Abstract

We propose an effective method for biomolecular detection based on an external referencing optofluidic microbubble resonator system (EROMBRS), which possesses good long-term stability and low noise. In this study, EROMBRSs were used for nonspecific detection of bovine serum albumin (BSA) molecules and specific detection of D-biotin molecules. Ultra-low practical detection limits of 1 fg/mL for nonspecific and specific biomolecular detection were achieved.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of biomolecule detection with optofluidic ring resonator sensors

Hongying Zhu, Ian M. White, Jonathan D. Suter, Paul S. Dale, and Xudong Fan
Opt. Express 15(15) 9139-9146 (2007)

Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing

Séverine Maguis, Guillaume Laffont, Pierre Ferdinand, Benjamin Carbonnier, Khémara Kham, Tahar Mekhalif, and Marie-Claude Millot
Opt. Express 16(23) 19049-19062 (2008)

Packaged optofluidic microbubble resonators for optical sensing

Ting Tang, Xiang Wu, Liying Liu, and Lei Xu
Appl. Opt. 55(2) 395-399 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [Crossref]
  3. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
    [Crossref]
  4. T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
    [Crossref]
  5. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  6. S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
    [Crossref]
  7. A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
    [Crossref]
  8. J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
    [Crossref]
  9. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [Crossref]
  10. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [Crossref]
  11. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
    [Crossref] [PubMed]
  12. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [Crossref] [PubMed]
  13. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
    [Crossref] [PubMed]
  14. S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
    [Crossref]
  15. X. Li, Z. Zhang, Q. Yin, M. Qiu, and Y. Su, “Ultra-compact parallel label-free biosensors based on concentric micro-ring resonators in silicon-on-insulator,” in Proceedings of the Asia Optical Fiber and Optoelectronic 2008 Exposition and Conference (IEEE, 2008).
    [Crossref]
  16. H. Zhu, P. S. Dale, and X. Fan, “Optofluidic ring resonator sensor for sensitive label-free detection of breast cancer antigen CA15-3 in human serum,” Proc. SPIE 7322, 732204 (2009).
    [Crossref]
  17. H. K. Hunt, J. L. Dahmen, and C. E. Soteropulos, “Interfacing whispering gallery mode microresonators for environmental biosensing,” Proc. SPIE 8960, 89600O (2014).
    [Crossref]
  18. L. M. Freeman and A. M. Armani, “Photobleaching of Cy5 conjugated lipid bilayers determined with optical microresonators,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1160–1165 (2012).
    [Crossref]
  19. S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, “Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator,” Opt. Express 18(20), 20638–20644 (2010).
    [Crossref] [PubMed]
  20. J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  21. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35(7), 898–900 (2010).
    [Crossref] [PubMed]
  22. X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
    [Crossref]
  23. Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
    [Crossref] [PubMed]
  24. Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines (Basel) 9(6), 274 (2018).
    [Crossref] [PubMed]
  25. R. Madugani, Y. Yang, V. H. Le, J. M. Ward, and S. N. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016).
    [Crossref]
  26. S. Liu, W. Sun, Y. Wang, X. Yu, K. Xu, Y. Huang, S. Xiao, and Q. Song, “End-fire injection of light into high-Q silicon microdisks,” Optica 5(5), 612–616 (2018).
    [Crossref]
  27. Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
    [Crossref] [PubMed]
  28. M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
    [Crossref] [PubMed]
  29. T. Tang, X. Wu, L. Liu, and L. Xu, “Packaged optofluidic microbubble resonators for optical sensing,” Appl. Opt. 55(2), 395–399 (2016).
    [Crossref] [PubMed]
  30. Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
    [Crossref] [PubMed]
  31. T. M. Aminabhavi, “Use of mixing rules in the analysis of data for binary liquid mixtures,” J. Chem. Eng. Data 29(1), 54–55 (1984).
    [Crossref]
  32. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref] [PubMed]
  33. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
    [Crossref] [PubMed]
  34. A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
    [Crossref] [PubMed]
  35. L. Liang, L. Jin, Y. Ran, L.-P. Sun, and B.-O. Guan, “Fiber light-coupled optofluidic waveguide (flow) immunosensor for highly sensitive detection of p53 protein,” Anal. Chem. 90(18), 10851–10857 (2018).
    [Crossref] [PubMed]
  36. A. Macanovic, C. Marquette, C. Polychronakos, and M. F. Lawrence, “Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer,” Nucleic Acids Res. 32(2), e20 (2004).
    [Crossref] [PubMed]
  37. D.-K. Kim, H.-G. Lee, H.-I. Jung, and S.-H. Kang, “Single-protein molecular interactions on polymer-modified glass substrates for nanoarray chip application using dual-color TIRFM,” Bull. Korean Chem. Soc. 28(5), 783–790 (2007).
    [Crossref]
  38. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
    [Crossref] [PubMed]
  39. H. Zhu, P. S. Dale, C. W. Caldwell, and X. Fan, “Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors,” Anal. Chem. 81(24), 9858–9865 (2009).
    [Crossref] [PubMed]
  40. J. Wen, T. Arakawa, and J. S. Philo, “Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions,” Anal. Biochem. 240(2), 155–166 (1996).
    [Crossref] [PubMed]
  41. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
    [Crossref] [PubMed]
  42. K. Wilson and F. Vollmer, “Whispering gallery mode resonator biosensors,” in Encyclopedia of Nanotechnology, J. Fagerberg, D. Mowery, and R. Nelson, eds. (Springer, 2012) pp. 2837–2849.
  43. M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
    [Crossref] [PubMed]
  44. S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
    [Crossref]
  45. E. P. Diamandis and T. K. Christopoulos, “The biotin-(strept)avidin system: principles and applications in biotechnology,” Clin. Chem. 37(5), 625–636 (1991).
    [PubMed]
  46. X. Tu, S. L. Chen, C. L. Song, T. Y. Huang, and L. J. Guo, “Ultrahigh Q polymer microring resonators for biosensing applications,” IEEE Photonics J. 11(2), 1–10 (2019).
    [Crossref]
  47. J. Hernández and I. M. Thompson, “Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker,” Cancer 101(5), 894–904 (2004).
    [Crossref] [PubMed]
  48. K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics 5(17), 4589–4596 (2005).
    [Crossref] [PubMed]
  49. M. Hasanzadeh, N. Shadjou, and M. de la Guardia, “Current advancement in immunosensing of p53 tumor suppressor protein based on nanomaterials: Analytical approach,” Trends Analyt. Chem. 89, 13–20 (2017).
    [Crossref]
  50. S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
    [Crossref] [PubMed]

