Abstract

In this paper, we propose two digital signal processing (DSP) techniques, the orthogonal circulant matrix transform (OCT) technique and the singular value decomposition (SVD)-based adaptive loading, to reduce the bit error rate (BER) of multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM)-based visible light communication (VLC) systems, without and with using the channel state information (CSI), respectively. A gigabit/s 2 × 2 MIMO-OFDM VLC system under ~100-MHz system bandwidth, with both symmetrical and asymmetrical MIMO setups, is demonstrated. It is shown that both techniques can attain outstanding BER reduction regardless of the transceivers’ geometrical distributions. The SVD-based adaptive loading exhibits the best performance but requires the CSI. The OCT technique can achieve suboptimal performance without the needs of CSI. In both the 1.6-Gbit/s symmetrical MIMO setup and the 1.2-Gbit/s asymmetrical setup, we achieved more than one and two orders of magnitude reductions in the BER by using the OCT technique and the SVD-based adaptive loading, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications

Yang Hong, Jing Xu, and Lian-Kuan Chen
Opt. Express 25(11) 12908-12914 (2017)

Achievable information rate enhancement of visible light communication using probabilistically shaped OFDM modulation

Chenhui Xie, Zexin Chen, Songnian Fu, Wu Liu, Zhixue He, Lei Deng, Ming Tang, and Deming Liu
Opt. Express 26(1) 367-375 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
    [Crossref]
  2. J. Chen, Y. Hong, Z. Wang, and C. Yu, “Precoded visible light communications,” in Proceedings of ICICS (IEEE, 2013), 1–4.
  3. H. H. Lu, C. Y. Li, C. A. Chu, T. C. Lu, B. R. Chen, C. J. Wu, and D. H. Lin, “10 m/25 Gbps LiFi transmission system based on a two-stage injection-locked 680 nm VCSEL transmitter,” Opt. Lett. 40(19), 4563–4566 (2015).
    [Crossref] [PubMed]
  4. C. Y. Li, H. H. Lu, W. S. Tsai, M. T. Cheng, C. M. Ho, Y. C. Wang, Z. Y. Yang, and D. Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
    [Crossref] [PubMed]
  5. Y. F. Huang, C. T. Tsai, H. Y. Kao, Y. C. Chi, H. Y. Wang, T. T. Shih, and G. R. Lin, “17.6-Gbps universal filtered multi-carrier encoding of GaN blue LD for visible light communication,” in Proceedings of CLEO (IEEE, 2017), STh1C.5.
    [Crossref]
  6. C. Chen, W. Zhong, and D. Wu, “Indoor OFDM visible light communications employing adaptive digital pre-frequency domain equalization,” in Procedings of CLEO (IEEE, 2016), JTh2A.118.
    [Crossref]
  7. Y. Hong and L. K. Chen, “Toward user mobility for OFDM-based visible light communications,” Opt. Lett. 41(16), 3763–3766 (2016).
    [Crossref] [PubMed]
  8. R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 7801008 (2017).
    [Crossref]
  9. Y. Hong, J. Xu, and L. K. Chen, “Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications,” Opt. Express 25(11), 12908–12914 (2017).
    [Crossref] [PubMed]
  10. X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
    [Crossref] [PubMed]
  11. Y. Hong, J. Chen, and C. Yu, “Performance improvement of the pre-coded multi-user MIMO indoor visible light communication system,” in Proc. of CSNDSP (IEEE, 2014), pp. 314–318.
    [Crossref]
  12. A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Comm. 33(9), 1780–1792 (2015).
    [Crossref]
  13. P. M. Butala, H. Elgala, and T. D. C. Little, “SVD-VLC: A novel capacity maximizing VLC MIMO system architecture under illumination constraints,” in Proceedings of Globecom (IEEE, 2013), 1087–1092.
  14. Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
    [Crossref]
  15. A. H. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
    [Crossref]
  16. Y. Wang and N. Chi, “Demonstration of high-speed 2 × 2 non-imaging MIMO Nyquist single carrier visible light communication with frequency domain equalization,” J. Lightwave Technol. 32(11), 2087–2093 (2014).
    [Crossref]
  17. C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
    [Crossref]
  18. Y. Hong, L. K. Chen, and J. Zhao, “Experimental demonstration of performance-enhanced MIMO-OFDM visible light communications,” in Proceedings of OFC (Optical Society of America, 2017), Th1E.2.
    [Crossref]
  19. M. Vetterli and H. J. Nussbaumer, “Simple FFT and DCT algorithms with reduced number of operations,” Signal Processing 6(4), 267–278 (1984).
    [Crossref]
  20. S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process. 63(6), 1366–1376 (2015).
    [Crossref]
  21. Z. Zhou, B. Vucetic, M. Dohler, and Y. Li, “MIMO systems with adaptive modulation,” IEEE Trans. Vehicular Technol. 54(5), 1828–1842 (2005).
    [Crossref]
  22. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
    [Crossref]

