Abstract

We present a multi-depth phase modulation grating (MPMG) in the terahertz range making real-time multichannel Fourier-transform spectroscopy available in a stationary manner. The calculation of the Fraunhofer diffraction field distribution and diffraction efficiency of an MPMG indicates that the zeroth-order diffraction light of an MPMG carries phase information and its diffraction intensity is modulated by the groove depth. A good agreement is found between the measurements of the 0th- and ±1st-order diffraction efficiency at 0.5 and 0.34 THz and the simulation. The frequencies of the terahertz source retrieved from the zeroth-order diffraction intensity at 0.5, 0.4, and 0.34 THz are identical to the actual frequencies.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating

Chia-Jen Lin, Yu-Tai Li, Cho-Fan Hsieh, Ru-Pin Pan, and Ci-Ling Pan
Opt. Express 16(5) 2995-3001 (2008)

Transmissive quasi-optical Ronchi phase grating for terahertz frequencies

Martin S. Heimbeck, Patrick J. Reardon, John Callahan, and Henry O. Everitt
Opt. Lett. 35(21) 3658-3660 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
    [Crossref]
  2. R. Bogue, “Sensing with terahertz radiation: a review of recent progress,” Sens. Rev. 38(2), 216–222 (2018), doi:.
    [Crossref]
  3. G. J. Wilmink and J. E. Grundt, “Invited review article: Current state of research on biological effects of terahertz radiation,” J. Infrared Millim. Terahertz Waves 32(10), 1074–1122 (2011).
    [Crossref]
  4. J. F. Federici, J. Ma, and L. Moeller, “Review of weather impact on outdoor terahertz wireless communication links,” Nano Commun. Netw. 10, 13–26 (2016).
    [Crossref]
  5. Z. Xiao, Q. Yang, J. Huang, Z. Huang, W. Zhou, Y. Gao, R. Shu, and Z. He, “Terahertz communication windows and their point-to-point transmission verification,” Appl. Opt. 57(27), 7673–7680 (2018).
    [Crossref] [PubMed]
  6. H. G. Jerrard, “Introductory Fourier Transform Spectroscopy,” Phys. Bull. 24(2), 105 (1973).
    [Crossref]
  7. P. R. Griffiths and J. A. D. Haseth, Fourier Transform Infrared Spectrometry, Second Edition (Wiley, 2007).
  8. P. Luc and S. Gerstenkorn, “Fourier transform spectroscopy in the visible and ultraviolet range,” Appl. Opt. 17(9), 1327–1331 (1978).
    [Crossref] [PubMed]
  9. P. R. Griffiths, “Fourier transform infrared spectrometry,” Science 222(4621), 297–302 (1983).
    [Crossref] [PubMed]
  10. W. D. Perkins, “Fourier transform infrared spectroscopy. Part II. Advantages of FT-IR,” J. Chem. Educ. 64(11), A269 (1987).
    [Crossref]
  11. T. Okamoto, S. Kawata, and S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23(2), 269–273 (1984).
    [Crossref] [PubMed]
  12. M. Hashimoto and S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31(28), 6096–6101 (1992).
    [Crossref] [PubMed]
  13. N. Ebizuka, M. Wakaki, Y. Kobayashi, and S. Sato, “Development of a multichannel Fourier transform spectrometer,” Appl. Opt. 34(34), 7899–7906 (1995).
    [Crossref] [PubMed]
  14. D. Komisarek, K. Reichard, D. Merdes, D. Lysak, P. Lam, S. Wu, and S. Yin, “High-performance nonscanning Fourier-transform spectrometer that uses a Wollaston prism array,” Appl. Opt. 43(20), 3983–3988 (2004).
    [Crossref] [PubMed]
  15. J. Li, B. Gao, C. Qi, J. Zhu, and X. Hou, “Tests of a compact static Fourier-transform imaging spectropolarimeter,” Opt. Express 22(11), 13014–13021 (2014).
    [Crossref] [PubMed]
  16. C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
    [Crossref] [PubMed]
  17. Y. C. Luo, X. X. Liu, D. J. Hayton, L. Wei, J. R. Gao, and C. Groppi, “Fourier phase grating for THz multi-beam local oscillators,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (ISSTT, 2015), pp. 77–78.
  18. B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
    [Crossref] [PubMed]
  19. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023–2029 (2017).
    [Crossref]
  20. J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
    [Crossref]
  21. R. T. Hall, D. Vrabec, and J. M. Dowling, “A high-resolution, far infrared double-beam lamellar grating interferometer,” Appl. Opt. 5(7), 1147–1158 (1966).
    [Crossref] [PubMed]
  22. O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29(13), 1437–1439 (2004).
    [Crossref] [PubMed]
  23. Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
    [Crossref]
  24. N. Pelin Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53(31), 7267–7272 (2014).
    [Crossref] [PubMed]
  25. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  27. O. K. Ersoy, Diffraction, Fourier Optics and Imaging (Wiley, 2006).
  28. S. C. Gustafson, “Book Rvw: Introduction to Fourier Optics, Second Edition,” Opt. Eng. 35(4), 1513 (1995).
  29. Y. Mou, Z.-S. Wu, Y.-Q. Gao, Z.-Q. Yang, Q.-J. Yang, and G. Zhang, “Determination of the complex refractivity of Au, Cu and Al in terahertz and far-infrared regions from reflection spectra measurements,” Infrared Phys. Technol. 80, 58–64 (2017).
    [Crossref]
  30. J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
    [Crossref]
  31. Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
    [Crossref]