2019 (1)

X. Tu, S. L. Chen, C. L. Song, T. Y. Huang, and L. J. Guo, “Ultrahigh Q polymer microring resonators for biosensing applications,” IEEE Photonics J. 11(2), 1–10 (2019).
[Crossref]

2018 (5)

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref] [PubMed]

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines (Basel) 9(6), 274 (2018).
[Crossref] [PubMed]

L. Liang, L. Jin, Y. Ran, L.-P. Sun, and B.-O. Guan, “Fiber light-coupled optofluidic waveguide (flow) immunosensor for highly sensitive detection of p53 protein,” Anal. Chem. 90(18), 10851–10857 (2018).
[Crossref] [PubMed]

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

S. Liu, W. Sun, Y. Wang, X. Yu, K. Xu, Y. Huang, S. Xiao, and Q. Song, “End-fire injection of light into high-Q silicon microdisks,” Optica 5(5), 612–616 (2018).
[Crossref]

2017 (3)

M. Hasanzadeh, N. Shadjou, and M. de la Guardia, “Current advancement in immunosensing of p53 tumor suppressor protein based on nanomaterials: Analytical approach,” Trends Analyt. Chem. 89, 13–20 (2017).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

2016 (4)

R. Madugani, Y. Yang, V. H. Le, J. M. Ward, and S. N. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
[Crossref] [PubMed]

T. Tang, X. Wu, L. Liu, and L. Xu, “Packaged optofluidic microbubble resonators for optical sensing,” Appl. Opt. 55(2), 395–399 (2016).
[Crossref] [PubMed]

2015 (3)

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

2014 (4)

H. K. Hunt, J. L. Dahmen, and C. E. Soteropulos, “Interfacing whispering gallery mode microresonators for environmental biosensing,” Proc. SPIE 8960, 89600O (2014).
[Crossref]

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

2013 (2)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
[Crossref] [PubMed]

2012 (3)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
[Crossref] [PubMed]

L. M. Freeman and A. M. Armani, “Photobleaching of Cy5 conjugated lipid bilayers determined with optical microresonators,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1160–1165 (2012).
[Crossref]

2011 (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (3)

H. Zhu, P. S. Dale, and X. Fan, “Optofluidic ring resonator sensor for sensitive label-free detection of breast cancer antigen CA15-3 in human serum,” Proc. SPIE 7322, 732204 (2009).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

H. Zhu, P. S. Dale, C. W. Caldwell, and X. Fan, “Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors,” Anal. Chem. 81(24), 9858–9865 (2009).
[Crossref] [PubMed]

2008 (2)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2007 (2)

