Abstract

Hydrogen detection is of great importance in chemical and energy industries. Optical fiber hydrogen sensors show flexibility and compactness, and have the potential for distributed analysis. However, traditional fiber sensors encounter a challenge with light interacting with hydrogen directly because hydrogen only displays weak quadrupole absorption, and metallic palladium and platinum thin-film coatings are typically used as an optically detectable label. Here, based on stimulated Raman spectroscopy in hollow-core photonic crystal fibers, we investigate the label-free optical fiber distributed hydrogen sensors operating in the optical telecommunication band. The approach of distributed Raman measurement represents a new paradigm in fiber sensors, potentially allowing distributed chemical analysis in gas or liquid phase with high sensitivity and selectivity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration

Shuijing Tang, Bo Zhang, Zhi Li, Jixiang Dai, Gaopeng Wang, and Minghong Yang
Opt. Express 23(17) 22826-22835 (2015)

Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber

Philip G. Westergaard, Mikael Lassen, and Jan C. Petersen
Opt. Express 23(12) 16320-16328 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuators B Chem. 128(1), 320–325 (2007).
    [Crossref]
  2. G. Jessop, “Katharometers,” J. Sci. Instrum. 43(11), 777–782 (1966).
    [Crossref]
  3. V. Aroutiounian, “Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells,” Int. J. Hydrogen Energy 32(9), 1145–1158 (2007).
    [Crossref]
  4. A. B. LaConti and H. J. R. Maget, “Electrochemical detection of H2, CO, and hydrocarbons in inert or oxygen atmospheres,” J. Electrochem. Soc. 118(3), 506–510 (1971).
    [Crossref]
  5. D. Iannuzzi, M. Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem. 121(2), 706–708 (2007).
    [Crossref]
  6. M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
    [Crossref]
  7. B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B Chem. 51(1-3), 25–37 (1998).
    [Crossref]
  8. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – a review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
    [Crossref]
  9. S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
    [Crossref]
  10. D. Y. Wang, Y. Wang, J. Gong, and A. Wang, “Fully distributed fiber-optic hydrogen sensing using acoustically induced long-period grating,” IEEE Photonics Technol. Lett. 23(11), 733–735 (2011).
    [Crossref]
  11. T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
    [Crossref]
  12. S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
    [Crossref] [PubMed]
  13. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  14. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
    [Crossref] [PubMed]
  15. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  16. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47(23), 4255–4261 (2008).
    [Crossref] [PubMed]
  17. X. Yang, A. S. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuators B Chem. 176, 64–68 (2013).
    [Crossref]
  18. J. L. Doménech and M. Cueto, “Sensitivity enhancement in high resolution stimulated Raman spectroscopy of gases with hollow-core photonic crystal fibers,” Opt. Lett. 38(20), 4074–4077 (2013).
    [Crossref] [PubMed]
  19. P. G. Westergaard, M. Lassen, and J. C. Petersen, “Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber,” Opt. Express 23(12), 16320–16328 (2015).
    [Crossref] [PubMed]
  20. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  21. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
    [Crossref]
  22. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A Gen. Phys. 33(5), 3113–3123 (1986).
    [Crossref] [PubMed]
  23. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19(12), 2886–2892 (2002).
    [Crossref]
  24. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref] [PubMed]
  25. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J. M. Ménard, and P. S. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
    [Crossref] [PubMed]
  26. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref] [PubMed]
  27. F. Yang, W. Jin, Y. Lin, C. Wang, H. Lut, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35(16), 3413–3424 (2017).
    [Crossref]
  28. W. Belardi, “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” J. Lightwave Technol. 33(21), 4497–4503 (2015).
    [Crossref]
  29. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
    [Crossref] [PubMed]
  30. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
    [Crossref]
  31. J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19(9), 1407–1413 (1983).
    [Crossref]
  32. W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46(4), 1426–1432 (1967).
    [Crossref]
  33. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89(2), 472–473 (1953).
    [Crossref]
  34. G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A Gen. Phys. 34(3), 1944–1951 (1986).
    [Crossref] [PubMed]
  35. D. A. Long, The Raman effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, 2002).