2018 (3)

R. Bogue, “Sensing with terahertz radiation: a review of recent progress,” Sens. Rev. 38(2), 216–222 (2018), doi:.
[Crossref]

Z. Xiao, Q. Yang, J. Huang, Z. Huang, W. Zhou, Y. Gao, R. Shu, and Z. He, “Terahertz communication windows and their point-to-point transmission verification,” Appl. Opt. 57(27), 7673–7680 (2018).
[Crossref] [PubMed]

J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

2017 (3)

2016 (2)

J. F. Federici, J. Ma, and L. Moeller, “Review of weather impact on outdoor terahertz wireless communication links,” Nano Commun. Netw. 10, 13–26 (2016).
[Crossref]

C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
[Crossref] [PubMed]

2014 (3)

2013 (1)

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

2011 (1)

G. J. Wilmink and J. E. Grundt, “Invited review article: Current state of research on biological effects of terahertz radiation,” J. Infrared Millim. Terahertz Waves 32(10), 1074–1122 (2011).
[Crossref]

2008 (1)

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

2004 (2)

1995 (2)

1992 (1)

1987 (1)

W. D. Perkins, “Fourier transform infrared spectroscopy. Part II. Advantages of FT-IR,” J. Chem. Educ. 64(11), A269 (1987).
[Crossref]

1984 (1)

1983 (1)

P. R. Griffiths, “Fourier transform infrared spectrometry,” Science 222(4621), 297–302 (1983).
[Crossref] [PubMed]

1978 (1)

1973 (1)

H. G. Jerrard, “Introductory Fourier Transform Spectroscopy,” Phys. Bull. 24(2), 105 (1973).
[Crossref]

1966 (1)

Andreev, Y.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Andreev, Y. M.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Aygun, U.

Bogue, R.

R. Bogue, “Sensing with terahertz radiation: a review of recent progress,” Sens. Rev. 38(2), 216–222 (2018), doi:.
[Crossref]

Can, B.

Chu, J.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

De Rooij, N.

Deng, G.

J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Dowling, J. M.

Ebizuka, N.

Fang, Y.

J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Federici, J. F.

J. F. Federici, J. Ma, and L. Moeller, “Review of weather impact on outdoor terahertz wireless communication links,” Nano Commun. Netw. 10, 13–26 (2016).
[Crossref]

Feiwen, L.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Gao, B.

Gao, J. R.