D.-K. Kim, H.-G. Lee, H.-I. Jung, and S.-H. Kang, “Single-protein molecular interactions on polymer-modified glass substrates for nanoarray chip application using dual-color TIRFM,” Bull. Korean Chem. Soc. 28(5), 783–790 (2007).
[Crossref]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

2006 (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

2005 (1)

K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics 5(17), 4589–4596 (2005).
[Crossref] [PubMed]

2004 (2)

A. Macanovic, C. Marquette, C. Polychronakos, and M. F. Lawrence, “Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer,” Nucleic Acids Res. 32(2), e20 (2004).
[Crossref] [PubMed]

J. Hernández and I. M. Thompson, “Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker,” Cancer 101(5), 894–904 (2004).
[Crossref] [PubMed]

2003 (2)

2002 (2)

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

1996 (1)

J. Wen, T. Arakawa, and J. S. Philo, “Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions,” Anal. Biochem. 240(2), 155–166 (1996).
[Crossref] [PubMed]

1991 (1)

E. P. Diamandis and T. K. Christopoulos, “The biotin-(strept)avidin system: principles and applications in biotechnology,” Clin. Chem. 37(5), 625–636 (1991).
[PubMed]

1984 (1)

T. M. Aminabhavi, “Use of mixing rules in the analysis of data for binary liquid mixtures,” J. Chem. Eng. Data 29(1), 54–55 (1984).
[Crossref]

Altorki, N. K.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Aminabhavi, T. M.

T. M. Aminabhavi, “Use of mixing rules in the analysis of data for binary liquid mixtures,” J. Chem. Eng. Data 29(1), 54–55 (1984).
[Crossref]

Arakawa, T.

J. Wen, T. Arakawa, and J. S. Philo, “Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions,” Anal. Biochem. 240(2), 155–166 (1996).
[Crossref] [PubMed]

Arbabi, A.

Armani, A. M.

L. M. Freeman and A. M. Armani, “Photobleaching of Cy5 conjugated lipid bilayers determined with optical microresonators,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1160–1165 (2012).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Baaske, M.

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
[Crossref] [PubMed]

Baldini, F.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Barucci, A.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Bearman, G. H.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Berneschi, S.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Burley, G.

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

Caldwell, C. W.

H. Zhu, P. S. Dale, C. W. Caldwell, and X. Fan, “Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors,” Anal. Chem. 81(24), 9858–9865 (2009).
[Crossref] [PubMed]

Camiolo, M.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Cartegni, L.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Chang, J. S.

Chen, D.-R.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Chen, S. L.

X. Tu, S. L. Chen, C. L. Song, T. Y. Huang, and L. J. Guo, “Ultrahigh Q polymer microring resonators for biosensing applications,” IEEE Photonics J. 11(2), 1–10 (2019).
[Crossref]

Chormaic, S. N.

R. Madugani, Y. Yang, V. H. Le, J. M. Ward, and S. N. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

Christopoulos, T. K.

E. P. Diamandis and T. K. Christopoulos, “The biotin-(strept)avidin system: principles and applications in biotechnology,” Clin. Chem. 37(5), 625–636 (1991).
[PubMed]

Conti, G. N.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Cosci, A.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Cosi, F.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Dahmen, J. L.

H. K. Hunt, J. L. Dahmen, and C. E. Soteropulos, “Interfacing whispering gallery mode microresonators for environmental biosensing,” Proc. SPIE 8960, 89600O (2014).
[Crossref]

Dale, P. S.

H. Zhu, P. S. Dale, and X. Fan, “Optofluidic ring resonator sensor for sensitive label-free detection of breast cancer antigen CA15-3 in human serum,” Proc. SPIE 7322, 732204 (2009).
[Crossref]

H. Zhu, P. S. Dale, C. W. Caldwell, and X. Fan, “Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors,” Anal. Chem. 81(24), 9858–9865 (2009).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

Dawson, M. D.

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

de la Guardia, M.

M. Hasanzadeh, N. Shadjou, and M. de la Guardia, “Current advancement in immunosensing of p53 tumor suppressor protein based on nanomaterials: Analytical approach,” Trends Analyt. Chem. 89, 13–20 (2017).
[Crossref]

Diamandis, E. P.

E. P. Diamandis and T. K. Christopoulos, “The biotin-(strept)avidin system: principles and applications in biotechnology,” Clin. Chem. 37(5), 625–636 (1991).
[PubMed]

Dong, C. H.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Dulashko, Y.

Eom, S. C.

Fan, X.

