Abstract

Two-photon excited fluorescence (TPEF) plays an important role in bioimaging, the longer excitation wavelength improves its imaging depths, which gives us deeper biological information. Here, we reported the two-photon absorption of a small squaraine dye (SD), and we found that the TPEF of the small SD can be enhanced significantly using albumin, the TPEF of SD in water was enhanced 17.7 times by adding bull serum albumin (BSA) in the solution. Meanwhile, the cell imaging results indicated that the SD can enter cell effectively in less than 30 min and emit bright TPEF. Furthermore, the SD showed excellent stability against photobleaching in near-infrared II (1200 nm). The cytotoxicity experiment showed that the cytotoxicity of SD is relatively low. Our work demonstrates the excellent two-photon effect of SD in cells, potential application value of SD in two-photon bioimaging, protein detection and near infrared sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Monitoring the endocytosis of bovine serum albumin based on the fluorescence lifetime of small squaraine dye in living cells

Fangrui Lin, Pintu Das, Yihua Zhao, Binglin Shen, Rui Hu, Feifan Zhou, Liwei Liu, and Junle Qu
Biomed. Opt. Express 11(1) 149-159 (2020)

Enhanced two-photon excited fluorescence in three-dimensionally crosslinked bovine serum albumin microstructures

Keng-Chi Cho, Chi-Hsiang Lien, Chun-Yu Lin, Chia-Yuan Chang, Lynn L. H. Huang, Paul J. Campagnola, Chen Yuan Dong, and Shean-Jen Chen
Opt. Express 19(12) 11732-11739 (2011)

Biocompatible near-infrared fluorescent nanoparticles for macro and microscopic in vivo functional bioimaging

Liliang Chu, Shaowei Wang, Kanghui Li, Wang Xi, Xinyuan Zhao, and Jun Qian
Biomed. Opt. Express 5(11) 4076-4088 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev. 41(7), 2656–2672 (2012).
    [Crossref] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  3. J. A. Feijó and N. Moreno, “Imaging plant cells by two-photon excitation,” Protoplasma 223(1), 1–32 (2004).
    [Crossref] [PubMed]
  4. P. Kumari, S. K. Verma, and S. M. Mobin, “Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids,” Chem. Commun. (Camb.) 54(5), 539–542 (2018).
    [Crossref] [PubMed]
  5. J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
    [Crossref] [PubMed]
  6. Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
    [Crossref] [PubMed]
  7. T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
    [Crossref] [PubMed]
  8. S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
    [Crossref]
  9. Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
    [Crossref]
  10. L. Yuan, W. Lin, H. Chen, S. Zhu, and L. He, “A unique family of rigid analogues of the GFP chromophore with tunable two-photon action cross-sections for biological imaging,” Angew. Chem. Int. Ed. Engl. 52(38), 10018–10022 (2013).
    [Crossref] [PubMed]
  11. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [Crossref]
  12. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
    [Crossref] [PubMed]
  13. C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
    [Crossref] [PubMed]
  14. W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
    [Crossref] [PubMed]
  15. Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
    [Crossref] [PubMed]
  16. J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
    [Crossref] [PubMed]
  17. H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
    [Crossref]
  18. S. Sreejith, P. Carol, P. Chithra, and A. Ajayaghosh, “Squaraine dyes: a mine of molecular materials,” J. Mater. Chem. 18(3), 264–274 (2008).
    [Crossref]
  19. Y. D. Lee, C. K. Lim, S. Kim, I. C. Kwon, and J. Kim, “Squaraine-doped functional nanoprobes: lipophilically protected near-infrared fluorescence for bioimaging,” Adv. Funct. Mater. 20(17), 2786–2793 (2010).
    [Crossref]
  20. L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
    [Crossref] [PubMed]
  21. G. Wang, W. Xu, Y. Guo, and N. Fu, “Near-infrared squaraine dye as a selective protein sensor based on self-assembly,” Sens. Actuators B Chem. 245, 932–937 (2017).
    [Crossref]
  22. C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
    [Crossref] [PubMed]
  23. C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
    [Crossref]
  24. Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
    [Crossref]
  25. T. Luo, T. Zhou, Y. Zhao, L. Liu, and J. Qu, “Multiplexed fluorescence lifetime imaging by concentration-dependent quenching,” J. Mater. Chem. B Mater. Biol. Med. 6(13), 1912–1919 (2018).
    [Crossref]
  26. T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
    [Crossref] [PubMed]
  27. S. Das, K. G. Thomas, R. Ramanathan, M. George, and P. V. Kamat, “Photochemistry of squaraine dyes. 6. Solvent hydrogen bonding effects on the photophysical properties of bis (benzothiazolylidene) squaraines,” J. Phys. Chem. 97(51), 13625–13628 (1993).
    [Crossref]
  28. Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
    [Crossref]
  29. K. D. Volkova, V. B. Kovalska, A. L. Tatarets, L. D. Patsenker, D. V. Kryvorotenko, and S. M. Yarmoluk, “Spectroscopic study of squaraines as protein-sensitive fluorescent dyes,” Dyes Pigments 72(3), 285–292 (2007).
    [Crossref]
  30. X. Fan, Q. He, S. Sun, H. Li, Y. Pei, and Y. Xu, “Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging,” Chem. Commun. (Camb.) 52(6), 1178–1181 (2016).
    [Crossref] [PubMed]
  31. Y. Zhang, X. Yue, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes,” ACS Appl. Mater. Interfaces 5(17), 8710–8717 (2013).
    [Crossref] [PubMed]