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
[Crossref] [PubMed]

Y. C. Luo, X. X. Liu, D. J. Hayton, L. Wei, J. R. Gao, and C. Groppi, “Fourier phase grating for THz multi-beam local oscillators,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (ISSTT, 2015), pp. 77–78.

Gao, Y.

Gao, Y.-Q.

Y. Mou, Z.-S. Wu, Y.-Q. Gao, Z.-Q. Yang, Q.-J. Yang, and G. Zhang, “Determination of the complex refractivity of Au, Cu and Al in terahertz and far-infrared regions from reflection spectra measurements,” Infrared Phys. Technol. 80, 58–64 (2017).
[Crossref]

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Ge, S.

Gerstenkorn, S.

Griffiths, P. R.

P. R. Griffiths, “Fourier transform infrared spectrometry,” Science 222(4621), 297–302 (1983).
[Crossref] [PubMed]

Groppi, C.

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
[Crossref] [PubMed]

Y. C. Luo, X. X. Liu, D. J. Hayton, L. Wei, J. R. Gao, and C. Groppi, “Fourier phase grating for THz multi-beam local oscillators,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (ISSTT, 2015), pp. 77–78.

Grundt, J. E.

G. J. Wilmink and J. E. Grundt, “Invited review article: Current state of research on biological effects of terahertz radiation,” J. Infrared Millim. Terahertz Waves 32(10), 1074–1122 (2011).
[Crossref]

Guangya, Z.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Gustafson, S. C.

S. C. Gustafson, “Book Rvw: Introduction to Fourier Optics, Second Edition,” Opt. Eng. 35(4), 1513 (1995).

Hall, R. T.

Hashimoto, M.

Hayton, D. J.

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
[Crossref] [PubMed]

Y. C. Luo, X. X. Liu, D. J. Hayton, L. Wei, J. R. Gao, and C. Groppi, “Fourier phase grating for THz multi-beam local oscillators,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (ISSTT, 2015), pp. 77–78.

He, Z.

Herzig, H. P.

Holmstrom, S. T. S.

Hongbin, Y.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Hou, X.

Hu, W.

Huang, J.

Z. Xiao, Q. Yang, J. Huang, Z. Huang, W. Zhou, Y. Gao, R. Shu, and Z. He, “Terahertz communication windows and their point-to-point transmission verification,” Appl. Opt. 57(27), 7673–7680 (2018).
[Crossref] [PubMed]

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Huang, J.-G.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Huang, Z.

Z. Xiao, Q. Yang, J. Huang, Z. Huang, W. Zhou, Y. Gao, R. Shu, and Z. He, “Terahertz communication windows and their point-to-point transmission verification,” Appl. Opt. 57(27), 7673–7680 (2018).
[Crossref] [PubMed]

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Huang, Z.-M.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Jerrard, H. G.

H. G. Jerrard, “Introductory Fourier Transform Spectroscopy,” Phys. Bull. 24(2), 105 (1973).
[Crossref]

Jing, S.

J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Kawata, S.

Kobayashi, Y.

Kokh, K.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Kokh, K. A.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Komisarek, D.

Lam, P.

Lanskii, G.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Lanskii, G. V.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Lewis, R. A.

R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
[Crossref]

Li, J.

Li, Q.

Lisenko, A. A.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Liu, X. X.

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
[Crossref] [PubMed]

Y. C. Luo, X. X. Liu, D. J. Hayton, L. Wei, J. R. Gao, and C. Groppi, “Fourier phase grating for THz multi-beam local oscillators,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (ISSTT, 2015), pp. 77–78.

Lu, H.

J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Lu, Y.

Luc, P.

Luo, Y. C.

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
[Crossref] [PubMed]

Y. C. Luo, X. X. Liu, D. J. Hayton, L. Wei, J. R. Gao, and C. Groppi, “Fourier phase grating for THz multi-beam local oscillators,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (ISSTT, 2015), pp. 77–78.

Lysak, D.

Ma, J.

