Abstract

Calcium fluoride is a well-known material for optical components. It is also suited for doping with rare-earth ions, e.g., ytterbium ones. Yb:CaF2 is an efficient gain medium for high-power and ultrashort-pulse bulk lasers around 1 μm. We report on the first Yb:CaF2 planar waveguide laser. High-optical-quality single-crystalline waveguiding Yb:CaF2 thin films are grown on bulk CaF2 substrates by Liquid Phase Epitaxy. The spectroscopic study indicates the predominant coordination of isolated Yb3+ ions in trigonal oxygen-assisted sites, C3v(T2). The optical gain in Yb:CaF2 waveguide is demonstrated. A 1.4 at.% Yb:CaF2 planar waveguide laser generated 114 mW at 1037 nm with a slope efficiency of 12.9%. Yb:CaF2 films are promising for power-scalable waveguide mode-locked lasers and amplifiers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Watt-level Tm:LiYF4 channel waveguide laser produced by diamond saw dicing

Pavel Loiko, Rémi Soulard, Gurvan Brasse, Jean-Louis Doualan, Blandine Guichardaz, Alain Braud, Aleksey Tyazhev, Ammar Hideur, and Patrice Camy
Opt. Express 26(19) 24653-24662 (2018)

Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes

Esrom Kifle, Pavel Loiko, Javier Rodríguez Vázquez de Aldana, Carolina Romero, Airán Ródenas, Sun Yung Choi, Ji Eun Bae, Fabian Rotermund, Viktor Zakharov, Andrey Veniaminov, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Valentin Petrov, and Xavier Mateos
Photon. Res. 6(10) 971-980 (2018)

Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy

Western Bolaños, Joan J. Carvajal, Xavier Mateos, Ganapathy Senthil Murugan, Ananth Z. Subramanian, James S. Wilkinson, Eugenio Cantelar, Daniel Jaque, Ginés Lifante, Magdalena Aguiló, and Francisco Díaz
Opt. Express 18(26) 26937-26945 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Slack, “Thermal conductivity of CaF2, MnF2, CoF2, and ZnF2 crystals,” Phys. Rev. 122(5), 1451–1464 (1961).
    [Crossref]
  2. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2(11), 1103–1107 (1963).
    [Crossref]
  3. K. Nassau, “Application of the Czochralski method to divalent metal fluorides,” J. Appl. Phys. 32(10), 1820–1821 (1961).
    [Crossref]
  4. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
    [Crossref]
  5. M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
    [Crossref]
  6. A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
    [Crossref] [PubMed]
  7. A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
    [Crossref]
  8. A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
    [Crossref] [PubMed]
  9. G. Machinet, P. Sevillano, F. Guichard, R. Dubrasquet, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, F. Druon, D. Descamps, and E. Cormier, “High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator,” Opt. Lett. 38(20), 4008–4010 (2013).
    [Crossref] [PubMed]
  10. F. Pirzio, S. D. Di Dio Cafiso, M. Kemnitzer, F. Kienle, A. Guandalini, J. Aus der Au, and A. Agnesi, “65-fs Yb:CaF2 laser mode-locked by semiconductor saturable absorber mirror,” J. Opt. Soc. Am. B 32(11), 2321–2325 (2015).
    [Crossref]
  11. B. Dannecker, X. Délen, K. S. Wentsch, B. Weichelt, C. Hönninger, A. Voss, M. A. Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22(19), 22278–22284 (2014).
    [Crossref] [PubMed]
  12. S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier,” Opt. Lett. 35(14), 2415–2417 (2010).
    [Crossref] [PubMed]
  13. M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33(23), 2770–2772 (2008).
    [Crossref] [PubMed]
  14. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [Crossref]
  15. C. Grivas, “Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  16. D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
    [Crossref]
  17. B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
    [Crossref]
  18. R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
    [Crossref]
  19. J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91–96 (2016).
    [Crossref]
  20. E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
    [Crossref] [PubMed]
  21. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
    [Crossref] [PubMed]
  22. E. Kifle, P. Loiko, U. Griebner, V. Petrov, P. Camy, A. Braud, M. Aguiló, F. Díaz, and X. Mateos, “Diamond saw dicing of thulium channel waveguide lasers in monoclinic crystalline films,” Opt. Lett. 44(7), 1596–1599 (2019).
    [Crossref] [PubMed]
  23. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  24. D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
    [Crossref]
  25. Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
    [Crossref] [PubMed]
  26. W. Bolaños, F. Starecki, A. Braud, J.-L. Doualan, R. Moncorgé, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
    [Crossref] [PubMed]
  27. A. Peña, P. Camy, A. Benayad, J.-L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé, “Yb:CaF2 grown by liquid phase epitaxy,” Opt. Mater. 33(11), 1616–1620 (2011).
    [Crossref]
  28. S. Renard, P. Camy, J. L. Doualan, R. Moncorgé, M. Couchaud, and B. Ferrand, “Tm3+:CaF2 planar waveguides grown by liquid phase epitaxy on CaF2 substrates showing signal enhancement at 1.92 μm,” Opt. Mater. 28(11), 1289–1291 (2006).
    [Crossref]
  29. E. Daran, R. Legros, P. Pernas, and C. Fontaine, “Er–Yb codoped CaF2 thin films grown by molecular beam epitaxy,” J. Appl. Phys. 81(2), 679–684 (1997).
    [Crossref]
  30. F. Lahoz, E. Daran, G. Lifante, T. Balaji, and A. Muñoz-Yagüe, “CaF2:Yb3++Pr3+ codoped waveguides grown by molecular beam epitaxy for 1.3 μm applications,” Appl. Phys. Lett. 74(8), 1060–1062 (1999).
    [Crossref]
  31. V. Petit, P. Moretti, P. Camy, J. L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1–2), 68–70 (2008).
    [Crossref]
  32. Y. Ren, C. Cheng, Y. Jia, Y. Jiao, D. Li, M. D. Mackenzie, A. K. Kar, and F. Chen, “Switchable single-dual-wavelength Yb,Na:CaF2 waveguide lasers operating in continuous-wave and pulsed regimes,” Opt. Mater. Express 8(6), 1633–1641 (2018).
    [Crossref]
  33. R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
    [Crossref]
  34. B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  35. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  36. V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B Condens. Matter Mater. Phys. 78(8), 085131 (2008).
    [Crossref]
  37. B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
    [Crossref]
  38. M. L. Falin, K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy, “EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2,” J. Lumin. 102–103, 239–242 (2003).
    [Crossref]
  39. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [Crossref] [PubMed]
  40. Lasers and laser-related equipment—test methods for laser beam widths, divergence angles and beam propagation ratios—part 1: stigmatic and simple astigmatic beams, ISO 11146–11147 (2005).
  41. P. Loiko, R. Soulard, G. Brasse, J. L. Doualan, B. Guichardaz, A. Braud, A. Tyazhev, A. Hideur, and P. Camy, “Watt-level Tm:LiYF4 channel waveguide laser produced by diamond saw dicing,” Opt. Express 26(19), 24653–24662 (2018).
    [Crossref] [PubMed]
  42. A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett. 37(21), 4416–4418 (2012).
    [Crossref] [PubMed]
  43. A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).

2019 (1)

2018 (2)

2017 (1)

R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (3)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

B. Dannecker, X. Délen, K. S. Wentsch, B. Weichelt, C. Hönninger, A. Voss, M. A. Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22(19), 22278–22284 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (4)

2010 (2)

2008 (4)

V. Petit, P. Moretti, P. Camy, J. L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1–2), 68–70 (2008).
[Crossref]

M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33(23), 2770–2772 (2008).
[Crossref] [PubMed]

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B Condens. Matter Mater. Phys. 78(8), 085131 (2008).
[Crossref]

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

2007 (2)

2006 (2)

Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref] [PubMed]

S. Renard, P. Camy, J. L. Doualan, R. Moncorgé, M. Couchaud, and B. Ferrand, “Tm3+:CaF2 planar waveguides grown by liquid phase epitaxy on CaF2 substrates showing signal enhancement at 1.92 μm,” Opt. Mater. 28(11), 1289–1291 (2006).
[Crossref]

2004 (3)

2003 (1)

M. L. Falin, K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy, “EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2,” J. Lumin. 102–103, 239–242 (2003).
[Crossref]

2001 (1)

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

1999 (2)