2017 (1)

2016 (2)

2015 (4)

P. G. Westergaard, M. Lassen, and J. C. Petersen, “Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber,” Opt. Express 23(12), 16320–16328 (2015).
[Crossref] [PubMed]

W. Belardi, “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” J. Lightwave Technol. 33(21), 4497–4503 (2015).
[Crossref]

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

2014 (1)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

2013 (2)

X. Yang, A. S. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuators B Chem. 176, 64–68 (2013).
[Crossref]

J. L. Doménech and M. Cueto, “Sensitivity enhancement in high resolution stimulated Raman spectroscopy of gases with hollow-core photonic crystal fibers,” Opt. Lett. 38(20), 4074–4077 (2013).
[Crossref] [PubMed]

2012 (1)

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
[Crossref]

2011 (2)

D. Y. Wang, Y. Wang, J. Gong, and A. Wang, “Fully distributed fiber-optic hydrogen sensing using acoustically induced long-period grating,” IEEE Photonics Technol. Lett. 23(11), 733–735 (2011).
[Crossref]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – a review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

2010 (1)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47(23), 4255–4261 (2008).
[Crossref] [PubMed]

2007 (3)

D. Iannuzzi, M. Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem. 121(2), 706–708 (2007).
[Crossref]

C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuators B Chem. 128(1), 320–325 (2007).
[Crossref]

V. Aroutiounian, “Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells,” Int. J. Hydrogen Energy 32(9), 1145–1158 (2007).
[Crossref]

2006 (1)

2005 (1)

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

2003 (1)

2002 (2)

D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19(12), 2886–2892 (2002).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

1998 (1)

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B Chem. 51(1-3), 25–37 (1998).
[Crossref]

1986 (2)

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A Gen. Phys. 33(5), 3113–3123 (1986).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A Gen. Phys. 34(3), 1944–1951 (1986).
[Crossref] [PubMed]

1984 (1)

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[Crossref]

1983 (1)

J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19(9), 1407–1413 (1983).
[Crossref]

1981 (1)

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[Crossref]

1971 (1)

A. B. LaConti and H. J. R. Maget, “Electrochemical detection of H2, CO, and hydrocarbons in inert or oxygen atmospheres,” J. Electrochem. Soc. 118(3), 506–510 (1971).
[Crossref]

1967 (1)

W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46(4), 1426–1432 (1967).
[Crossref]

1966 (1)

G. Jessop, “Katharometers,” J. Sci. Instrum. 43(11), 777–782 (1966).
[Crossref]

1953 (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89(2), 472–473 (1953).
[Crossref]

Abdolvand, A.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Afshar, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Ahmed, G.

Alkeskjold, T. T.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Aroutiounian, V.

V. Aroutiounian, “Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells,” Int. J. Hydrogen Energy 32(9), 1145–1158 (2007).
[Crossref]

Asakura, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

Banach, U.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – a review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Bang, O.

Belardi, W.

Benabid, F.

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bischel, W. K.

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A Gen. Phys. 33(5), 3113–3123 (1986).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A Gen. Phys. 34(3), 1944–1951 (1986).
[Crossref] [PubMed]

Black, G.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – a review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Bögözi, T.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

Bond, T. C.

X. Yang, A. S. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuators B Chem. 176, 64–68 (2013).
[Crossref]

Boon-Brett, L.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – a review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Buric, M. P.

Butler, M. A.

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[Crossref]

Cantrell, C. D.

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

Carlsten, J.

J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19(9), 1407–1413 (1983).
[Crossref]

Chang, A. S.

X. Yang, A. S. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuators B Chem. 176, 64–68 (2013).
[Crossref]

Chang, W.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Chen, B.

X. Yang, A. S. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuators B Chem. 176, 64–68 (2013).
[Crossref]

Chen, K. P.

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
[Crossref]

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47(23), 4255–4261 (2008).
[Crossref] [PubMed]

Chen, R.

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
[Crossref]

Chen, T.

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
[Crossref]

Couny, F.

Cueto, M.

Culshaw, B.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B Chem. 51(1-3), 25–37 (1998).
[Crossref]

Deladi, S.

D. Iannuzzi, M. Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem. 121(2), 706–708 (2007).
[Crossref]

Dicke, R. H.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89(2), 472–473 (1953).
[Crossref]

Doménech, J. L.

Dong, F.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B Chem. 51(1-3), 25–37 (1998).
[Crossref]

Dyer, M. J.

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A Gen. Phys. 33(5), 3113–3123 (1986).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A Gen. Phys. 34(3), 1944–1951 (1986).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Edavalath, N. N.

Elwenspoek, M. C.

D. Iannuzzi, M. Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem. 121(2), 706–708 (2007).
[Crossref]

Falk, J.

François, A.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Frosch, T.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

Frosz, M. H.

Gong, J.

D. Y. Wang, Y. Wang, J. Gong, and A. Wang, “Fully distributed fiber-optic hydrogen sensing using acoustically induced long-period grating,” IEEE Photonics Technol. Lett. 23(11), 733–735 (2011).
[Crossref]

Gu, C.