J. F. Federici, J. Ma, and L. Moeller, “Review of weather impact on outdoor terahertz wireless communication links,” Nano Commun. Netw. 10, 13–26 (2016).
[Crossref]

Manzardo, O.

Merdes, D.

Michaely, R.

Minami, S.

Mingsheng, Z.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Mirzaei, B.

Moeller, L.

J. F. Federici, J. Ma, and L. Moeller, “Review of weather impact on outdoor terahertz wireless communication links,” Nano Commun. Netw. 10, 13–26 (2016).
[Crossref]

Mou, Y.

Y. Mou, Z.-S. Wu, Y.-Q. Gao, Z.-Q. Yang, Q.-J. Yang, and G. Zhang, “Determination of the complex refractivity of Au, Cu and Al in terahertz and far-infrared regions from reflection spectra measurements,” Infrared Phys. Technol. 80, 58–64 (2017).
[Crossref]

Mu, T.

Nakajima, M.

Noell, W.

Okamoto, T.

Olcer, S.

Ouyang, C.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Overstolz, T.

Pelin Ayerden, N.

Perkins, W. D.

W. D. Perkins, “Fourier transform infrared spectroscopy. Part II. Advantages of FT-IR,” J. Chem. Educ. 64(11), A269 (1987).
[Crossref]

Qi, C.

Qu, Y.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Reichard, K.

Sato, S.

Schädelin, F.

Shaiduko, A.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Shouhua, W.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Shu, R.

Silva, J. R. G.

Siong, C. F.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

Stehle, J.-L.

Svetlichnyi, V. A.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Tong, J.

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Urey, H.

Vrabec, D.

Wakaki, M.

Wang, L.

Wei, L.

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
[Crossref] [PubMed]

Y. C. Luo, X. X. Liu, D. J. Hayton, L. Wei, J. R. Gao, and C. Groppi, “Fourier phase grating for THz multi-beam local oscillators,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (ISSTT, 2015), pp. 77–78.

Wei, Y.

Wilmink, G. J.

G. J. Wilmink and J. E. Grundt, “Invited review article: Current state of research on biological effects of terahertz radiation,” J. Infrared Millim. Terahertz Waves 32(10), 1074–1122 (2011).
[Crossref]

Wu, J.

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Wu, S.

Wu, Z.-S.

Y. Mou, Z.-S. Wu, Y.-Q. Gao, Z.-Q. Yang, Q.-J. Yang, and G. Zhang, “Determination of the complex refractivity of Au, Cu and Al in terahertz and far-infrared regions from reflection spectra measurements,” Infrared Phys. Technol. 80, 58–64 (2017).
[Crossref]

Xia, T.

J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Xiao, Z.

Yan, T.

Yang, J.

J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Yang, Q.

Yang, Q.-J.

Y. Mou, Z.-S. Wu, Y.-Q. Gao, Z.-Q. Yang, Q.-J. Yang, and G. Zhang, “Determination of the complex refractivity of Au, Cu and Al in terahertz and far-infrared regions from reflection spectra measurements,” Infrared Phys. Technol. 80, 58–64 (2017).
[Crossref]

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Yang, Z.-Q.

Y. Mou, Z.-S. Wu, Y.-Q. Gao, Z.-Q. Yang, Q.-J. Yang, and G. Zhang, “Determination of the complex refractivity of Au, Cu and Al in terahertz and far-infrared regions from reflection spectra measurements,” Infrared Phys. Technol. 80, 58–64 (2017).
[Crossref]

Yin, S.

Yin, Z.

J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Zhang, C.

Zhang, G.

Y. Mou, Z.-S. Wu, Y.-Q. Gao, Z.-Q. Yang, Q.-J. Yang, and G. Zhang, “Determination of the complex refractivity of Au, Cu and Al in terahertz and far-infrared regions from reflection spectra measurements,” Infrared Phys. Technol. 80, 58–64 (2017).
[Crossref]

Zhou, W.

Zhu, J.