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

F. Lahoz, E. Daran, G. Lifante, T. Balaji, and A. Muñoz-Yagüe, “CaF2:Yb3++Pr3+ codoped waveguides grown by molecular beam epitaxy for 1.3 μm applications,” Appl. Phys. Lett. 74(8), 1060–1062 (1999).
[Crossref]

1997 (1)

E. Daran, R. Legros, P. Pernas, and C. Fontaine, “Er–Yb codoped CaF2 thin films grown by molecular beam epitaxy,” J. Appl. Phys. 81(2), 679–684 (1997).
[Crossref]

1995 (2)

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1982 (1)

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

1963 (1)

1961 (2)

G. A. Slack, “Thermal conductivity of CaF2, MnF2, CoF2, and ZnF2 crystals,” Phys. Rev. 122(5), 1451–1464 (1961).
[Crossref]

K. Nassau, “Application of the Czochralski method to divalent metal fluorides,” J. Appl. Phys. 32(10), 1820–1821 (1961).
[Crossref]

Agnesi, A.

Aguiló, M.

Ahmed, M. A.

Aravazhi, S.

Aull, B.

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Aus der Au, J.

Balaji, T.

F. Lahoz, E. Daran, G. Lifante, T. Balaji, and A. Muñoz-Yagüe, “CaF2:Yb3++Pr3+ codoped waveguides grown by molecular beam epitaxy for 1.3 μm applications,” Appl. Phys. Lett. 74(8), 1060–1062 (1999).
[Crossref]

Balembois, F.

Beach, R. J.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Beecher, S. J.

Benayad, A.

A. Peña, P. Camy, A. Benayad, J.-L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé, “Yb:CaF2 grown by liquid phase epitaxy,” Opt. Mater. 33(11), 1616–1620 (2011).
[Crossref]

Bernhardi, E. H.

Bill, H.

M. L. Falin, K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy, “EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2,” J. Lumin. 102–103, 239–242 (2003).
[Crossref]

Boedefeld, R.

Bolaños, W.

Borca, C. N.

Boulon, G.

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[Crossref]

Brasse, G.

P. Loiko, R. Soulard, G. Brasse, J. L. Doualan, B. Guichardaz, A. Braud, A. Tyazhev, A. Hideur, and P. Camy, “Watt-level Tm:LiYF4 channel waveguide laser produced by diamond saw dicing,” Opt. Express 26(19), 24653–24662 (2018).
[Crossref] [PubMed]

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Braud, A.

Brenier, A.

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

Brown, C. T. A.

Camy, P.

E. Kifle, P. Loiko, U. Griebner, V. Petrov, P. Camy, A. Braud, M. Aguiló, F. Díaz, and X. Mateos, “Diamond saw dicing of thulium channel waveguide lasers in monoclinic crystalline films,” Opt. Lett. 44(7), 1596–1599 (2019).
[Crossref] [PubMed]

P. Loiko, R. Soulard, G. Brasse, J. L. Doualan, B. Guichardaz, A. Braud, A. Tyazhev, A. Hideur, and P. Camy, “Watt-level Tm:LiYF4 channel waveguide laser produced by diamond saw dicing,” Opt. Express 26(19), 24653–24662 (2018).
[Crossref] [PubMed]

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

G. Machinet, P. Sevillano, F. Guichard, R. Dubrasquet, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, F. Druon, D. Descamps, and E. Cormier, “High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator,” Opt. Lett. 38(20), 4008–4010 (2013).
[Crossref] [PubMed]

W. Bolaños, F. Starecki, A. Braud, J.-L. Doualan, R. Moncorgé, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
[Crossref] [PubMed]

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
[Crossref]

A. Peña, P. Camy, A. Benayad, J.-L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé, “Yb:CaF2 grown by liquid phase epitaxy,” Opt. Mater. 33(11), 1616–1620 (2011).
[Crossref]

S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier,” Opt. Lett. 35(14), 2415–2417 (2010).
[Crossref] [PubMed]

V. Petit, P. Moretti, P. Camy, J. L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1–2), 68–70 (2008).
[Crossref]

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B Condens. Matter Mater. Phys. 78(8), 085131 (2008).
[Crossref]

S. Renard, P. Camy, J. L. Doualan, R. Moncorgé, M. Couchaud, and B. Ferrand, “Tm3+:CaF2 planar waveguides grown by liquid phase epitaxy on CaF2 substrates showing signal enhancement at 1.92 μm,” Opt. Mater. 28(11), 1289–1291 (2006).
[Crossref]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[Crossref] [PubMed]

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
[Crossref] [PubMed]

Chambaz, B.