2018 (9)

P. Kumari, S. K. Verma, and S. M. Mobin, “Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids,” Chem. Commun. (Camb.) 54(5), 539–542 (2018).
[Crossref] [PubMed]

J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
[Crossref] [PubMed]

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
[Crossref] [PubMed]

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
[Crossref]

T. Luo, T. Zhou, Y. Zhao, L. Liu, and J. Qu, “Multiplexed fluorescence lifetime imaging by concentration-dependent quenching,” J. Mater. Chem. B Mater. Biol. Med. 6(13), 1912–1919 (2018).
[Crossref]

T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
[Crossref] [PubMed]

Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
[Crossref]

2017 (3)

C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
[Crossref]

G. Wang, W. Xu, Y. Guo, and N. Fu, “Near-infrared squaraine dye as a selective protein sensor based on self-assembly,” Sens. Actuators B Chem. 245, 932–937 (2017).
[Crossref]

H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
[Crossref]

2016 (1)

X. Fan, Q. He, S. Sun, H. Li, Y. Pei, and Y. Xu, “Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging,” Chem. Commun. (Camb.) 52(6), 1178–1181 (2016).
[Crossref] [PubMed]

2015 (3)

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

2013 (2)

L. Yuan, W. Lin, H. Chen, S. Zhu, and L. He, “A unique family of rigid analogues of the GFP chromophore with tunable two-photon action cross-sections for biological imaging,” Angew. Chem. Int. Ed. Engl. 52(38), 10018–10022 (2013).
[Crossref] [PubMed]

Y. Zhang, X. Yue, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes,” ACS Appl. Mater. Interfaces 5(17), 8710–8717 (2013).
[Crossref] [PubMed]

2012 (1)

D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev. 41(7), 2656–2672 (2012).
[Crossref] [PubMed]

2010 (1)

Y. D. Lee, C. K. Lim, S. Kim, I. C. Kwon, and J. Kim, “Squaraine-doped functional nanoprobes: lipophilically protected near-infrared fluorescence for bioimaging,” Adv. Funct. Mater. 20(17), 2786–2793 (2010).
[Crossref]

2008 (2)

Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
[Crossref]

S. Sreejith, P. Carol, P. Chithra, and A. Ajayaghosh, “Squaraine dyes: a mine of molecular materials,” J. Mater. Chem. 18(3), 264–274 (2008).
[Crossref]

