Abstract

This paper presents an electrowetting-actuated multifunctional optofluidic (EAMO) lens to improve the quality of computer-generated holography (CGH). A unique structure of the EAMO lens based on electrowetting effect is designed. When the electrodes of the EAMO lens are applied on different voltages, the functions of focal length change and aperture change can be achieved. Then the proposed lens is used in the reproduction system of the CGH due to the multiple functions. The experimental results show that the CGH with zoom function can be realized and undesirable light can be eliminated due to the unique structure of the EAMO lens. The focal length changes can be varied from 11.6 cm to + ∞ and -∞ to −150.6 cm. The aperture size changes can be varied from 10.1 cm to 6.7 cm. By using the proposed EAMO lens, high-quality CGH can be realized without moving the position of any components mechanically, while the setup of the CGH is greatly simplified.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Displaceable and focus-tunable electrowetting optofluidic lens

Lei Li, Jin-Hui Wang, Qiong-Hua Wang, and Shin-Tson Wu
Opt. Express 26(20) 25839-25848 (2018)

Holographic zoom micro-projection system based on three spatial light modulators

Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 27(6) 8048-8058 (2019)

Holographic display system with adjustable viewing angle based on multi-focus optofluidic lens

Chao Liu, Di Wang, and Qiong-Hua Wang
Opt. Express 27(13) 18210-18221 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref] [PubMed]
  2. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
    [Crossref] [PubMed]
  3. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref] [PubMed]
  4. W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” IEEE J. Disp.Technol. 12(12), 1724–1731 (2016).
    [Crossref]
  5. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref] [PubMed]
  6. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
    [Crossref]
  7. A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
    [Crossref]
  8. R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
    [Crossref]
  9. C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
    [Crossref] [PubMed]
  10. S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
    [Crossref]
  11. L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
    [Crossref]
  12. H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref] [PubMed]
  13. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [Crossref] [PubMed]
  14. C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).
  15. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref] [PubMed]
  16. M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
    [Crossref]
  17. D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
    [Crossref] [PubMed]
  18. L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
    [Crossref] [PubMed]
  19. N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
    [Crossref] [PubMed]
  20. M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
    [Crossref]
  21. I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
    [Crossref]
  22. J. H. Chang, K. D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Variable aperture controlled by microelectrofluidic iris,” Opt. Lett. 38(15), 2919–2922 (2013).
    [Crossref] [PubMed]
  23. M. Xu, H. Ren, and Y. H. Lin, “Electrically actuated liquid iris,” Opt. Lett. 40(5), 831–834 (2015).
    [Crossref] [PubMed]
  24. D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
    [Crossref]
  25. D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
    [Crossref] [PubMed]
  26. G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494–549 (1875).
  27. F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  28. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [Crossref]
  29. H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches,” Opt. Express 24(11), 12240–12253 (2016).
    [Crossref] [PubMed]
  30. H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
    [Crossref]
  31. S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
    [Crossref]

2018 (6)

R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]

C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref] [PubMed]

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]

2017 (2)

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
[Crossref] [PubMed]

2016 (7)

2015 (3)

M. Xu, H. Ren, and Y. H. Lin, “Electrically actuated liquid iris,” Opt. Lett. 40(5), 831–834 (2015).
[Crossref] [PubMed]

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
[Crossref]

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]

2014 (2)

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (2)

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]

M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]

2009 (1)

2006 (2)

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

2005 (1)

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

1875 (1)

G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494–549 (1875).

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Anderson, P. A.

Asquini, R.

R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]

Baret, J. C.

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Beccherelli, R.

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Bernet, S.

Brender, T.

Cavalli, A.

Chang, C. M.

C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref] [PubMed]

Chang, J. H.

Chang, K. H.

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

Chen, H. P.

H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]

Chen, M. S.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Chiccoli, C.

R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]

Chien, L. C.

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

Chigrinov, V. G.

C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref] [PubMed]

Chlipala, M.

Choi, M.

Chu, D.

Chung, S. K.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Civita, L.

R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]

Clement, C.

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

Collings, N.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

d’Alessandro, A.

R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]

Dhindsa, M.

M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Fox, D.

Furue, H.

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

Gilardi, G.

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]

Han, C.

L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]

Heikenfeld, J.

M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Hsu, Z. N.

H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]

Hu, W.

L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]

Huang, Y.

H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]

Jesacher, A.

Jia, J.

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Jung, K. D.

Kim, W.

Kobayashi, S.

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

Kopp, D.

Kozacki, T.

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” IEEE J. Disp.Technol. 12(12), 1724–1731 (2016).
[Crossref]

Kuiper, S.

M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Kujawinska, M.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” IEEE J. Disp.Technol. 12(12), 1724–1731 (2016).
[Crossref]

Kurita, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]

Lee, E.

Lee, S.

Li, L.

Li, S. J.

S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]

Li, X.

Lima, N. C.

Lin, H. C.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Lin, Y. H.

C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref] [PubMed]

M. Xu, H. Ren, and Y. H. Lin, “Electrically actuated liquid iris,” Opt. Lett. 40(5), 831–834 (2015).
[Crossref] [PubMed]

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Lippmann, G.

G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494–549 (1875).

Liu, C.

Liu, J.

Ma, H.