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Chartier, I.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Chen, F.

Y. Ren, C. Cheng, Y. Jia, Y. Jiao, D. Li, M. D. Mackenzie, A. K. Kar, and F. Chen, “Switchable single-dual-wavelength Yb,Na:CaF2 waveguide lasers operating in continuous-wave and pulsed regimes,” Opt. Mater. Express 8(6), 1633–1641 (2018).
[Crossref]

R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Cheng, C.

Y. Ren, C. Cheng, Y. Jia, Y. Jiao, D. Li, M. D. Mackenzie, A. K. Kar, and F. Chen, “Switchable single-dual-wavelength Yb,Na:CaF2 waveguide lasers operating in continuous-wave and pulsed regimes,” Opt. Mater. Express 8(6), 1633–1641 (2018).
[Crossref]

R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
[Crossref]

Choudhary, A.

Cormier, E.

Couchaud, M.

S. Renard, P. Camy, J. L. Doualan, R. Moncorgé, M. Couchaud, and B. Ferrand, “Tm3+:CaF2 planar waveguides grown by liquid phase epitaxy on CaF2 substrates showing signal enhancement at 1.92 μm,” Opt. Mater. 28(11), 1289–1291 (2006).
[Crossref]

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

Courjaud, A.

Dannecker, B.

Daran, E.

F. Lahoz, E. Daran, G. Lifante, T. Balaji, and A. Muñoz-Yagüe, “CaF2:Yb3++Pr3+ codoped waveguides grown by molecular beam epitaxy for 1.3 μm applications,” Appl. Phys. Lett. 74(8), 1060–1062 (1999).
[Crossref]

E. Daran, R. Legros, P. Pernas, and C. Fontaine, “Er–Yb codoped CaF2 thin films grown by molecular beam epitaxy,” J. Appl. Phys. 81(2), 679–684 (1997).
[Crossref]

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

de Ridder, R. M.

Debourg, G.

Delaigue, M.

Délen, X.

Descamps, D.

Di Dio Cafiso, S. D.

Díaz, F.

Doualan, J. L.

P. Loiko, R. Soulard, G. Brasse, J. L. Doualan, B. Guichardaz, A. Braud, A. Tyazhev, A. Hideur, and P. Camy, “Watt-level Tm:LiYF4 channel waveguide laser produced by diamond saw dicing,” Opt. Express 26(19), 24653–24662 (2018).
[Crossref] [PubMed]

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
[Crossref]

V. Petit, P. Moretti, P. Camy, J. L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1–2), 68–70 (2008).
[Crossref]

S. Renard, P. Camy, J. L. Doualan, R. Moncorgé, M. Couchaud, and B. Ferrand, “Tm3+:CaF2 planar waveguides grown by liquid phase epitaxy on CaF2 substrates showing signal enhancement at 1.92 μm,” Opt. Mater. 28(11), 1289–1291 (2006).
[Crossref]

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
[Crossref] [PubMed]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[Crossref] [PubMed]

Doualan, J.-L.

Druon, F.

Dubrasquet, R.

Eason, R. W.

Falin, M. L.

M. L. Falin, K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy, “EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2,” J. Lumin. 102–103, 239–242 (2003).
[Crossref]

Ferrand, B.

S. Renard, P. Camy, J. L. Doualan, R. Moncorgé, M. Couchaud, and B. Ferrand, “Tm3+:CaF2 planar waveguides grown by liquid phase epitaxy on CaF2 substrates showing signal enhancement at 1.92 μm,” Opt. Mater. 28(11), 1289–1291 (2006).
[Crossref]

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Fontaine, C.

E. Daran, R. Legros, P. Pernas, and C. Fontaine, “Er–Yb codoped CaF2 thin films grown by molecular beam epitaxy,” J. Appl. Phys. 81(2), 679–684 (1997).
[Crossref]

Fredrich-Thornton, S. T.

Fukuda, K.

