, 29–33 (2013).
    [Crossref]
  9. H. Kano and H. Hamaguchi, “Ultrabroadband (>2500cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
    [Crossref]
  10. X. Liang and L. Fu, “Enhanced self-phase modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800108 (2014).
  11. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
    [Crossref] [PubMed]
  12. D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
    [Crossref] [PubMed]
  13. G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
    [Crossref]
  14. G. Genty and J. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
    [Crossref]
  15. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29(10), 2875–2885 (2012).
    [Crossref]
  16. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “The role of phase coherence in seeded supercontinuum generation,” Opt. Express 20(20), 22886–22894 (2012).
    [Crossref] [PubMed]
  17. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
    [Crossref] [PubMed]
  18. Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
    [Crossref] [PubMed]
  19. Q. Li and X. Duan, “Effect of a weak CW trigger on optical rogue waves in the femtosecond supercontinuum generation,” Opt. Express 23(12), 16364–16371 (2015).
    [Crossref] [PubMed]
  20. D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
    [Crossref] [PubMed]
  21. X. M. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, and K. K. Y. Wong, “Effect of the CW-seed’s linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron. 20(5), 7500207 (2013).
  22. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Lett. 23(3), 992–2001 (2015).
  23. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24(6), 2311–2317 (2006).
    [Crossref]
  24. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51(15), 2794–2807 (2012).
    [Crossref] [PubMed]
  25. http://www.yofc.com/view/1648.html
  26. F. X. Kartner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B 11(7), 1267–1276 (1994).
    [Crossref]
  27. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  28. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref] [PubMed]

2018 (2)

E. S. Lamb, D. R. Carlson, D. D. Hickstein, J. R. Stone, S. A. Diddams, and S. B. Papp, “Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum,” Phys. Rev. Appl. 9(2), 024030 (2018).
[Crossref]

C. K. Hitzenberger, “Optical coherence tomography in Optics Express,” Opt. Express 26(18), 24240–24259 (2018).
[Crossref] [PubMed]

2015 (2)

2014 (1)

X. Liang and L. Fu, “Enhanced self-phase modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800108 (2014).

2013 (3)

Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301, 29–33 (2013).
[Crossref]

X. M. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, and K. K. Y. Wong, “Effect of the CW-seed’s linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron. 20(5), 7500207 (2013).

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (1)

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

2009 (2)

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

G. Genty and J. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

2008 (2)

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. M. Brown, K. Shi, Z. Liu, and C. R. Philbrick, “Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents,” Opt. Express 16(12), 8457–8471 (2008).
[Crossref] [PubMed]

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687–693 (2005).
[Crossref]

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

2002 (2)

1994 (1)

Abe, M.

Bang, O.

Brown, D. M.

Carlson, D. R.

E. S. Lamb, D. R. Carlson, D. D. Hickstein, J. R. Stone, S. A. Diddams, and S. B. Papp, “Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum,” Phys. Rev. Appl. 9(2), 024030 (2018).
[Crossref]

Chan, A.

Cheung, C. S.

Cheung, K. K. Y.

Clarkson, W. A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref] [PubMed]

Combes, Y.

Daniel, J. M. O.

Dias, F.

Diddams, S. A.

E. S. Lamb, D. R. Carlson, D. D. Hickstein, J. R. Stone, S. A. Diddams, and S. B. Papp, “Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum,” Phys. Rev. Appl. 9(2), 024030 (2018).
[Crossref]

Dougherty, D. J.

Duan, X.

Dudley, J.

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

G. Genty and J. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

Dudley, J. M.

Eggleton, B.

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

Freeman, M. J.

Fu, L.

X. Liang and L. Fu, “Enhanced self-phase modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800108 (2014).

Genty, G.

D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, and J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013).
[Crossref] [PubMed]

G. Genty and J. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Godin, T.

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Haus, H. A.

Hickstein, D. D.

E. S. Lamb, D. R. Carlson, D. D. Hickstein, J. R. Stone, S. A. Diddams, and S. B. Papp, “Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum,” Phys. Rev. Appl. 9(2), 024030 (2018).
[Crossref]

Hitzenberger, C. K.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Ippen, E. P.

Islam, M. N.

Jalali, B.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Kano, H.

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Kartner, F. X.

Keller, U.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Kumar, M.

Kutz, J. N.

Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301, 29–33 (2013).
[Crossref]

Lamb, E. S.

E. S. Lamb, D. R. Carlson, D. D. Hickstein, J. R. Stone, S. A. Diddams, and S. B. Papp, “Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum,” Phys. Rev. Appl. 9(2), 024030 (2018).
[Crossref]

Larger, L.

Larsen, C.

Lau, A. P. T.

Li, F.

Li, Q.

Liang, H.

Liang, X.

X. Liang and L. Fu, “Enhanced self-phase modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800108 (2014).

Liu, Z.

Manzur, T.

Masuda, H.

Merolla, J. M.

Møller, U.

Morioka, T.