2017 (3)

2016 (3)

Y. Hong and L. K. Chen, “Toward user mobility for OFDM-based visible light communications,” Opt. Lett. 41(16), 3763–3766 (2016).
[Crossref] [PubMed]

Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
[Crossref]

C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

2015 (5)

S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process. 63(6), 1366–1376 (2015).
[Crossref]

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

H. H. Lu, C. Y. Li, C. A. Chu, T. C. Lu, B. R. Chen, C. J. Wu, and D. H. Lin, “10 m/25 Gbps LiFi transmission system based on a two-stage injection-locked 680 nm VCSEL transmitter,” Opt. Lett. 40(19), 4563–4566 (2015).
[Crossref] [PubMed]

X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
[Crossref] [PubMed]

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Comm. 33(9), 1780–1792 (2015).
[Crossref]

2014 (1)

2013 (1)

A. H. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

2005 (1)

Z. Zhou, B. Vucetic, M. Dohler, and Y. Li, “MIMO systems with adaptive modulation,” IEEE Trans. Vehicular Technol. 54(5), 1828–1842 (2005).
[Crossref]

1995 (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

1984 (1)

M. Vetterli and H. J. Nussbaumer, “Simple FFT and DCT algorithms with reduced number of operations,” Signal Processing 6(4), 267–278 (1984).
[Crossref]

Azhar, A. H.

A. H. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Bingham, J. A. C.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

Chen, B. R.

Chen, C. S.

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Comm. 33(9), 1780–1792 (2015).
[Crossref]

Chen, D. Y.

Chen, J.

J. Chen, Y. Hong, Z. Wang, and C. Yu, “Precoded visible light communications,” in Proceedings of ICICS (IEEE, 2013), 1–4.

Y. Hong, J. Chen, and C. Yu, “Performance improvement of the pre-coded multi-user MIMO indoor visible light communication system,” in Proc. of CSNDSP (IEEE, 2014), pp. 314–318.
[Crossref]

Chen, L.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 7801008 (2017).
[Crossref]

Chen, L. K.

Y. Hong, J. Xu, and L. K. Chen, “Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications,” Opt. Express 25(11), 12908–12914 (2017).
[Crossref] [PubMed]

Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
[Crossref]

Y. Hong and L. K. Chen, “Toward user mobility for OFDM-based visible light communications,” Opt. Lett. 41(16), 3763–3766 (2016).
[Crossref] [PubMed]

Y. Hong, L. K. Chen, and J. Zhao, “Experimental demonstration of performance-enhanced MIMO-OFDM visible light communications,” in Proceedings of OFC (Optical Society of America, 2017), Th1E.2.
[Crossref]

Cheng, M. T.

Chi, N.

Chow, C. W.

C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

Chu, C. A.

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

Deng, R.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 7801008 (2017).
[Crossref]

Dohler, M.

Z. Zhou, B. Vucetic, M. Dohler, and Y. Li, “MIMO systems with adaptive modulation,” IEEE Trans. Vehicular Technol. 54(5), 1828–1842 (2005).
[Crossref]

He, J.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 7801008 (2017).
[Crossref]

Ho, C. M.

Ho, S. W.

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Comm. 33(9), 1780–1792 (2015).
[Crossref]

Hong, Y.

Y. Hong, J. Xu, and L. K. Chen, “Experimental investigation of multi-band OCT precoding for OFDM-based visible light communications,” Opt. Express 25(11), 12908–12914 (2017).
[Crossref] [PubMed]

Y. Hong and L. K. Chen, “Toward user mobility for OFDM-based visible light communications,” Opt. Lett. 41(16), 3763–3766 (2016).
[Crossref] [PubMed]

Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
[Crossref]

Y. Hong, J. Chen, and C. Yu, “Performance improvement of the pre-coded multi-user MIMO indoor visible light communication system,” in Proc. of CSNDSP (IEEE, 2014), pp. 314–318.
[Crossref]

J. Chen, Y. Hong, Z. Wang, and C. Yu, “Precoded visible light communications,” in Proceedings of ICICS (IEEE, 2013), 1–4.