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

Fukuda, T.

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[Crossref]

Genevois, C.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Georges, P.

Gerasimov, K. I.

M. L. Falin, K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy, “EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2,” J. Lumin. 102–103, 239–242 (2003).
[Crossref]

Geskus, D.

Goutaudier, C.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[Crossref]

Graf, T.

Grant-Jacob, J. A.

Griebner, U.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010).
[Crossref] [PubMed]

Guandalini, A.

Guichard, F.

Guichardaz, B.

Guyot, Y.

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[Crossref]

Hanna, D. C.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Hein, J.

Hettrick, S. J.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Hideur, A.

Hönninger, C.

Hornung, M.

Hua, P.

Ito, M.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[Crossref]

Jacquemet, M.

Jenssen, H.

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Jia, Y.

Jiao, Y.

Jochmann, A.

Jouini, A.

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

Kaluza, M. C.

Kannan, P.

Kar, A. K.

Karsch, S.

Kemnitzer, M.

Kienle, F.

Kifle, E.

Klingebiel, S.

Kränkel, C.

Krausz, F.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kühn, H.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Lacroix, B.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Lagatsky, A. A.

Lahoz, F.

F. Lahoz, E. Daran, G. Lifante, T. Balaji, and A. Muñoz-Yagüe, “CaF2:Yb3++Pr3+ codoped waveguides grown by molecular beam epitaxy for 1.3 μm applications,” Appl. Phys. Lett. 74(8), 1060–1062 (1999).
[Crossref]

Large, A. C.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Latypov, V. A.

M. L. Falin, K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy, “EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2,” J. Lumin. 102–103, 239–242 (2003).
[Crossref]

Lebbou, K.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[Crossref]

Legros, R.

E. Daran, R. Legros, P. Pernas, and C. Fontaine, “Er–Yb codoped CaF2 thin films grown by molecular beam epitaxy,” J. Appl. Phys. 81(2), 679–684 (1997).
[Crossref]

Leushin, A. M.

M. L. Falin, K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy, “EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2,” J. Lumin. 102–103, 239–242 (2003).
[Crossref]

Li, C.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Li, D.

Li, R.

R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
[Crossref]

Lifante, G.

F. Lahoz, E. Daran, G. Lifante, T. Balaji, and A. Muñoz-Yagüe, “CaF2:Yb3++Pr3+ codoped waveguides grown by molecular beam epitaxy for 1.3 μm applications,” Appl. Phys. Lett. 74(8), 1060–1062 (1999).
[Crossref]

Loiko, P.

Lovy, D.

M. L. Falin, K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy, “EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2,” J. Lumin. 102–103, 239–242 (2003).
[Crossref]

Lu, Q.

R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
[Crossref]

Lucca, A.

Lui, M.

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

Machinet, G.

Mackenzie, J. I.

J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91–96 (2016).
[Crossref]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Mackenzie, M. D.

Malitson, I. H.

Margerie, J.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Mateos, X.

Maurel, C.

A. Peña, P. Camy, A. Benayad, J.-L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé, “Yb:CaF2 grown by liquid phase epitaxy,” Opt. Mater. 33(11), 1616–1620 (2011).
[Crossref]

McFarlane, R. A.

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

Meissner, H. E.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Mitchell, S. C.

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Moncorgé, R.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

G. Machinet, P. Sevillano, F. Guichard, R. Dubrasquet, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, F. Druon, D. Descamps, and E. Cormier, “High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator,” Opt. Lett. 38(20), 4008–4010 (2013).
[Crossref] [PubMed]

W. Bolaños, F. Starecki, A. Braud, J.-L. Doualan, R. Moncorgé, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
[Crossref] [PubMed]

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011).
[Crossref]

A. Peña, P. Camy, A. Benayad, J.-L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé, “Yb:CaF2 grown by liquid phase epitaxy,” Opt. Mater. 33(11), 1616–1620 (2011).
[Crossref]

S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier,” Opt. Lett. 35(14), 2415–2417 (2010).
[Crossref] [PubMed]

V. Petit, P. Moretti, P. Camy, J. L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1–2), 68–70 (2008).
[Crossref]

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B Condens. Matter Mater. Phys. 78(8), 085131 (2008).
[Crossref]

S. Renard, P. Camy, J. L. Doualan, R. Moncorgé, M. Couchaud, and B. Ferrand, “Tm3+:CaF2 planar waveguides grown by liquid phase epitaxy on CaF2 substrates showing signal enhancement at 1.92 μm,” Opt. Mater. 28(11), 1289–1291 (2006).
[Crossref]

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
[Crossref] [PubMed]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[Crossref] [PubMed]

Moretti, P.