Moselund, P. M.

Neelakandan, M.

Nguyen, D. M.

Ohara, T.

Papp, S. B.

E. S. Lamb, D. R. Carlson, D. D. Hickstein, J. R. Stone, S. A. Diddams, and S. B. Papp, “Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum,” Phys. Rev. Appl. 9(2), 024030 (2018).
[Crossref]

Paschotta, R.

Philbrick, C. R.

Ropers, C.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Schenkel, B.

Shi, K.

Solli, D. R.

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Sørensen, S. T.

Stone, J. R.

E. S. Lamb, D. R. Carlson, D. D. Hickstein, J. R. Stone, S. A. Diddams, and S. B. Papp, “Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum,” Phys. Rev. Appl. 9(2), 024030 (2018).
[Crossref]

Sylvestre, T.

Takahashi, H.

Takara, H.

Terry, F. L.

Thomsen, C. L.

Toenger, S.

Tokurakawa, M.

Tsia, K. K.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Wai, P. K. A.

Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301, 29–33 (2013).
[Crossref]

Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011).
[Crossref] [PubMed]

Wei, X. M.

X. M. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, and K. K. Y. Wong, “Effect of the CW-seed’s linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron. 20(5), 7500207 (2013).

Wetzel, B.

Wong, K. K. Y.

Xu, S.

X. M. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, and K. K. Y. Wong, “Effect of the CW-seed’s linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron. 20(5), 7500207 (2013).

Yamamoto, T.

Yang, Z.

X. M. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, and K. K. Y. Wong, “Effect of the CW-seed’s linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron. 20(5), 7500207 (2013).

Zhang, C.

X. M. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, and K. K. Y. Wong, “Effect of the CW-seed’s linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron. 20(5), 7500207 (2013).

K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011).
[Crossref] [PubMed]

Zhou, Y.

Appl. Opt. (1)

Appl. Phys. B (1)

G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[Crossref]

Appl. Phys. Lett. (1)

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Genty and J. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45(11), 1331–1335 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Liang and L. Fu, “Enhanced self-phase modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 6800108 (2014).

X. M. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, and K. K. Y. Wong, “Effect of the CW-seed’s linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron. 20(5), 7500207 (2013).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

Nature (2)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

Q. Li, J. N. Kutz, and P. K. A. Wai, “High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile,” Opt. Commun. 301, 29–33 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Appl. (1)

E. S. Lamb, D. R. Carlson, D. D. Hickstein, J. R. Stone, S. A. Diddams, and S. B. Papp, “Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum,” Phys. Rev. Appl. 9(2), 024030 (2018).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[Crossref] [PubMed]

D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105(23), 233902 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (2)

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

http://www.yofc.com/view/1648.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of SC generation triggered by a weak CW laser.
Fig. 2
Fig. 2 The output spectra of SC in untriggered and CW triggered at 1544 nm: (a) the output spectral on logarithmic scale; (b) the output average spectral power density linear scale in above 1800 nm region.
Fig. 3
Fig. 3 The MI and Raman gain curves of HNL-DSF under 38 W pump power, and output spectra of untriggered and triggered SC are shown in this region.
Fig. 4
Fig. 4 (a) Output SC spectra triggered by 1544 nm CW with different powers: no trigger (black curve), 4.1 mW (red curve), 12.1 mW (blue curve) and 24.3 mW (purple curve); (b)The measured output spectra of untriggered and triggered by six different CW wavelengths.
Fig. 5
Fig. 5 The output spectra in different pump powers: (a)-(c) the output spectra at pump power of 32 W, 44 W and 56 W; (d) the induced spectral bandwidth broadening at −30 dB versus the pump power, and the red solid line is a fitting curve.
Fig. 6
Fig. 6 (a) The output spectra of an ASE source and a narrow-linewidth CW; (b) The output spectra of SC untriggered and triggered by two different CW triggers.
Fig. 7
Fig. 7 The single-shot simulations of spectral evolution of SC in untriggered and triggered SC at 1544 nm, 1535 nm, 1548 nm, top rows show the averaged output spectra (red curve) and the experimental results (blue curve).
Fig. 8
Fig. 8 The spectrogram of SC in untriggered and triggered at 1544 nm, top rows show the temporal pulse (brown curve) and right rows show the output spectrum (red curve).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g MI ( Ω )=Im( Δ k o ± Δ k e +2 γ 0 P 0 R ˜ ( Ω )Δ k e ) Δ k o = m=1 β 2m+1 ( 2m+1 )! Ω 2m+1 , Δ k e = m=1 β 2m 2m! Ω 2m
g R ( Ω )= 2 ω p c n 2 f R Im( h R ( Ω ) )
A(z,t) z + α 2 A(z,t)+ i β 2 2 2 A(z,t) t 2 β 3 6 3 A(z,t) t 3 =iγ(1+i τ shock t )A(z,t) + R( t ' )× | A(z,t t ' ) | 2 d t ' ,

Metrics