L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]

Martini, L.

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]

Mishina, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]

Mishra, K.

Mugele, F.

Oh, S. H.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Oi, R.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]

Pan, Y.

Park, I. S.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Park, S. Y.

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

Park, Y.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Pasini, P.

R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]

Ren, H.

Ritsch-Marte, M.

Robertson, B.

Senoh, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]

Shen, C.

Shiraishi, Y.

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

Srivastava, A. K.

C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref] [PubMed]

Takatsu, H.

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

Takeishi, K.

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

Thio, S.

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

Toshima, N.

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

Wang, C.

S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]

Wang, D.

Wang, Q. H.

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref] [PubMed]

S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]

S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]

D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
[Crossref]

Wang, Y.

Wilkinson, P.

Wu, B.

Wu, S. T.

H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

Xie, J.

Xu, M.

Yamamoto, K.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]

Yang, H.

L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches,” Opt. Express 24(11), 12240–12253 (2016).
[Crossref] [PubMed]

Yang, J.

H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]

Yang, J. W.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Yen, H. T.

H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]

Zaperty, W.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” IEEE J. Disp.Technol. 12(12), 1724–1731 (2016).
[Crossref]

Zappe, H.

Zhang, H.

Zhang, L.

L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]

Zhang, S.

L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]

Zhou, L.

L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]

Zhou, X.

Ann. Chim. Phys. (1)

G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494–549 (1875).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Appl. Sci. (Basel) (1)

H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Disp.Technol. (3)

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” IEEE J. Disp.Technol. 12(12), 1724–1731 (2016).
[Crossref]

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]

IEEE Photonic. Tech. L. (1)

A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]

J. Mol. Liq. (1)

S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]

J. Phys. Condens. Matter (1)

F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

J. Soc. Inf. Disp. (1)

S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]

Liq. Cryst. (1)

R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Opt. Express (8)

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref] [PubMed]

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref] [PubMed]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches,” Opt. Express 24(11), 12240–12253 (2016).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

RSC Advances (1)

L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]

Sci. Rep. (1)

C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Sensor. Actuat. Biol. Chem. (1)

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

Thin Solid Films (1)

M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Mechanism of the proposed EAMO lens. (a) Structure of the EAMO lens. (b) Explosive view of the EAMO lens. (c) State when the liquid iris is applied voltage on the sidewall electrode and the liquid lens is without voltage. (d) State when the liquid iris is applied voltage on the center electrode and the liquid lens is without voltage. (e) State when the liquid iris is applied voltage on the sidewall electrode and the liquid lens is applied voltage.
Fig. 2
Fig. 2 Actuation mechanism of the EAMO lens. (a) Contact angle changes of the liquid lens during two states: with applied voltage and without applied voltage. (b) Contact angle changes of the liquid iris during two states: with applied voltage and without applied voltage.
Fig. 3
Fig. 3 Structure of the holographic system.
Fig. 4
Fig. 4 Principle of the holographic system. (a) Zoom modulates of the holographic system. (b) State when the size of the reconstructed image is D1. (c) State when the size of the reconstructed image is D2.
Fig. 5
Fig. 5 Principle of the LCoS.
Fig. 6
Fig. 6 Aperture changes of the liquid iris when voltages are applied. (a) U = 0V. (b) U = 45V. (c) U = 50V. (d) U = 55V. (e) U = 60V. (f) U = 65V. (g) U = 70V. (h) U = 75V.
Fig. 7
Fig. 7 Focal length changes of the liquid lens when voltages are applied. (a) U = 0V. (b) U = 40V. (c) U = 50V. (d) U = 60V. (e) U = 70V. (f) U = 80V.
Fig. 8
Fig. 8 Focal length changes when different voltages are applied.
Fig. 9
Fig. 9 Switch time of the liquid iris. (a) Times when the aperture size changes from 10.1 mm to 6.7 mm when the liquid iris is applied voltage. (a) Times when the aperture size changes from 6.7 mm to 10.1 mm when the liquid iris is without voltage.
Fig. 10
Fig. 10 Variable focus of the liquid lens during actuating time (a) and relaxing time (b).
Fig. 11
Fig. 11 Process of the holograms. (a) Original object. (b) Green color scene. (c) Hologram of the green color scene.
Fig. 12
Fig. 12 Reconstructed results of the monochrome scenes. (a) Traditional reconstructed image. (b) Reconstructed image when only liquid lens is actuated. (c) Reconstructed image when the EAMO lens is actuated.
Fig. 13
Fig. 13 Results of the holographic zoom system. (a) Zoom state-1. (b) Zoom state-2. (c) Zoom state-3. (d) Zoom state-4.

Tables (2)

Tables Icon

Table 1 Characteristics of the liquids filled in the EAMO

Tables Icon

Table 2 Measured aperture sizes and current of the liquid iris

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

cos θ 1 =cos θ 0 + U 2 ε 2D γ 12 ,
γ D2 + γ 12 cos θ 0 = γ 1D ,
F+ γ D2 = γ 12 cos θ 1 + γ 1D ,
1 d 2 + 1 d 1 f 1 = 1 f 2 ,
S= f 1 λ d 2 p( f 1 d 1 ) ,
Δφ= 2π λ ( n e n o )d,

Metrics