2007 (1)

K. D. Volkova, V. B. Kovalska, A. L. Tatarets, L. D. Patsenker, D. V. Kryvorotenko, and S. M. Yarmoluk, “Spectroscopic study of squaraines as protein-sensitive fluorescent dyes,” Dyes Pigments 72(3), 285–292 (2007).
[Crossref]

2006 (1)

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

2005 (1)

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

2004 (2)

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref] [PubMed]

J. A. Feijó and N. Moreno, “Imaging plant cells by two-photon excitation,” Protoplasma 223(1), 1–32 (2004).
[Crossref] [PubMed]

2002 (1)

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

1996 (1)

1993 (1)

S. Das, K. G. Thomas, R. Ramanathan, M. George, and P. V. Kamat, “Photochemistry of squaraine dyes. 6. Solvent hydrogen bonding effects on the photophysical properties of bis (benzothiazolylidene) squaraines,” J. Phys. Chem. 97(51), 13625–13628 (1993).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Abbotto, A.

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

Ahn, T. K.

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

Ajayaghosh, A.

S. Sreejith, P. Carol, P. Chithra, and A. Ajayaghosh, “Squaraine dyes: a mine of molecular materials,” J. Mater. Chem. 18(3), 264–274 (2008).
[Crossref]

Alifu, N.

H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
[Crossref]

Aratani, N.

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

Arroyo, E. D.

C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
[Crossref] [PubMed]

Austin, R. H.

Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
[Crossref]

Bai, D.-C.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Bai, R.

Bao, W.-E.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Belfield, K. D.

Y. Zhang, X. Yue, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes,” ACS Appl. Mater. Interfaces 5(17), 8710–8717 (2013).
[Crossref] [PubMed]

Beljonne, D.

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Beverina, L.

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

Bhatia, S. N.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref] [PubMed]

Bondar, M. V.

Y. Zhang, X. Yue, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes,” ACS Appl. Mater. Interfaces 5(17), 8710–8717 (2013).
[Crossref] [PubMed]

Bradamante, S.

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

Brédas, J.-L.

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Cai, F.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

Cai, Y.

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

Canepari, M.

C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
[Crossref] [PubMed]

Carol, P.

S. Sreejith, P. Carol, P. Chithra, and A. Ajayaghosh, “Squaraine dyes: a mine of molecular materials,” J. Mater. Chem. 18(3), 264–274 (2008).
[Crossref]

Cerminara, M.

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

Chan, W. C. W.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref] [PubMed]

Chen, C.-Y.

Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
[Crossref]

Chen, H.

L. Yuan, W. Lin, H. Chen, S. Zhu, and L. He, “A unique family of rigid analogues of the GFP chromophore with tunable two-photon action cross-sections for biological imaging,” Angew. Chem. Int. Ed. Engl. 52(38), 10018–10022 (2013).
[Crossref] [PubMed]

Chen, W.-C.

Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
[Crossref]

Chen, Y.

Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
[Crossref]

Chithra, P.

S. Sreejith, P. Carol, P. Chithra, and A. Ajayaghosh, “Squaraine dyes: a mine of molecular materials,” J. Mater. Chem. 18(3), 264–274 (2008).
[Crossref]

Chu, L.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Das, S.

S. Das, K. G. Thomas, R. Ramanathan, M. George, and P. V. Kamat, “Photochemistry of squaraine dyes. 6. Solvent hydrogen bonding effects on the photophysical properties of bis (benzothiazolylidene) squaraines,” J. Phys. Chem. 97(51), 13625–13628 (1993).
[Crossref]

Day, M. W.

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Derfus, A. M.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref] [PubMed]

Duan, L.-Y.

J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
[Crossref] [PubMed]

Fan, X.

X. Fan, Q. He, S. Sun, H. Li, Y. Pei, and Y. Xu, “Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging,” Chem. Commun. (Camb.) 52(6), 1178–1181 (2016).
[Crossref] [PubMed]

Feijó, J. A.