Y. Hong, L. K. Chen, and J. Zhao, “Experimental demonstration of performance-enhanced MIMO-OFDM visible light communications,” in Proceedings of OFC (Optical Society of America, 2017), Th1E.2.
[Crossref]

Hou, M.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 7801008 (2017).
[Crossref]

Hsu, C. W.

C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

Huang, X.

Kalavally, V.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Karunatilaka, D.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Lee, K. C.

S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process. 63(6), 1366–1376 (2015).
[Crossref]

Li, C. P.

S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process. 63(6), 1366–1376 (2015).
[Crossref]

Li, C. Y.

Li, Y.

Z. Zhou, B. Vucetic, M. Dohler, and Y. Li, “MIMO systems with adaptive modulation,” IEEE Trans. Vehicular Technol. 54(5), 1828–1842 (2005).
[Crossref]

Lin, D. H.

Liu, Y.

C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

Liu, Y. L.

C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

Lu, H. H.

Lu, I. C.

C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

Lu, T. C.

Nussbaumer, H. J.

M. Vetterli and H. J. Nussbaumer, “Simple FFT and DCT algorithms with reduced number of operations,” Signal Processing 6(4), 267–278 (1984).
[Crossref]

Nuwanpriya, A.

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Comm. 33(9), 1780–1792 (2015).
[Crossref]

O’Brien, D.

A. H. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Parthiban, R.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Shi, J.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 7801008 (2017).
[Crossref]

X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
[Crossref] [PubMed]

Su, H. J.

S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process. 63(6), 1366–1376 (2015).
[Crossref]

Tran, T.

A. H. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

Tsai, W. S.

Vetterli, M.

M. Vetterli and H. J. Nussbaumer, “Simple FFT and DCT algorithms with reduced number of operations,” Signal Processing 6(4), 267–278 (1984).
[Crossref]

Vucetic, B.

Z. Zhou, B. Vucetic, M. Dohler, and Y. Li, “MIMO systems with adaptive modulation,” IEEE Trans. Vehicular Technol. 54(5), 1828–1842 (2005).
[Crossref]

Wang, S. H.

S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process. 63(6), 1366–1376 (2015).
[Crossref]

Wang, Y.

Wang, Y. C.

Wang, Z.

Wu, C. J.

Wu, T.

Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
[Crossref]

Xu, J.

Yang, Z. Y.

Yeh, C. H.

C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

Yu, C.

J. Chen, Y. Hong, Z. Wang, and C. Yu, “Precoded visible light communications,” in Proceedings of ICICS (IEEE, 2013), 1–4.

Y. Hong, J. Chen, and C. Yu, “Performance improvement of the pre-coded multi-user MIMO indoor visible light communication system,” in Proc. of CSNDSP (IEEE, 2014), pp. 314–318.
[Crossref]

Zafar, F.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Zhao, J.

Y. Hong, L. K. Chen, and J. Zhao, “Experimental demonstration of performance-enhanced MIMO-OFDM visible light communications,” in Proceedings of OFC (Optical Society of America, 2017), Th1E.2.
[Crossref]

Zhou, Z.

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 7801008 (2017).
[Crossref]

Z. Zhou, B. Vucetic, M. Dohler, and Y. Li, “MIMO systems with adaptive modulation,” IEEE Trans. Vehicular Technol. 54(5), 1828–1842 (2005).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

A. Nuwanpriya, S. W. Ho, and C. S. Chen, “Indoor MIMO visible light communications: novel angle diversity receivers for mobile users,” IEEE J. Sel. Areas Comm. 33(9), 1780–1792 (2015).
[Crossref]

IEEE Photonics J. (2)

R. Deng, J. He, Z. Zhou, J. Shi, M. Hou, and L. Chen, “Experimental demonstration of software-configurable asynchronous real-time OFDM signal transmission in a hybrid fiber-VLLC system,” IEEE Photonics J. 9(1), 7801008 (2017).
[Crossref]

C. W. Hsu, C. W. Chow, I. C. Lu, Y. L. Liu, C. H. Yeh, and Y. Liu, “High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system,” IEEE Photonics J. 8(6), 7907406 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Hong, T. Wu, and L. K. Chen, “On the performance of adaptive MIMO-OFDM indoor visible light communications,” IEEE Photonics Technol. Lett. 28(8), 907–910 (2016).
[Crossref]

A. H. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photonics Technol. Lett. 25(2), 171–174 (2013).
[Crossref]

IEEE Trans. Commun. (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–775 (1995).
[Crossref]

IEEE Trans. Signal Process. (1)

S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process. 63(6), 1366–1376 (2015).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