X. Yang, A. S. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuators B Chem. 176, 64–68 (2013).
[Crossref]

Günendi, M. C.

Gwak, J.

C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuators B Chem. 128(1), 320–325 (2007).
[Crossref]

Han, C. H.

C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuators B Chem. 128(1), 320–325 (2007).
[Crossref]

Han, S. D.

C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuators B Chem. 128(1), 320–325 (2007).
[Crossref]

Hanf, S.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

Hasegawa, T.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Heng, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Herring, G. C.

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A Gen. Phys. 34(3), 1944–1951 (1986).
[Crossref] [PubMed]

Ho, H. L.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[Crossref] [PubMed]

Hollenbeck, D.

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hölzer, P.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Hong, D. W.

C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuators B Chem. 128(1), 320–325 (2007).
[Crossref]

Hoo, Y. L.

Hübert, T.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – a review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

Iannuzzi, D.

D. Iannuzzi, M. Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem. 121(2), 706–708 (2007).
[Crossref]

Jakobsen, C.

Jessop, G.

G. Jessop, “Katharometers,” J. Sci. Instrum. 43(11), 777–782 (1966).
[Crossref]

Jin, W.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Keiner, R.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

Kim, I. J.

C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuators B Chem. 128(1), 320–325 (2007).
[Crossref]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Kolos, W.

W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46(4), 1426–1432 (1967).
[Crossref]

LaConti, A. B.

A. B. LaConti and H. J. R. Maget, “Electrochemical detection of H2, CO, and hydrocarbons in inert or oxygen atmospheres,” J. Electrochem. Soc. 118(3), 506–510 (1971).
[Crossref]

Lægsgaard, J.

Lassen, M.

Light, P. S.

Lin, Y.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Lut, H.

Lyngsø, J. K.

Maget, H. J. R.

A. B. LaConti and H. J. R. Maget, “Electrochemical detection of H2, CO, and hydrocarbons in inert or oxygen atmospheres,” J. Electrochem. Soc. 118(3), 506–510 (1971).
[Crossref]

Maklad, M.

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
[Crossref]

Ménard, J. M.

Michieletto, M.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Monro, T. M.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Moodie, D.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B Chem. 51(1-3), 25–37 (1998).
[Crossref]

Mostowski, J.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[Crossref]

Murayama, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

Nakagawa, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

Okazaki, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

Petersen, J. C.

Popp, J.

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

Raymer, M. G.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[Crossref]

Rector, J. H.

D. Iannuzzi, M. Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem. 121(2), 706–708 (2007).
[Crossref]

Ruan, S. C.

Russell, P. S. J.

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J. M. Ménard, and P. S. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
[Crossref] [PubMed]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Schartner, E. P.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Schreuders, H.

D. Iannuzzi, M. Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem. 121(2), 706–708 (2007).
[Crossref]

Shi, C.

Singh, K. C.

C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuators B Chem. 128(1), 320–325 (2007).
[Crossref]

Slaman, M.

D. Iannuzzi, M. Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem. 121(2), 706–708 (2007).
[Crossref]

Stewart, G.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B Chem. 51(1-3), 25–37 (1998).
[Crossref]

Sumida, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

Swinehart, P. R.

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
[Crossref]

Tan, Y.

Tandy, C.

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B Chem. 51(1-3), 25–37 (1998).
[Crossref]

Travers, J. C.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Uebel, P.

Wang, A.

D. Y. Wang, Y. Wang, J. Gong, and A. Wang, “Fully distributed fiber-optic hydrogen sensing using acoustically induced long-period grating,” IEEE Photonics Technol. Lett. 23(11), 733–735 (2011).
[Crossref]

Wang, C.

Wang, D. N.

Wang, D. Y.

D. Y. Wang, Y. Wang, J. Gong, and A. Wang, “Fully distributed fiber-optic hydrogen sensing using acoustically induced long-period grating,” IEEE Photonics Technol. Lett. 23(11), 733–735 (2011).
[Crossref]

Wang, Q.

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
[Crossref]

Wang, Y.

D. Y. Wang, Y. Wang, J. Gong, and A. Wang, “Fully distributed fiber-optic hydrogen sensing using acoustically induced long-period grating,” IEEE Photonics Technol. Lett. 23(11), 733–735 (2011).
[Crossref]

Warren-Smith, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Wenzel, R.

J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19(9), 1407–1413 (1983).
[Crossref]

Westergaard, P. G.

Wolniewicz, L.