Appl. Opt. (8)

Z. Xiao, Q. Yang, J. Huang, Z. Huang, W. Zhou, Y. Gao, R. Shu, and Z. He, “Terahertz communication windows and their point-to-point transmission verification,” Appl. Opt. 57(27), 7673–7680 (2018).
[Crossref] [PubMed]

P. Luc and S. Gerstenkorn, “Fourier transform spectroscopy in the visible and ultraviolet range,” Appl. Opt. 17(9), 1327–1331 (1978).
[Crossref] [PubMed]

T. Okamoto, S. Kawata, and S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23(2), 269–273 (1984).
[Crossref] [PubMed]

M. Hashimoto and S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31(28), 6096–6101 (1992).
[Crossref] [PubMed]

N. Ebizuka, M. Wakaki, Y. Kobayashi, and S. Sato, “Development of a multichannel Fourier transform spectrometer,” Appl. Opt. 34(34), 7899–7906 (1995).
[Crossref] [PubMed]

D. Komisarek, K. Reichard, D. Merdes, D. Lysak, P. Lam, S. Wu, and S. Yin, “High-performance nonscanning Fourier-transform spectrometer that uses a Wollaston prism array,” Appl. Opt. 43(20), 3983–3988 (2004).
[Crossref] [PubMed]

N. Pelin Ayerden, U. Aygun, S. T. S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, and H. Urey, “High-speed broadband FTIR system using MEMS,” Appl. Opt. 53(31), 7267–7272 (2014).
[Crossref] [PubMed]

R. T. Hall, D. Vrabec, and J. M. Dowling, “A high-resolution, far infrared double-beam lamellar grating interferometer,” Appl. Opt. 5(7), 1147–1158 (1966).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Huang, Z. Huang, J. Tong, C. Ouyang, J. Chu, Y. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, “Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation,” Appl. Phys. Lett. 103(8), 081104 (2013).
[Crossref]

Infrared Phys. Technol. (1)

Y. Mou, Z.-S. Wu, Y.-Q. Gao, Z.-Q. Yang, Q.-J. Yang, and G. Zhang, “Determination of the complex refractivity of Au, Cu and Al in terahertz and far-infrared regions from reflection spectra measurements,” Infrared Phys. Technol. 80, 58–64 (2017).
[Crossref]

J. Chem. Educ. (1)

W. D. Perkins, “Fourier transform infrared spectroscopy. Part II. Advantages of FT-IR,” J. Chem. Educ. 64(11), A269 (1987).
[Crossref]

J. Infrared Millim. Terahertz Waves (2)

J. Yang, T. Xia, S. Jing, G. Deng, H. Lu, Y. Fang, and Z. Yin, “Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal,” J. Infrared Millim. Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

G. J. Wilmink and J. E. Grundt, “Invited review article: Current state of research on biological effects of terahertz radiation,” J. Infrared Millim. Terahertz Waves 32(10), 1074–1122 (2011).
[Crossref]

J. Micromech. Microeng. (1)

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, W. Shouhua, and Z. Mingsheng, “An electromagnetically driven lamellar grating based Fourier transform microspectrometer,” J. Micromech. Microeng. 18(5), 055016 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

R. A. Lewis, “A review of terahertz sources,” J. Phys. D Appl. Phys. 47(37), 374001 (2014).
[Crossref]

Nano Commun. Netw. (1)

J. F. Federici, J. Ma, and L. Moeller, “Review of weather impact on outdoor terahertz wireless communication links,” Nano Commun. Netw. 10, 13–26 (2016).
[Crossref]

Opt. Eng. (1)

S. C. Gustafson, “Book Rvw: Introduction to Fourier Optics, Second Edition,” Opt. Eng. 35(4), 1513 (1995).

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Bull. (1)

H. G. Jerrard, “Introductory Fourier Transform Spectroscopy,” Phys. Bull. 24(2), 105 (1973).
[Crossref]

Science (1)