V. Petit, P. Moretti, P. Camy, J. L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1–2), 68–70 (2008).
[Crossref]

Mottay, E.

Muñoz-Yagüe, A.

F. Lahoz, E. Daran, G. Lifante, T. Balaji, and A. Muñoz-Yagüe, “CaF2:Yb3++Pr3+ codoped waveguides grown by molecular beam epitaxy for 1.3 μm applications,” Appl. Phys. Lett. 74(8), 1060–1062 (1999).
[Crossref]

Nassau, K.

K. Nassau, “Application of the Czochralski method to divalent metal fluorides,” J. Appl. Phys. 32(10), 1820–1821 (1961).
[Crossref]

Nazabal, V.

A. Peña, P. Camy, A. Benayad, J.-L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé, “Yb:CaF2 grown by liquid phase epitaxy,” Opt. Mater. 33(11), 1616–1620 (2011).
[Crossref]

Nie, W.

R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
[Crossref]

Obraztsov, P. A.

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).

Okhrimchuk, A. G.

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).

Olivier, M.

A. Peña, P. Camy, A. Benayad, J.-L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé, “Yb:CaF2 grown by liquid phase epitaxy,” Opt. Mater. 33(11), 1616–1620 (2011).
[Crossref]

Papadopoulos, D. N.

Parsonage, T. L.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Pelenc, D.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Pellegrina, A.

Peña, A.

A. Peña, P. Camy, A. Benayad, J.-L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé, “Yb:CaF2 grown by liquid phase epitaxy,” Opt. Mater. 33(11), 1616–1620 (2011).
[Crossref]

Pernas, P.

E. Daran, R. Legros, P. Pernas, and C. Fontaine, “Er–Yb codoped CaF2 thin films grown by molecular beam epitaxy,” J. Appl. Phys. 81(2), 679–684 (1997).
[Crossref]

Petermann, K.

Peters, R.

Petit, V.

V. Petit, P. Moretti, P. Camy, J. L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1–2), 68–70 (2008).
[Crossref]

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B Condens. Matter Mater. Phys. 78(8), 085131 (2008).
[Crossref]

Petrov, V.

Pirzio, F.

Podleska, S.

Pollnau, M.

Portier, X.

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B Condens. Matter Mater. Phys. 78(8), 085131 (2008).
[Crossref]

Ren, Y.

Renard, S.

S. Renard, P. Camy, J. L. Doualan, R. Moncorgé, M. Couchaud, and B. Ferrand, “Tm3+:CaF2 planar waveguides grown by liquid phase epitaxy on CaF2 substrates showing signal enhancement at 1.92 μm,” Opt. Mater. 28(11), 1289–1291 (2006).
[Crossref]

Ricaud, S.

Rivier, S.

Romanyuk, Y. E.

Ruterana, P.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Sato, H.

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

Sevillano, P.

Shang, Z.

R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
[Crossref]

Shepherd, D. P.

J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91–96 (2016).
[Crossref]

A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett. 37(21), 4416–4418 (2012).
[Crossref] [PubMed]

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Sibbett, W.

Siebold, M.

Slack, G. A.

G. A. Slack, “Thermal conductivity of CaF2, MnF2, CoF2, and ZnF2 crystals,” Phys. Rev. 122(5), 1451–1464 (1961).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Soulard, R.

Starecki, F.

Talbot, E.

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Tropper, A. C.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Tyazhev, A.

Uecker, R.

van Wolferen, H. A. G. M.

Vázquez de Aldana, J. R.

R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
[Crossref]

Voss, A.

Wandt, C.

Weichelt, B.

Wentsch, K. S.

Wörhoff, K.

Wyon, C.

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Yap, D.

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

Yoshikawa, A.