W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46(4), 1426–1432 (1967).
[Crossref]

Woodruff, S. D.

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Yang, F.

F. Yang, W. Jin, Y. Lin, C. Wang, H. Lut, and Y. Tan, “Hollow-core microstructured optical fiber gas sensors,” J. Lightwave Technol. 35(16), 3413–3424 (2017).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

Yang, X.

X. Yang, A. S. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuators B Chem. 176, 64–68 (2013).
[Crossref]

Zhang, B.

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
[Crossref]

Anal. Chem. (1)

S. Hanf, T. Bögözi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Anal. Chem. 87(2), 982–988 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

T. Chen, Q. Wang, R. Chen, B. Zhang, K. P. Chen, M. Maklad, and P. R. Swinehart, “Distributed hydrogen sensing using in-fiber Rayleigh scattering,” Appl. Phys. Lett. 100(19), 191105 (2012).
[Crossref]

M. A. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett. 45(10), 1007–1009 (1984).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Carlsten and R. Wenzel, “Stimulated rotational Raman scattering in CO2-pumped para-H2,” IEEE J. Quantum Electron. 19(9), 1407–1413 (1983).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Y. Wang, Y. Wang, J. Gong, and A. Wang, “Fully distributed fiber-optic hydrogen sensing using acoustically induced long-period grating,” IEEE Photonics Technol. Lett. 23(11), 733–735 (2011).
[Crossref]

Int. J. Hydrogen Energy (1)

V. Aroutiounian, “Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells,” Int. J. Hydrogen Energy 32(9), 1145–1158 (2007).
[Crossref]

J. Chem. Phys. (1)

W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46(4), 1426–1432 (1967).
[Crossref]

J. Electrochem. Soc. (1)

A. B. LaConti and H. J. R. Maget, “Electrochemical detection of H2, CO, and hydrocarbons in inert or oxygen atmospheres,” J. Electrochem. Soc. 118(3), 506–510 (1971).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Sci. Instrum. (1)

G. Jessop, “Katharometers,” J. Sci. Instrum. 43(11), 777–782 (1966).
[Crossref]

Nat. Commun. (1)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Opt. Lett. (3)

Phys. Rev. (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89(2), 472–473 (1953).
[Crossref]

Phys. Rev. A (1)

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[Crossref]

Phys. Rev. A Gen. Phys. (2)

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A Gen. Phys. 33(5), 3113–3123 (1986).
[Crossref] [PubMed]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A Gen. Phys. 34(3), 1944–1951 (1986).
[Crossref] [PubMed]

Science (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Sens. Actuators B Chem. (6)

X. Yang, A. S. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sens. Actuators B Chem. 176, 64–68 (2013).
[Crossref]

C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sens. Actuators B Chem. 128(1), 320–325 (2007).
[Crossref]

D. Iannuzzi, M. Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, “A fiber-top cantilever for hydrogen detection,” Sens. Actuators B Chem. 121(2), 706–708 (2007).
[Crossref]

B. Culshaw, G. Stewart, F. Dong, C. Tandy, and D. Moodie, “Fiber optic techniques for remote spectroscopic methane detection—from concept to system realization,” Sens. Actuators B Chem. 51(1-3), 25–37 (1998).
[Crossref]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – a review,” Sens. Actuators B Chem. 157(2), 329–352 (2011).
[Crossref]

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108(1-2), 508–514 (2005).
[Crossref]

Other (1)