P. R. Griffiths, “Fourier transform infrared spectrometry,” Science 222(4621), 297–302 (1983).
[Crossref] [PubMed]

Sens. Rev. (1)

R. Bogue, “Sensing with terahertz radiation: a review of recent progress,” Sens. Rev. 38(2), 216–222 (2018), doi:.
[Crossref]

Other (6)

P. R. Griffiths and J. A. D. Haseth, Fourier Transform Infrared Spectrometry, Second Edition (Wiley, 2007).

Y. C. Luo, X. X. Liu, D. J. Hayton, L. Wei, J. R. Gao, and C. Groppi, “Fourier phase grating for THz multi-beam local oscillators,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (ISSTT, 2015), pp. 77–78.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

O. K. Ersoy, Diffraction, Fourier Optics and Imaging (Wiley, 2006).

Z.-M. Huang, J.-G. Huang, Y.-Q. Gao, Q.-J. Yang, J. Wu, Y. Qu, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, A. A. Lisenko, and V. A. Svetlichnyi, “High-resolution terahertz spectrometer with up to 110 m single-pass base,” in Proceedings of IEEE International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2016), pp. 1–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The diagram of mineral exploration on planetary by a multichannel Fourier-transform spectroscopy. The THz radiation form the planetary surface is collected and converged at the focus of Cassegrain telescope. After optical filtering, it is collimated by an off-axis parabolic mirror. Then the parallel beam is diffracted by an MPMG. 0-order diffraction light for each grating cell is converged at the focus of the lens 1. After filtered by the stop 2, the 0-order diffraction light is collimated by the lens 2. Finally, 0-order diffraction light with different optical path difference from each grating cell converged by lens array is picked up in synchronization by a detector array.
Fig. 2
Fig. 2 (a) Schematic of 2D MPMG, (b) 1D MPMG, and (c) grating cell.
Fig. 3
Fig. 3 (a) Reflection grating simulated as a plane transmission grating. (b) Simulation diagram.
Fig. 4
Fig. 4 Schematic of structural parameters for a grating cell.
Fig. 5
Fig. 5 Influence of different parameters on the intensity distribution of grating cell diffraction field. (a) Phase difference, (b) phase difference, (c) phase difference, and (d) w/λ.The transverse axis represents the diffraction along x direction and longitudinal axis represents normalized light intensity.
Fig. 6
Fig. 6 (a) High-power THz radiation source system. (b) Laser collimation and transmission system. (c) Schematic of experiment. (d) 1D and 2D MPMG. (e) Grating-testing system. (f) Photograph of the THz detector.
Fig. 7
Fig. 7 (a) Zeroth- and first-order diffraction efficiency for each grating cell at 0.34 and (b) 0.5 THz.
Fig. 8
Fig. 8 (a) Relationship between optical path difference and zeroth-order diffraction intensity at 0.5, 0.4, and 0.34 THz. (b) Spectrum of the THz source retrieved from zeroth-order diffraction intensity by Fourier transform.

Tables (2)