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

H. Zhu, P. S. Dale, and X. Fan, “Optofluidic ring resonator sensor for sensitive label-free detection of breast cancer antigen CA15-3 in human serum,” Proc. SPIE 7322, 732204 (2009).
[Crossref]

H. Zhu, P. S. Dale, C. W. Caldwell, and X. Fan, “Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors,” Anal. Chem. 81(24), 9858–9865 (2009).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

Farias-Eisner, R.

K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics 5(17), 4589–4596 (2005).
[Crossref] [PubMed]

Farnesi, D.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Faull, K.

K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics 5(17), 4589–4596 (2005).
[Crossref] [PubMed]

Fei, Y.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines (Basel) 9(6), 274 (2018).
[Crossref] [PubMed]

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Foucher, C.

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

François, A.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Freeman, L. M.

L. M. Freeman and A. M. Armani, “Photobleaching of Cy5 conjugated lipid bilayers determined with optical microresonators,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1160–1165 (2012).
[Crossref]

Gaddam, V. R.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Giannetti, A.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Goddard, L. L.

Gong, Q.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

Guan, B.-O.

L. Liang, L. Jin, Y. Ran, L.-P. Sun, and B.-O. Guan, “Fiber light-coupled optofluidic waveguide (flow) immunosensor for highly sensitive detection of p53 protein,” Anal. Chem. 90(18), 10851–10857 (2018).
[Crossref] [PubMed]

Guilhabert, B.

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

Guo, G. C.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Guo, L. J.

X. Tu, S. L. Chen, C. L. Song, T. Y. Huang, and L. J. Guo, “Ultrahigh Q polymer microring resonators for biosensing applications,” IEEE Photonics J. 11(2), 1–10 (2019).
[Crossref]

Guo, Z.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines (Basel) 9(6), 274 (2018).
[Crossref] [PubMed]

Hall, J. M.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Han, B.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref] [PubMed]

Han, Z. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Hasanzadeh, M.

M. Hasanzadeh, N. Shadjou, and M. de la Guardia, “Current advancement in immunosensing of p53 tumor suppressor protein based on nanomaterials: Analytical approach,” Trends Analyt. Chem. 89, 13–20 (2017).
[Crossref]

Haughey, A.-M.

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

He, L.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Hernández, J.

J. Hernández and I. M. Thompson, “Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker,” Cancer 101(5), 894–904 (2004).
[Crossref] [PubMed]

Holler, S.

Huang, T. Y.

X. Tu, S. L. Chen, C. L. Song, T. Y. Huang, and L. J. Guo, “Ultrahigh Q polymer microring resonators for biosensing applications,” IEEE Photonics J. 11(2), 1–10 (2019).
[Crossref]

Huang, Y.

Huh, C.

Hunt, H. K.

H. K. Hunt, J. L. Dahmen, and C. E. Soteropulos, “Interfacing whispering gallery mode microresonators for environmental biosensing,” Proc. SPIE 8960, 89600O (2014).
[Crossref]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Jin, L.

L. Liang, L. Jin, Y. Ran, L.-P. Sun, and B.-O. Guan, “Fiber light-coupled optofluidic waveguide (flow) immunosensor for highly sensitive detection of p53 protein,” Anal. Chem. 90(18), 10851–10857 (2018).
[Crossref] [PubMed]

Jung, H.-I.

D.-K. Kim, H.-G. Lee, H.-I. Jung, and S.-H. Kang, “Single-protein molecular interactions on polymer-modified glass substrates for nanoarray chip application using dual-color TIRFM,” Bull. Korean Chem. Soc. 28(5), 783–790 (2007).
[Crossref]

Kang, S.-H.

D.-K. Kim, H.-G. Lee, H.-I. Jung, and S.-H. Kang, “Single-protein molecular interactions on polymer-modified glass substrates for nanoarray chip application using dual-color TIRFM,” Bull. Korean Chem. Soc. 28(5), 783–790 (2007).
[Crossref]

Kanibolotsky, A. L.

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Kim, D.-K.

D.-K. Kim, H.-G. Lee, H.-I. Jung, and S.-H. Kang, “Single-protein molecular interactions on polymer-modified glass substrates for nanoarray chip application using dual-color TIRFM,” Bull. Korean Chem. Soc. 28(5), 783–790 (2007).
[Crossref]

Kossakovski, D.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Kozak, K. R.

K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics 5(17), 4589–4596 (2005).
[Crossref] [PubMed]

Krainer, A.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Laurand, N.

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

Lawrence, M. F.

A. Macanovic, C. Marquette, C. Polychronakos, and M. F. Lawrence, “Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer,” Nucleic Acids Res. 32(2), e20 (2004).
[Crossref] [PubMed]

Lazzara, M. J.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Le, V. H.

R. Madugani, Y. Yang, V. H. Le, J. M. Ward, and S. N. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

Lee, H.-G.