J. A. Feijó and N. Moreno, “Imaging plant cells by two-photon excitation,” Protoplasma 223(1), 1–32 (2004).
[Crossref] [PubMed]

Fiole, D.

C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
[Crossref] [PubMed]

Fu, H.

C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
[Crossref]

Fu, H. B.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Fu, N.

Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
[Crossref]

G. Wang, W. Xu, Y. Guo, and N. Fu, “Near-infrared squaraine dye as a selective protein sensor based on self-assembly,” Sens. Actuators B Chem. 245, 932–937 (2017).
[Crossref]

George, M.

S. Das, K. G. Thomas, R. Ramanathan, M. George, and P. V. Kamat, “Photochemistry of squaraine dyes. 6. Solvent hydrogen bonding effects on the photophysical properties of bis (benzothiazolylidene) squaraines,” J. Phys. Chem. 97(51), 13625–13628 (1993).
[Crossref]

Guo, Y.

Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
[Crossref]

G. Wang, W. Xu, Y. Guo, and N. Fu, “Near-infrared squaraine dye as a selective protein sensor based on self-assembly,” Sens. Actuators B Chem. 245, 932–937 (2017).
[Crossref]

He, C. X.

C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
[Crossref] [PubMed]

He, L.

L. Yuan, W. Lin, H. Chen, S. Zhu, and L. He, “A unique family of rigid analogues of the GFP chromophore with tunable two-photon action cross-sections for biological imaging,” Angew. Chem. Int. Ed. Engl. 52(38), 10018–10022 (2013).
[Crossref] [PubMed]

He, Q.

X. Fan, Q. He, S. Sun, H. Li, Y. Pei, and Y. Xu, “Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging,” Chem. Commun. (Camb.) 52(6), 1178–1181 (2016).
[Crossref] [PubMed]

He, S.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Hong, L.

Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
[Crossref]

Hu, R.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

Hua, J.

H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
[Crossref]

Ikeda, C.

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

Jang, S.-H.

Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
[Crossref]

Jen, A. K.-Y.

Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
[Crossref]

Jiang, J.-H.

J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
[Crossref] [PubMed]

Jiang, J.-Q.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Jiang, T.

H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
[Crossref]

Kamat, P. V.

S. Das, K. G. Thomas, R. Ramanathan, M. George, and P. V. Kamat, “Photochemistry of squaraine dyes. 6. Solvent hydrogen bonding effects on the photophysical properties of bis (benzothiazolylidene) squaraines,” J. Phys. Chem. 97(51), 13625–13628 (1993).
[Crossref]

Kim, B.

Y. Zhang, X. Yue, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes,” ACS Appl. Mater. Interfaces 5(17), 8710–8717 (2013).
[Crossref] [PubMed]

Kim, D.

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

Kim, D. Y.

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

Kim, J.

Y. D. Lee, C. K. Lim, S. Kim, I. C. Kwon, and J. Kim, “Squaraine-doped functional nanoprobes: lipophilically protected near-infrared fluorescence for bioimaging,” Adv. Funct. Mater. 20(17), 2786–2793 (2010).
[Crossref]

Kim, K.

D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev. 41(7), 2656–2672 (2012).
[Crossref] [PubMed]

Kim, K. S.

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

Kim, S.

Y. D. Lee, C. K. Lim, S. Kim, I. C. Kwon, and J. Kim, “Squaraine-doped functional nanoprobes: lipophilically protected near-infrared fluorescence for bioimaging,” Adv. Funct. Mater. 20(17), 2786–2793 (2010).
[Crossref]

Koo, H.

D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev. 41(7), 2656–2672 (2012).
[Crossref] [PubMed]

Kovalska, V. B.

K. D. Volkova, V. B. Kovalska, A. L. Tatarets, L. D. Patsenker, D. V. Kryvorotenko, and S. M. Yarmoluk, “Spectroscopic study of squaraines as protein-sensitive fluorescent dyes,” Dyes Pigments 72(3), 285–292 (2007).
[Crossref]

Kryvorotenko, D. V.

