R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]
C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref]
[PubMed]
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]
I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]
H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]
C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).
D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
[Crossref]
[PubMed]
L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]
[PubMed]
N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref]
[PubMed]
T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref]
[PubMed]
W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” IEEE J. Disp.Technol. 12(12), 1724–1731 (2016).
[Crossref]
S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]
H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches,” Opt. Express 24(11), 12240–12253 (2016).
[Crossref]
[PubMed]
D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref]
[PubMed]
M. Xu, H. Ren, and Y. H. Lin, “Electrically actuated liquid iris,” Opt. Lett. 40(5), 831–834 (2015).
[Crossref]
[PubMed]
D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
[Crossref]
A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]
M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]
A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref]
[PubMed]
Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref]
[PubMed]
J. H. Chang, K. D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Variable aperture controlled by microelectrofluidic iris,” Opt. Lett. 38(15), 2919–2922 (2013).
[Crossref]
[PubMed]
T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]
M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]
H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref]
[PubMed]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]
G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494–549 (1875).
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]
A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]
F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]
A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref]
[PubMed]
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]
M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]
H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref]
[PubMed]
R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref]
[PubMed]
I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]
R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]
C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).
M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]
H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref]
[PubMed]
R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]
A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]
M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]
M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]
H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]
H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]
W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” IEEE J. Disp.Technol. 12(12), 1724–1731 (2016).
[Crossref]
T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]
D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref]
[PubMed]
L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]
[PubMed]
S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]
M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]
H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref]
[PubMed]
C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref]
[PubMed]
M. Xu, H. Ren, and Y. H. Lin, “Electrically actuated liquid iris,” Opt. Lett. 40(5), 831–834 (2015).
[Crossref]
[PubMed]
M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]
H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref]
[PubMed]
G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494–549 (1875).
L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]
[PubMed]
D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref]
[PubMed]
D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
[Crossref]
Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref]
[PubMed]
H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref]
[PubMed]
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]
A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]
T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]
I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]
T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]
I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]
C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).
I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]
R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]
M. Xu, H. Ren, and Y. H. Lin, “Electrically actuated liquid iris,” Opt. Lett. 40(5), 831–834 (2015).
[Crossref]
[PubMed]
H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref]
[PubMed]
T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref]
[PubMed]
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]
S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]
D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref]
[PubMed]
L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]
[PubMed]
D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
[Crossref]
D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref]
[PubMed]
L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]
[PubMed]
S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]
S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]
D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
[Crossref]
Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref]
[PubMed]
H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref]
[PubMed]
H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]
H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref]
[PubMed]
T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]
H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches,” Opt. Express 24(11), 12240–12253 (2016).
[Crossref]
[PubMed]
H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]
I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]
H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]
W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” IEEE J. Disp.Technol. 12(12), 1724–1731 (2016).
[Crossref]
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]
D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref]
[PubMed]
D. Wang, Q. H. Wang, C. Shen, X. Zhou, and C. Liu, “Color holographic zoom system based on a liquid lens,” Chin. Opt. Lett. 13(7), 072301 (2015).
[Crossref]
G. Lippmann, “Relations entre les phénomènes électriques et capillaires,” Ann. Chim. Phys. 5, 494–549 (1875).
H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
[Crossref]
[PubMed]
Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref]
[PubMed]
D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
[Crossref]
[PubMed]
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]
H. P. Chen, J. Yang, H. T. Yen, Z. N. Hsu, Y. Huang, and S. T. Wu, “Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices,” Appl. Sci. (Basel) 8(11), 2323 (2018).
[Crossref]
W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” IEEE J. Disp.Technol. 12(12), 1724–1731 (2016).
[Crossref]
M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp.Technol. 10(6), 450–455 (2014).
[Crossref]
T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp.Technol. 7(7), 382–390 (2011).
[Crossref]
A. d’Alessandro, L. Martini, G. Gilardi, R. Beccherelli, and R. Asquini, “Polarization-independent nematic liquid crystal waveguides for optofluidic applications,” IEEE Photonic. Tech. L. 27(16), 1709–1712 (2015).
[Crossref]
S. Kobayashi, Y. Shiraishi, N. Toshima, H. Furue, K. Takeishi, H. Takatsu, K. H. Chang, and L. C. Chien, “Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices,” J. Mol. Liq. 267, 303–307 (2018).
[Crossref]
F. Mugele and J. C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]
S. J. Li, Q. H. Wang, C. Wang, D. Wang, and Q. H. Wang, “Color holographic magnification system based on spatial light modulators,” J. Soc. Inf. Disp. 24(2), 125–130 (2016).
[Crossref]
R. Asquini, C. Chiccoli, P. Pasini, L. Civita, and A. d’Alessandro, “Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection,” Liq. Cryst. 45(13–15), 2174–2183 (2018).
[Crossref]
L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref]
[PubMed]
H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref]
[PubMed]
H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref]
[PubMed]
L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]
[PubMed]
N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref]
[PubMed]
A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an SLM by exploiting its full phase modulation range,” Opt. Express 22(17), 20530–20541 (2014).
[Crossref]
[PubMed]
T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref]
[PubMed]
H. Yang, B. Robertson, P. Wilkinson, and D. Chu, “Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches,” Opt. Express 24(11), 12240–12253 (2016).
[Crossref]
[PubMed]
D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref]
[PubMed]
J. H. Chang, K. D. Jung, E. Lee, M. Choi, S. Lee, and W. Kim, “Variable aperture controlled by microelectrofluidic iris,” Opt. Lett. 38(15), 2919–2922 (2013).
[Crossref]
[PubMed]
M. Xu, H. Ren, and Y. H. Lin, “Electrically actuated liquid iris,” Opt. Lett. 40(5), 831–834 (2015).
[Crossref]
[PubMed]
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang, L. Zhang, and H. Yang, “A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film,” RSC Advances 8(39), 21690–21698 (2018).
[Crossref]
C. M. Chang, Y. H. Lin, A. K. Srivastava, and V. G. Chigrinov, “An optical system via liquid crystal photonic devices for photobiomodulation,” Sci. Rep. 8(1), 4251 (2018).
[Crossref]
[PubMed]
I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]
C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).
M. Dhindsa, S. Kuiper, and J. Heikenfeld, “Reliable and low-voltage electrowetting on thin parylene films,” Thin Solid Films 519(10), 3346–3351 (2011).
[Crossref]