D.-K. Kim, H.-G. Lee, H.-I. Jung, and S.-H. Kang, “Single-protein molecular interactions on polymer-modified glass substrates for nanoarray chip application using dual-color TIRFM,” Bull. Korean Chem. Soc. 28(5), 783–790 (2007).
[Crossref]

Lee, S.

Li, L.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Li, M.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Li, X.

X. Li, Z. Zhang, Q. Yin, M. Qiu, and Y. Su, “Ultra-compact parallel label-free biosensors based on concentric micro-ring resonators in silicon-on-insulator,” in Proceedings of the Asia Optical Fiber and Optoelectronic 2008 Exposition and Conference (IEEE, 2008).
[Crossref]

Li, Z.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines (Basel) 9(6), 274 (2018).
[Crossref] [PubMed]

Liang, L.

L. Liang, L. Jin, Y. Ran, L.-P. Sun, and B.-O. Guan, “Fiber light-coupled optofluidic waveguide (flow) immunosensor for highly sensitive detection of p53 protein,” Anal. Chem. 90(18), 10851–10857 (2018).
[Crossref] [PubMed]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Liu, L.

T. Tang, X. Wu, L. Liu, and L. Xu, “Packaged optofluidic microbubble resonators for optical sensing,” Appl. Opt. 55(2), 395–399 (2016).
[Crossref] [PubMed]

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Liu, S.

Lowe, S. W.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Macanovic, A.

A. Macanovic, C. Marquette, C. Polychronakos, and M. F. Lawrence, “Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer,” Nucleic Acids Res. 32(2), e20 (2004).
[Crossref] [PubMed]

Madugani, R.

R. Madugani, Y. Yang, V. H. Le, J. M. Ward, and S. N. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

Maleki, L.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Marquette, C.

A. Macanovic, C. Marquette, C. Polychronakos, and M. F. Lawrence, “Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer,” Nucleic Acids Res. 32(2), e20 (2004).
[Crossref] [PubMed]

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Meldrum, A.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Moll, U. M.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Monro, T. M.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Nadeau, J. L.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Nemajerova, A.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Nic Chormaic, S.

Özdemir, S. K.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Pelli, S.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Philo, J. S.

J. Wen, T. Arakawa, and J. S. Philo, “Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions,” Anal. Biochem. 240(2), 155–166 (1996).
[Crossref] [PubMed]

Polychronakos, C.

A. Macanovic, C. Marquette, C. Polychronakos, and M. F. Lawrence, “Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer,” Nucleic Acids Res. 32(2), e20 (2004).
[Crossref] [PubMed]

Qiu, M.

X. Li, Z. Zhang, Q. Yin, M. Qiu, and Y. Su, “Ultra-compact parallel label-free biosensors based on concentric micro-ring resonators in silicon-on-insulator,” in Proceedings of the Asia Optical Fiber and Optoelectronic 2008 Exposition and Conference (IEEE, 2008).
[Crossref]

Ran, Y.

L. Liang, L. Jin, Y. Ran, L.-P. Sun, and B.-O. Guan, “Fiber light-coupled optofluidic waveguide (flow) immunosensor for highly sensitive detection of p53 protein,” Anal. Chem. 90(18), 10851–10857 (2018).
[Crossref] [PubMed]

Rathod, T.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Reddy, S.

K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics 5(17), 4589–4596 (2005).
[Crossref] [PubMed]

Reynolds, T.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Riesen, N.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Righini, G.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

Righini, G. C.

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Saurabh, S.

Senturk, S.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Shadjou, N.

M. Hasanzadeh, N. Shadjou, and M. de la Guardia, “Current advancement in immunosensing of p53 tumor suppressor protein based on nanomaterials: Analytical approach,” Trends Analyt. Chem. 89, 13–20 (2017).
[Crossref]

Shi, L.

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Shin, J. H.

Skabara, P. J.

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

Song, C. L.

X. Tu, S. L. Chen, C. L. Song, T. Y. Huang, and L. J. Guo, “Ultrahigh Q polymer microring resonators for biosensing applications,” IEEE Photonics J. 11(2), 1–10 (2019).
[Crossref]

Song, Q.

Sordella, R.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Soria, S.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Soteropulos, C. E.

H. K. Hunt, J. L. Dahmen, and C. E. Soteropulos, “Interfacing whispering gallery mode microresonators for environmental biosensing,” Proc. SPIE 8960, 89600O (2014).
[Crossref]

Stiles, B.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Su, F.

K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics 5(17), 4589–4596 (2005).
[Crossref] [PubMed]

Su, Y.