K. D. Volkova, V. B. Kovalska, A. L. Tatarets, L. D. Patsenker, D. V. Kryvorotenko, and S. M. Yarmoluk, “Spectroscopic study of squaraines as protein-sensitive fluorescent dyes,” Dyes Pigments 72(3), 285–292 (2007).
[Crossref]

Kumari, P.

P. Kumari, S. K. Verma, and S. M. Mobin, “Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids,” Chem. Commun. (Camb.) 54(5), 539–542 (2018).
[Crossref] [PubMed]

Kwok, R. T. K.

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

Kwon, I. C.

D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev. 41(7), 2656–2672 (2012).
[Crossref] [PubMed]

Y. D. Lee, C. K. Lim, S. Kim, I. C. Kwon, and J. Kim, “Squaraine-doped functional nanoprobes: lipophilically protected near-infrared fluorescence for bioimaging,” Adv. Funct. Mater. 20(17), 2786–2793 (2010).
[Crossref]

Lam, J. W. Y.

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

Landenna, M.

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

Lee, D.-E.

D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev. 41(7), 2656–2672 (2012).
[Crossref] [PubMed]

Lee, Y. D.

Y. D. Lee, C. K. Lim, S. Kim, I. C. Kwon, and J. Kim, “Squaraine-doped functional nanoprobes: lipophilically protected near-infrared fluorescence for bioimaging,” Adv. Funct. Mater. 20(17), 2786–2793 (2010).
[Crossref]

Lepousez, G.

C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
[Crossref] [PubMed]

Levin, M. D.

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Li, F.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Li, H.

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

X. Fan, Q. He, S. Sun, H. Li, Y. Pei, and Y. Xu, “Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging,” Chem. Commun. (Camb.) 52(6), 1178–1181 (2016).
[Crossref] [PubMed]

Li, J.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Li, T.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Li, Z.

J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
[Crossref] [PubMed]

Liao, Q.

C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
[Crossref]

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Lim, C. K.

Y. D. Lee, C. K. Lim, S. Kim, I. C. Kwon, and J. Kim, “Squaraine-doped functional nanoprobes: lipophilically protected near-infrared fluorescence for bioimaging,” Adv. Funct. Mater. 20(17), 2786–2793 (2010).
[Crossref]

Lin, D.

T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
[Crossref] [PubMed]

Lin, W.

L. Yuan, W. Lin, H. Chen, S. Zhu, and L. He, “A unique family of rigid analogues of the GFP chromophore with tunable two-photon action cross-sections for biological imaging,” Angew. Chem. Int. Ed. Engl. 52(38), 10018–10022 (2013).
[Crossref] [PubMed]

Liu, J.-W.

J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
[Crossref] [PubMed]

Liu, L.

Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
[Crossref]

T. Luo, T. Zhou, Y. Zhao, L. Liu, and J. Qu, “Multiplexed fluorescence lifetime imaging by concentration-dependent quenching,” J. Mater. Chem. B Mater. Biol. Med. 6(13), 1912–1919 (2018).
[Crossref]

Liu, M.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Liu, S.

T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
[Crossref] [PubMed]

Liu, Y.-P.

C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
[Crossref]

Lu, Y.

T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
[Crossref] [PubMed]

Luo, T.

T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
[Crossref] [PubMed]

T. Luo, T. Zhou, Y. Zhao, L. Liu, and J. Qu, “Multiplexed fluorescence lifetime imaging by concentration-dependent quenching,” J. Mater. Chem. B Mater. Biol. Med. 6(13), 1912–1919 (2018).
[Crossref]

Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
[Crossref]

Lv, S.-K.

C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
[Crossref]

Lv, Y.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Ma, G.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Marder, S. R.

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Meinardi, F.

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

Mobin, S. M.

P. Kumari, S. K. Verma, and S. M. Mobin, “Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids,” Chem. Commun. (Camb.) 54(5), 539–542 (2018).
[Crossref] [PubMed]

Moreno, N.