Tables Icon

Table 1 Parameters of MPMG

Tables Icon

Table 2 Parameters of MPMG

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

δ max 1 2δυ ,
N2 δ max ( σ max σ min ),
φ{ ρ,τ }= 4πh{ ρ,τ } λcosYsinθ , ρ=1,2,3,, τ=1,2,3,,
u( P i )= E iλ exp[ ik(r+s) ]exp[ iφ(ρ,τ) ] rs cos( n , r )cos( n , s ) 2 dxdy,
u( P i )= Ecosχ iλ exp[ ik(r+s) ]exp[ iφ(ρ,τ) ] r s dxdy.
r r x s x 0 + y s y 0 r 2 ,s s x i x 0 + y i y 0 s 2 .
u( P i )=K exp[ ik(px+qy) ]exp[ iφ(ρ,τ) ] dxdy,
u( P i )=K n=0 n1 l 2 l 2 exp(ikqy) dy{ w 2 w 2 exp[ ikp(x+nd) ] dx+ c 2 c 2 exp[ ikp(x+w+nd) ]exp(iφ) dx } = 2Ksin( kql 2 ) kq { sin( nkdp 2 ) sin( kdp 2 ) [ 2sin(kp w 2 ) kp + 2sin(kp c 2 ) kp exp[ i(φ+kpw) ] ]exp[ i(n1)kdp 2 ] }.
I( P i )= K 2 l 2 sin c 2 ( kql 2 ) sin 2 ( nkdp 2 ) sin 2 ( kdp 2 ) [ w 2 sinc 2 (kp w 2 )+ c 2 sinc 2 (kp c 2 )+2wcsinc(kp w 2 )sinc(kp c 2 )cos(φ+kpw) ].
I( P i )=4 K 2 l 2 w 2 sin c 2 ( kql 2 ) sinc 2 (kp w 2 ) sin 2 ( nkdp 2 ) sin 2 ( kdp 2 ) cos 2 ( kpw+φ 2 ).
sinα= x i s x i f , sinβ= y i s y i f , sin α = x s r , sin β = y s r .
I( P i )=sin c 2 [ kl(sinβ+sin β ) 2 ] sinc 2 [ kw(sinα+sin α ) 2 ] sin 2 [ nkd(sinα+sin α ) 2 ] sin 2 ( kd(sinα+sin α ) 2 ) cos 2 [ kw(sinα+sin α )+φ 2 ].
I( P i )=sin c 2 ( klsinβ 2 ) sinc 2 ( kwsinα 2 ) sin 2 [ nkdsinα 2 ] sin 2 ( kdsinα 2 ) cos 2 ( kwsinα+φ 2 ).
dsinα=mλ,d=w+c,m=0,±1,±2,.
kdsinα=2π(m+ m' t ),m=0,±1,±2,;m'=1,2,,t1;t=0,1,2,,m.
Δα= λ tdcosα .
I m =sin c 2 ( mπ 2 ) sin 2 ( mnπ ) sin 2 (mπ) cos 2 ( mπ+φ 2 )= 2 n 2 π 2 sin 2 ( mπ 2 )[ 1+ (1) m cos(φ) ].
η 0 = 1+cos(φ) 2 , η ±1 = 2 π 2 [ 1cos(φ) ].
t(x)= 1 2w rect( x w )comb( x 2w )rect( y l )+ 1 2w rect( x w )comb( x+w 2w )rect( y l )exp(i 4π λ h).
u(x,y)=t(x,y) u 0 (x,y).
U( f x , f y )={ u(x,y) }={ t(x,y) }{ u 0 (x,y) }.
U( f x , f y )={ u(x,y) }={ t(x,y) }.
{ t(x,y) }= 1 2w { rect( x w )comb( x 2w )rect( y l ) } + 1 2w { rect( x w )comb( x+w 2w )rect( y l )exp(iφ) }.
{ t(x,y) }= 1 2w { rect( x w )*comb( x 2w )rect( y l ) } + exp(iφ) 2w { rect( x w )*comb( x+w 2w )rect( y l ) } =lsinc(l f y ) n= 1 2 sinc( n 2 ) +lexp(iφ)sinc(l f y ) n= 1 2 sinc( n 2 )exp(inπ) .
U m ( f x , f y )= lsinc(l f y ) 2 sinc( m 2 )[ 1+ (1) m exp(iφ) ].
η m = U m ( f x , f y ) 2 U ( f x , f y ) 2 = 1 2 sin c 2 ( m 2 )[ 1+ (1) m cos(φ) ].
η 0 = 1 2 [ 1+cos(φ) ], η ±1 = 1 2 sin c 2 ( 1 2 )[ 1cos(φ) ]= 2 π 2 [ 1cos(φ) ].
δ max 1 2δυ =3.02 cm.
N2 δ max ( σ max σ min )=8.
h max = δ max cosYsinϕ 2 =1.308 cm.
OPD{ ρ,τ }= 2h{ ρ,τ } cosYsinϕ

Metrics