D. A. Long, The Raman effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Distributed hydrogen sensing with backward SRS in a HC-PCF. (a) The energy level diagram of S0(0) transition of hydrogen. (b) Basic setup for distributed hydrogen detection. A pump pulse and a c.w. probe light enters the HC-PCF sample in the opposite direction. The region with yellow-shade has multiple micro-channels and are for gas ingress/egress. The construction of the HC-PCF sample is described in the Appendix D. The intensity of the probe light is measured by a photodetector (PD) and recorded by an oscilloscope. (c) The backward Raman gain spectrum of S0(0) transition of hydrogen and fused silica [23]. The inset shows an enlarged view around the S0(0) transition of hydrogen. (d) Schema showing the principle of distributed hydrogen sensing. The panels (from top to bottom) show the probe and pump intensity distribution (not to scale) along the fibre at different time moment (t < 0, t = 0, t = D/c, t = L/c and t > L/c). The step changes of the probe light intensity at the SMF/HC-PCF joints are due to the coupling losses. The yellow-shaded region at the distance D from the left SMF-HC-PCF joint is filled with hydrogen. The gain of probe light is enlarged for clarity purpose. Inset in the top panel shows the HC-PCF sample with micro-channels. Transmission loss of HC-PCF is ignored in the schema. (e) SRG signal detected by photodetector (PD) in the time domain.
Fig. 2
Fig. 2 Stimulated Raman gain trace along a 100-m-long HC-PCF. (a) The measured SRG trace along the 100-m-long sensing HC-PCF with 18-ns pump pulse. The frequency difference between the pump and probe was tuned to the S0(0) rotational Raman transition of hydrogen(on-resonance). The inset shows the enlarged SRG signal around 88 m. The number of averages used in the oscilloscope is 12,000. (b) The distributed Raman gain trace as a function of time of the hydrogen filling and recovering process. The number of averages is 200. (c) SRG signal at the position of 88 m. The shaded regions show the filling and recovering process, which define the e−1 response (rising and recovering) time.
Fig. 3
Fig. 3 Experiment results of dynamic range and linearity. (a) SRG signal for different concentrations of hydrogen balanced with nitrogen. The pump pulse width is 18-ns, the peak power delivered to the HC-PCF is 30 W. SRG signal was obtained by use of an oscilloscope with 200 averages. The error bars of concentration are enlarged for 3 times for clarity reason. (b) SRG of pure hydrogen as a function of peak power level of 18-ns pump pulse.
Fig. 4
Fig. 4 Measured Raman gain trace along a 15-m-long HC-PCF with 1 ns pump pulse. (a) The Raman gain trace as a function of time during the hydrogen loading process. The peak power of pump is ~10 W in the HC-PCF. (b) Schema of the HC-PCF sample and the SRG trace at 18 s showing the hydrogen gain signal around z = 7.5 m. The local variance of the raw data is described by the error bars. Gaussian-fit of the gain profile around z = 7.5 m gives a FWHM of 75 cm. The blue arrow indicates the location of hydrogen loading. The construction of the HC-PCF sample is described in the Appendix C.
Fig. 5
Fig. 5 Results of distributed gas pressure measurement. The peak power of pump pulse is 30 W with a pulse width of 18-ns. The SRG spectrum data were recorded by an oscilloscope with 200 averages. (a) The measured backward SRG spectrum along the HC-PCF. (b) The pressure distribution recovered from the SRG linewidth and the theoretical calculation based on Eq. (1) with PA = 4.2 bar and PB = 1 bar. The inset shows a measured SRG spectrum (dot) around z = 7 m and Lorentzian fit (line).
Fig. 6
Fig. 6 Measured backward Raman linewidth and line-shift at 296 K. (a) SRS linewidth as functions of gas pressure for three different hydrogen concentrations. (b) Measured pressure induced Raman shift for different hydrogen concentration.
Fig. 7
Fig. 7 Experimental setup for distributed hydrogen sensing. The inset picture shows the cross section of HC-1550-06 fiber. PS, polarization scrambler; IM, optical intensity modulator; EDFA, erbium-doped fiber amplifier; OC, optical circulator; ISO, isolator; PC, polarization controller; PF, pump filter; PD, photodetector.
Fig. 8
Fig. 8 HC-PCF samples. The HC-PCF is HC-1550-06 fiber. SMF is Corning SMF-28e fiber. (a) Method of butt coupling two fibers. The two fibers (fiber 1 and fiber 2) could be Corning SMF-28e fiber or HC-1550-06 fiber. (b) The 13-m-long HC-PCF sample used for distributed pressure sensing.
Fig. 9
Fig. 9 Monitoring the gas filling and purging process. (a) The measured hydrogen filling process with an 18-ns pump pulse and the 15-m-long HC-PCD sample shown in Fig. 8(b). (b) The measured hydrogen purging process with a 2-ns pump pulse and the HC-PCF sample in Fig. 4(b).

Tables (1)

Tables Icon

Table 1 Comparison of Distributed Hydrogen Detection Systems. The response and recovery time are transformed to a uniform standard as we defined above. a [9]: demonstrated a multi-point sensor with three 15-cm long sensors. b: The response and recovery time are roughly estimated from the data in Fig. 7 of [9]. c: The sensitivity is not stated but experiments show that 1% of hydrogen is detectable in [9] and [11]. d: theoretically estimated response and recovery time in [10] e: The response time of the gas sensor with heating (without heating) estimated from the data in Fig. 4 of [11].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P(z)= P A 2 + z L ( P B 2 P A 2 )
g= 8 5 π 2 ω S c 2 n S 2 (J+1)(J+2) (2J+1)(2J+3) γ 2 hΓ ΔN

Metrics