X. Li, Z. Zhang, Q. Yin, M. Qiu, and Y. Su, “Ultra-compact parallel label-free biosensors based on concentric micro-ring resonators in silicon-on-insulator,” in Proceedings of the Asia Optical Fiber and Optoelectronic 2008 Exposition and Conference (IEEE, 2008).
[Crossref]

Sumetsky, M.

Sun, H. D.

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

Sun, L.-P.

L. Liang, L. Jin, Y. Ran, L.-P. Sun, and B.-O. Guan, “Fiber light-coupled optofluidic waveguide (flow) immunosensor for highly sensitive detection of p53 protein,” Anal. Chem. 90(18), 10851–10857 (2018).
[Crossref] [PubMed]

Sun, W.

Sun, Y.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

Sung, G. Y.

Suter, J. D.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Tang, T.

Teraoka, I.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Thompson, I. M.

J. Hernández and I. M. Thompson, “Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker,” Cancer 101(5), 894–904 (2004).
[Crossref] [PubMed]

Tombelli, S.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Trono, C.

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

Tu, X.

X. Tu, S. L. Chen, C. L. Song, T. Y. Huang, and L. J. Guo, “Ultrahigh Q polymer microring resonators for biosensing applications,” IEEE Photonics J. 11(2), 1–10 (2019).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Vollmer, F.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Walsh, A. M.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Wang, B.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines (Basel) 9(6), 274 (2018).
[Crossref] [PubMed]

Wang, Y.

S. Liu, W. Sun, Y. Wang, X. Yu, K. Xu, Y. Huang, S. Xiao, and Q. Song, “End-fire injection of light into high-Q silicon microdisks,” Optica 5(5), 612–616 (2018).
[Crossref]

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

Ward, J. M.

R. Madugani, Y. Yang, V. H. Le, J. M. Ward, and S. N. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
[Crossref] [PubMed]

Wen, J.

J. Wen, T. Arakawa, and J. S. Philo, “Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions,” Anal. Biochem. 240(2), 155–166 (1996).
[Crossref] [PubMed]

White, I. M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

Whitelegge, J. P.

K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics 5(17), 4589–4596 (2005).
[Crossref] [PubMed]

Windeler, R. S.

Wu, X.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines (Basel) 9(6), 274 (2018).
[Crossref] [PubMed]

T. Tang, X. Wu, L. Liu, and L. Xu, “Packaged optofluidic microbubble resonators for optical sensing,” Appl. Opt. 55(2), 395–399 (2016).
[Crossref] [PubMed]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Xiao, B.

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Xiao, S.

Xiao, Y. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Xiao, Y.-F.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xu, K.

Xu, L.

T. Tang, X. Wu, L. Liu, and L. Xu, “Packaged optofluidic microbubble resonators for optical sensing,” Appl. Opt. 55(2), 395–399 (2016).
[Crossref] [PubMed]

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Yang, L.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Yang, S. C.

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

Yang, Y.

R. Madugani, Y. Yang, V. H. Le, J. M. Ward, and S. N. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
[Crossref] [PubMed]

Yao, Z.

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Yin, Q.

X. Li, Z. Zhang, Q. Yin, M. Qiu, and Y. Su, “Ultra-compact parallel label-free biosensors based on concentric micro-ring resonators in silicon-on-insulator,” in Proceedings of the Asia Optical Fiber and Optoelectronic 2008 Exposition and Conference (IEEE, 2008).
[Crossref]

Yu, X.

Yu, X.-C.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

Zhang, A.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref] [PubMed]

Zhang, X.

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

Zhang, Y. N.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref] [PubMed]

Zhang, Z.

X. Li, Z. Zhang, Q. Yin, M. Qiu, and Y. Su, “Ultra-compact parallel label-free biosensors based on concentric micro-ring resonators in silicon-on-insulator,” in Proceedings of the Asia Optical Fiber and Optoelectronic 2008 Exposition and Conference (IEEE, 2008).
[Crossref]

Zhao, Y.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref] [PubMed]

Zhi, Y.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

Zhou, T.

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref] [PubMed]

Zhu, C.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines (Basel) 9(6), 274 (2018).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, P. S. Dale, C. W. Caldwell, and X. Fan, “Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors,” Anal. Chem. 81(24), 9858–9865 (2009).
[Crossref] [PubMed]

H. Zhu, P. S. Dale, and X. Fan, “Optofluidic ring resonator sensor for sensitive label-free detection of breast cancer antigen CA15-3 in human serum,” Proc. SPIE 7322, 732204 (2009).
[Crossref]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Zhu, S.