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

Zaouter, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Lahoz, E. Daran, G. Lifante, T. Balaji, and A. Muñoz-Yagüe, “CaF2:Yb3++Pr3+ codoped waveguides grown by molecular beam epitaxy for 1.3 μm applications,” Appl. Phys. Lett. 74(8), 1060–1062 (1999).
[Crossref]

Cryst. Growth Des. (1)

A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, and T. Fukuda, “Spectroscopic and laser properties of the near-infrared tunable laser material Yb3+-doped CaF2 crystal,” Cryst. Growth Des. 8(3), 808–811 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. A. McFarlane, M. Lui, and D. Yap, “Rare earth doped fluoride waveguides fabricated using molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 1(1), 82–91 (1995).
[Crossref]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

J. Alloys Compd. (1)

V. Petit, P. Moretti, P. Camy, J. L. Doualan, and R. Moncorgé, “Active waveguides produced in Yb3+:CaF2 by H+ implantation for laser applications,” J. Alloys Compd. 451(1–2), 68–70 (2008).
[Crossref]

J. Appl. Phys. (2)

E. Daran, R. Legros, P. Pernas, and C. Fontaine, “Er–Yb codoped CaF2 thin films grown by molecular beam epitaxy,” J. Appl. Phys. 81(2), 679–684 (1997).
[Crossref]

K. Nassau, “Application of the Czochralski method to divalent metal fluorides,” J. Appl. Phys. 32(10), 1820–1821 (1961).
[Crossref]

J. Lumin. (1)

M. L. Falin, K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy, “EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2,” J. Lumin. 102–103, 239–242 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−xYbxF2+x,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. P. Shepherd, S. J. Hettrick, C. Li, J. I. Mackenzie, R. J. Beach, S. C. Mitchell, and H. E. Meissner, “High-power planar dielectric waveguide lasers,” J. Phys. D Appl. Phys. 34(16), 2420–2432 (2001).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Opt. Commun. (1)

D. Pelenc, B. Chambaz, I. Chartier, B. Ferrand, C. Wyon, D. P. Shepherd, D. C. Hanna, A. C. Large, and A. C. Tropper, “High slope efficiency and low threshold in a diode-pumped epitaxially grown Yb:YAG waveguide laser,” Opt. Commun. 115(5–6), 491–497 (1995).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

R. Li, W. Nie, Q. Lu, C. Cheng, Z. Shang, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal,” Opt. Laser Technol. 92, 163–167 (2017).
[Crossref]

Opt. Lett. (11)

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
[Crossref] [PubMed]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[Crossref] [PubMed]

Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006).
[Crossref] [PubMed]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[Crossref] [PubMed]

M. Siebold, M. Hornung, R. Boedefeld, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, and M. C. Kaluza, “Terawatt diode-pumped Yb:CaF2 laser,” Opt. Lett. 33(23), 2770–2772 (2008).
[Crossref] [PubMed]

S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier,” Opt. Lett. 35(14), 2415–2417 (2010).
[Crossref] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[Crossref] [PubMed]

A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett. 37(21), 4416–4418 (2012).
[Crossref] [PubMed]

G. Machinet, P. Sevillano, F. Guichard, R. Dubrasquet, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, F. Druon, D. Descamps, and E. Cormier, “High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator,” Opt. Lett. 38(20), 4008–4010 (2013).
[Crossref] [PubMed]

W. Bolaños, F. Starecki, A. Braud, J.-L. Doualan, R. Moncorgé, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
[Crossref] [PubMed]

E. Kifle, P. Loiko, U. Griebner, V. Petrov, P. Camy, A. Braud, M. Aguiló, F. Díaz, and X. Mateos, “Diamond saw dicing of thulium channel waveguide lasers in monoclinic crystalline films,” Opt. Lett. 44(7), 1596–1599 (2019).
[Crossref] [PubMed]

Opt. Mater. (3)

A. Peña, P. Camy, A. Benayad, J.-L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé, “Yb:CaF2 grown by liquid phase epitaxy,” Opt. Mater. 33(11), 1616–1620 (2011).
[Crossref]

S. Renard, P. Camy, J. L. Doualan, R. Moncorgé, M. Couchaud, and B. Ferrand, “Tm3+:CaF2 planar waveguides grown by liquid phase epitaxy on CaF2 substrates showing signal enhancement at 1.92 μm,” Opt. Mater. 28(11), 1289–1291 (2006).
[Crossref]

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. (1)

G. A. Slack, “Thermal conductivity of CaF2, MnF2, CoF2, and ZnF2 crystals,” Phys. Rev. 122(5), 1451–1464 (1961).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+:CaF2: from isolated centers to clusters,” Phys. Rev. B Condens. Matter Mater. Phys. 78(8), 085131 (2008).
[Crossref]

B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, “Direct imaging of rare-earth ion clusters in Yb:CaF2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125124 (2014).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Sci. Rep. (1)

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).