Z. Zhou, B. Vucetic, M. Dohler, and Y. Li, “MIMO systems with adaptive modulation,” IEEE Trans. Vehicular Technol. 54(5), 1828–1842 (2005).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (2)

Signal Processing (1)

M. Vetterli and H. J. Nussbaumer, “Simple FFT and DCT algorithms with reduced number of operations,” Signal Processing 6(4), 267–278 (1984).
[Crossref]

Other (6)

Y. Hong, L. K. Chen, and J. Zhao, “Experimental demonstration of performance-enhanced MIMO-OFDM visible light communications,” in Proceedings of OFC (Optical Society of America, 2017), Th1E.2.
[Crossref]

Y. Hong, J. Chen, and C. Yu, “Performance improvement of the pre-coded multi-user MIMO indoor visible light communication system,” in Proc. of CSNDSP (IEEE, 2014), pp. 314–318.
[Crossref]

P. M. Butala, H. Elgala, and T. D. C. Little, “SVD-VLC: A novel capacity maximizing VLC MIMO system architecture under illumination constraints,” in Proceedings of Globecom (IEEE, 2013), 1087–1092.

J. Chen, Y. Hong, Z. Wang, and C. Yu, “Precoded visible light communications,” in Proceedings of ICICS (IEEE, 2013), 1–4.

Y. F. Huang, C. T. Tsai, H. Y. Kao, Y. C. Chi, H. Y. Wang, T. T. Shih, and G. R. Lin, “17.6-Gbps universal filtered multi-carrier encoding of GaN blue LD for visible light communication,” in Proceedings of CLEO (IEEE, 2017), STh1C.5.
[Crossref]

C. Chen, W. Zhong, and D. Wu, “Indoor OFDM visible light communications employing adaptive digital pre-frequency domain equalization,” in Procedings of CLEO (IEEE, 2016), JTh2A.118.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Block diagram of the MIMO-OFDM VLC system. The case with the dashed blocks denotes the MIMO-OFDM system using the individual/joint OCT technique.
Fig. 2
Fig. 2 Complexity of different OCT designs.
Fig. 3
Fig. 3 Block diagram of the SVD-based adaptive loading.
Fig. 4
Fig. 4 Configurations of the two MIMO-VLC scenario (left), and the experimental setup (right).
Fig. 5
Fig. 5 The SNR profiles of the conventional MIMO-OFDM VLC system in two scenarios. Insets: the corresponding constellation diagrams.
Fig. 6
Fig. 6 Comparisons of the SNR profiles of the MIMO-OFDM VLC system using the individual/joint OCT technique in the symmetrical and asymmetrical scenarios. Solid lines denote the theoretical SNR levels calculated by Eqs. (2) and (4).
Fig. 7
Fig. 7 Allocated bits and power, and the estimated SNR profile by using the SVD-based adaptive loading in scenario 1: Rx 1 (left) and Rx 2 (right). The aggregate data rate is 1.6 Gbit/s.
Fig. 8
Fig. 8 Allocated bits and power, and the estimated SNR profile by using the SVD-based adaptive loading in scenario 2: Rx 1 (left) and Rx 2 (right). The aggregate data rate is 1.2 Gbit/s.
Fig. 9
Fig. 9 Average BERs of different schemes versus the length of CP.
Fig. 10
Fig. 10 Average BERs of different schemes versus the data rate.

Tables (1)

Tables Icon

Table 1 Implementation comparisons of different DSP schemes in nT × nR MIMO-OFDM VLC

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ F ] K×K = 1 K [ f 1 f 2 ... f K f K f 1 ... f K1 ... ... ... ... f 2 f 3 ... f 1 ],
{ SN R indv,i =[ SN R indv,i (1),SN R indv,i (2),...,SN R indv,i (K) ] SN R indv,i (1)=SN R indv,i (2)==SN R indv,i (K)= K k=1 K 1 SN R i (k)
[ F ] (K n T )×(K n T ) = 1 K n T [ f 1 f 2 ... f K n T f K n T f 1 ... f K n T 1 ... ... ... ... f 2 f 3 ... f 1 ],
{ SN R joint,1 =SN R joint,2 ==SN R joint, n T SN R joint,i =[ SN R joint,i (1),SN R joint,i (2),...,SN R joint,i (K) ] SN R joint,i (1)=SN R joint,i (2)==SN R joint,i (K)= K n T i=1 n T k=1 K 1 SN R i (k)
H(k)=U(k)D(k) V H (k),
X (k)=V(k)X(k).
Y (k)= U H (k){ H(k) X (k)+N(k) }=D(k)X(k)+ N (k).

Metrics