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Zourob, M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

ACS Photonics (1)

S. Zhu, L. Shi, B. Xiao, X. Zhang, and X. Fan, “All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity,” ACS Photonics 5(9), 3794–3800 (2018).
[Crossref]

Adv. Mater. (1)

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29(12), 1604920 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

S. C. Yang, Y. Wang, and H. D. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3(9), 1136–1162 (2015).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7(2), 168–240 (2015).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399(1), 205–211 (2011).
[Crossref] [PubMed]

Anal. Biochem. (1)

J. Wen, T. Arakawa, and J. S. Philo, “Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions,” Anal. Biochem. 240(2), 155–166 (1996).
[Crossref] [PubMed]

Anal. Chem. (3)

H. Zhu, P. S. Dale, C. W. Caldwell, and X. Fan, “Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors,” Anal. Chem. 81(24), 9858–9865 (2009).
[Crossref] [PubMed]

L. Liang, L. Jin, Y. Ran, L.-P. Sun, and B.-O. Guan, “Fiber light-coupled optofluidic waveguide (flow) immunosensor for highly sensitive detection of p53 protein,” Anal. Chem. 90(18), 10851–10857 (2018).
[Crossref] [PubMed]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Analyst (Lond.) (1)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Özdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[Crossref]

Bull. Korean Chem. Soc. (1)

D.-K. Kim, H.-G. Lee, H.-I. Jung, and S.-H. Kang, “Single-protein molecular interactions on polymer-modified glass substrates for nanoarray chip application using dual-color TIRFM,” Bull. Korean Chem. Soc. 28(5), 783–790 (2007).
[Crossref]

Cancer (1)

J. Hernández and I. M. Thompson, “Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker,” Cancer 101(5), 894–904 (2004).
[Crossref] [PubMed]

ChemPhysChem (1)

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem 13(2), 427–436 (2012).
[Crossref] [PubMed]

Clin. Chem. (1)

E. P. Diamandis and T. K. Christopoulos, “The biotin-(strept)avidin system: principles and applications in biotechnology,” Clin. Chem. 37(5), 625–636 (1991).
[PubMed]

Faraday Discuss. (1)

A.-M. Haughey, C. Foucher, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. Burley, M. D. Dawson, and N. Laurand, “Hybrid organic semiconductor lasers for bio-molecular sensing,” Faraday Discuss. 174, 369–381 (2014).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (3)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

L. M. Freeman and A. M. Armani, “Photobleaching of Cy5 conjugated lipid bilayers determined with optical microresonators,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1160–1165 (2012).
[Crossref]

IEEE Photonics J. (1)

X. Tu, S. L. Chen, C. L. Song, T. Y. Huang, and L. J. Guo, “Ultrahigh Q polymer microring resonators for biosensing applications,” IEEE Photonics J. 11(2), 1–10 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Madugani, Y. Yang, V. H. Le, J. M. Ward, and S. N. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

J. Chem. Eng. Data (1)

T. M. Aminabhavi, “Use of mixing rules in the analysis of data for binary liquid mixtures,” J. Chem. Eng. Data 29(1), 54–55 (1984).
[Crossref]

Laser Photonics Rev. (1)

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Micromachines (Basel) (1)

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines (Basel) 9(6), 274 (2018).
[Crossref] [PubMed]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

Nanoscale (1)

Y. N. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10(29), 13832–13856 (2018).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Nucleic Acids Res. (1)

A. Macanovic, C. Marquette, C. Polychronakos, and M. F. Lawrence, “Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer,” Nucleic Acids Res. 32(2), e20 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Senturk, Z. Yao, M. Camiolo, B. Stiles, T. Rathod, A. M. Walsh, A. Nemajerova, M. J. Lazzara, N. K. Altorki, A. Krainer, U. M. Moll, S. W. Lowe, L. Cartegni, and R. Sordella, “p53Ψ is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state,” Proc. Natl. Acad. Sci. U.S.A. 111(32), E3287–E3296 (2014).
[Crossref] [PubMed]

Proc. SPIE (5)

S. Berneschi, F. Baldini, A. Barucci, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, G. Righini, S. Soria, S. Tombelli, C. Trono, S. Pelli, and A. Giannetti, “Localized biomolecules immobilization in optical microbubble resonators,” Proc. SPIE 9727, 972719 (2016).
[Crossref]

H. Zhu, P. S. Dale, and X. Fan, “Optofluidic ring resonator sensor for sensitive label-free detection of breast cancer antigen CA15-3 in human serum,” Proc. SPIE 7322, 732204 (2009).
[Crossref]

H. K. Hunt, J. L. Dahmen, and C. E. Soteropulos, “Interfacing whispering gallery mode microresonators for environmental biosensing,” Proc. SPIE 8960, 89600O (2014).
[Crossref]