Other (1)

Lasers and laser-related equipment—test methods for laser beam widths, divergence angles and beam propagation ratios—part 1: stigmatic and simple astigmatic beams, ISO 11146–11147 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Phase diagram of the CaCl2 – CaF2 system. The red lines indicate the selected growth conditions, (s) is the solid phase.
Fig. 2
Fig. 2 (a,b) Optical microscope images of the polished end-facet of the Yb:CaF2 / CaF2 epitaxy.
Fig. 3
Fig. 3 RT absorption, σabs, and stimulated-emission (SE), σSE, cross-sections for 1.4 at.% Yb:CaF2 LPE-grown layer and the assignment of absorption and emission peaks. The spectra for a bulk 5 at.% Yb:CaF2 crystal are given for comparison.
Fig. 4
Fig. 4 RT luminescence spectra of bulk Yb:CaF2 crystals with various doping levels and 1.4 at.% Yb:CaF2 LPE-grown layer around the zero-phonon line (ZPL) transition of Yb3+ ions in various sites. λexc = 931 nm.
Fig. 5
Fig. 5 (a) Stark splitting for Yb3+ ions in different sites of CaF2 crystals after [36,38]; (b) Coordination of Yb3+ ion in the C3v(T2) site [38].
Fig. 6
Fig. 6 (a) RT luminescence decay curves 1.4 at.% Yb:CaF2 LPE-grown layer and bulk Yb:CaF2 crystals with various doping levels. λexc = 930 nm, λlum = 1010 nm. Symbols: experimental data, lines: single-exponential fits for the determination of the luminescence lifetime τlum; (b) pinhole method evaluation of the reabsorption-free lifetime for the LPE layer.
Fig. 7
Fig. 7 Scheme of the set-up for gain measurements in planar Yb:CaF2 WG: λ/2 – half-wave plate, P – Glan-Taylor polarizer, M1-M5 – flat highly-reflective folding mirrors, DM1 and DM2 – dichroic mirrors, FL – focusing lens, CL – collimating lens, WG – waveguide.
Fig. 8
Fig. 8 Yb:CaF2 planar WG: measured and calculated (a) pump absorption at λP = 975 nm; (b) small-signal net gain at λS = 1047 nm.
Fig. 9
Fig. 9 (a) Scheme of the laser set-up: P – Glan-Taylor polarizer, PM – pump mirror, OC – output coupler, F –cut-off filter; (b) photograph of the pumped Yb:CaF2 WG laser.
Fig. 10
Fig. 10 Input-output dependences for the Ti:Sapphire-pumped Yb:CaF2 planar WG laser, η – slope efficiency.
Fig. 11
Fig. 11 (a) Typical laser emission spectra for the Yb:CaF2 planar WG laser, measured at Pabs ~0.6 W; (b) gain cross-section, σg = βσSE – (1 – β)σabs, spectra for different inversion ratios β = N2(2F5/2)/NYb.
Fig. 12
Fig. 12 Evaluation of beam quality of the laser output from the Yb:CaF2 planar WG laser: (a,b) near-field beam profile: (a) 2D profile; (b) 1D profiles in the horizontal and vertical directions, symbols: experimental data, curves – their Gaussian fits (at Pabs = 0.6 W); (c,d) evaluation of the M2 factors in the far-field in (c) the horizontal and (d) vertical directions: symbols – squared measured diameters of the laser mode, curves – their parabolic fits (at Pabs = 1.1 W). TOC = 5%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d N 2 d t = N 2 τ 2 + ( σ abs P N 1 σ SE P N 2 ) I P ( σ SE S N 2 σ abs S N 1 ) I S ,

Metrics