A. Giannetti, A. Barucci, S. Berneschi, A. Cosci, F. Cosi, D. Farnesi, G. N. Conti, S. Pelli, S. Soria, S. Tombelli, C. Trono, G. C. Righini, and F. Baldini, “Optical micro-bubble resonators as promising biosensors,” Proc. SPIE 9506, 950617 (2015).
[Crossref]

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[Crossref]

Proteomics (1)

K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics 5(17), 4589–4596 (2005).
[Crossref] [PubMed]

Trends Analyt. Chem. (1)

M. Hasanzadeh, N. Shadjou, and M. de la Guardia, “Current advancement in immunosensing of p53 tumor suppressor protein based on nanomaterials: Analytical approach,” Trends Analyt. Chem. 89, 13–20 (2017).
[Crossref]

Other (2)

K. Wilson and F. Vollmer, “Whispering gallery mode resonator biosensors,” in Encyclopedia of Nanotechnology, J. Fagerberg, D. Mowery, and R. Nelson, eds. (Springer, 2012) pp. 2837–2849.

X. Li, Z. Zhang, Q. Yin, M. Qiu, and Y. Su, “Ultra-compact parallel label-free biosensors based on concentric micro-ring resonators in silicon-on-insulator,” in Proceedings of the Asia Optical Fiber and Optoelectronic 2008 Exposition and Conference (IEEE, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the EROMBRS. (a) Experimental instruments and optical path setup. (b) The fused fiber taper was coupled at the equatorial surface of the microbubble photographed with a vertical camera. The diameter of the microbubble was 300 µm and had a wall thickness of 3 µm. (c) Schematic of the interaction between light and bound D-biotin molecules in the microbubble interior. (d) and (e) are fine scans of the transmission spectra at approximately 850 nm when the microbubble was empty or filled with deionized water, respectively. The Q factor was 1.8 × 106 and 1.1 × 106 in the empty and water-filled OMBR, respectively.
Fig. 2
Fig. 2 Schematic of an OMBR and stability of the EROMBRS. (a) Partially packaged OMBR and (b) whole packaged OMBR. The gray and cerulean pieces are UV and low-index UV glues, respectively. (c) Wavelength shifts of the sensing systems for the nonpackaged OMBR (red line), partially packaged OMBR (blue line), and whole packaged OMBR (orange line) during a detection period of up to 2500 s. (d) Optical transmission spectra of the test and external referencing OMBRs in biomolecular detection of D-biotin. Positions 1 and 2 correspond to the WGMs that we tracked. (e) The mode of the test (pink line) and external referencing (violet line) resonators as a function of time, and the result after correction (green line). Inset: Wavelength shifts caused by the specific binding of D-biotin solutions. Parts E, G, and I are the cases of PBS rinsing. Parts F and H are two consecutive measurements at two bulk concentrations of 10 and 100 fg/mL, respectively.
Fig. 3
Fig. 3 Simulated and experimental BRISs of the EROMBRSs. (a) Relationship between the refractive index of the DMSO-water mixtures and DMSO (volume fraction). (b) Ladder-like wavelength shift sensorgram when DI water, 1-5% DMSO-water mixtures and DI water again were extracted into the microbubble. (c) Wavelength shifts as a function of refractive index. The experimental BRIS of the whole packaged OMBR was approximately SExp = 11.39 nm/RIU. The simulated BRIS with a third-order radial mode was SSim = 11.16 nm/RIU. (d) Normalized electric field intensity distributions of the WGMs with different radial orders.
Fig. 4
Fig. 4 Nonspecific detection of bovine serum albumin solutions. (a) Silanization of the microbubble surface and the process of nonspecifically identifying bovine serum albumin. (b) Wavelength shifts caused by the binding of bovine serum albumin solutions. (c) Final calculated molecular surface density (MSD) as a function of different bovine serum albumin concentrations.
Fig. 5
Fig. 5 Specific detection of the small molecule D-biotin. (a) Silanization of the microbubble surface and the process of specifically identifying the D-biotin biomolecule. (b) Final wavelength shift curves for the detection of 4.1 fM (1 fg/mL) of D-biotin. The OMBR was rinsed and soaked in PBS for several seconds to establish a stable detection baseline. The D-biotin solution was introduced into the OMBR for 1200 s and was then rinsed with PBS once again. (c) Final calculated MSD as a function of different D-biotin concentrations.

Tables (1)

Tables Icon

Table 1 Experimental Data of Three Independent Measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S= δλ δn ,
σ p = 1 α ex n 3 2 n 2 ε 0 λ 2π n 2 2 n 3 2 δλ S ,

Metrics