J. A. Feijó and N. Moreno, “Imaging plant cells by two-photon excitation,” Protoplasma 223(1), 1–32 (2004).
[Crossref] [PubMed]

Noh, S. B.

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

Osuka, A.

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

Pagani, G. A.

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

Pan, Z.

Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
[Crossref]

Parker, T. C.

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Patsenker, L. D.

K. D. Volkova, V. B. Kovalska, A. L. Tatarets, L. D. Patsenker, D. V. Kryvorotenko, and S. M. Yarmoluk, “Spectroscopic study of squaraines as protein-sensitive fluorescent dyes,” Dyes Pigments 72(3), 285–292 (2007).
[Crossref]

Pei, Y.

X. Fan, Q. He, S. Sun, H. Li, Y. Pei, and Y. Xu, “Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging,” Chem. Commun. (Camb.) 52(6), 1178–1181 (2016).
[Crossref] [PubMed]

Peng, X.

Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
[Crossref]

Perry, J. W.

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Pond, S. J.

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Portera-Cailliau, C.

C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
[Crossref] [PubMed]

Qian, J.

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
[Crossref]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

Qin, A.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Qin, W.

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Qu, J.

Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
[Crossref]

T. Luo, T. Zhou, Y. Zhao, L. Liu, and J. Qu, “Multiplexed fluorescence lifetime imaging by concentration-dependent quenching,” J. Mater. Chem. B Mater. Biol. Med. 6(13), 1912–1919 (2018).
[Crossref]

T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
[Crossref] [PubMed]

Ramanathan, R.

S. Das, K. G. Thomas, R. Ramanathan, M. George, and P. V. Kamat, “Photochemistry of squaraine dyes. 6. Solvent hydrogen bonding effects on the photophysical properties of bis (benzothiazolylidene) squaraines,” J. Phys. Chem. 97(51), 13625–13628 (1993).
[Crossref]

Ricard, C.

C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
[Crossref] [PubMed]

Rumi, M.

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Ryu, J. H.

D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev. 41(7), 2656–2672 (2012).
[Crossref] [PubMed]

Shen, R.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Sreejith, S.

S. Sreejith, P. Carol, P. Chithra, and A. Ajayaghosh, “Squaraine dyes: a mine of molecular materials,” J. Mater. Chem. 18(3), 264–274 (2008).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sun, C.-L.

C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
[Crossref]

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Sun, I.-C.

D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev. 41(7), 2656–2672 (2012).
[Crossref] [PubMed]

Sun, S.

X. Fan, Q. He, S. Sun, H. Li, Y. Pei, and Y. Xu, “Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging,” Chem. Commun. (Camb.) 52(6), 1178–1181 (2016).
[Crossref] [PubMed]

Tang, B. Z.

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Tatarets, A. L.

K. D. Volkova, V. B. Kovalska, A. L. Tatarets, L. D. Patsenker, D. V. Kryvorotenko, and S. M. Yarmoluk, “Spectroscopic study of squaraines as protein-sensitive fluorescent dyes,” Dyes Pigments 72(3), 285–292 (2007).
[Crossref]

Thomas, K. G.

S. Das, K. G. Thomas, R. Ramanathan, M. George, and P. V. Kamat, “Photochemistry of squaraine dyes. 6. Solvent hydrogen bonding effects on the photophysical properties of bis (benzothiazolylidene) squaraines,” J. Phys. Chem. 97(51), 13625–13628 (1993).
[Crossref]

Tian, Y.

Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
[Crossref]

Tian, Z.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Tubino, R.

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

Verma, S. K.

P. Kumari, S. K. Verma, and S. M. Mobin, “Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids,” Chem. Commun. (Camb.) 54(5), 539–542 (2018).
[Crossref] [PubMed]

Volkova, K. D.

K. D. Volkova, V. B. Kovalska, A. L. Tatarets, L. D. Patsenker, D. V. Kryvorotenko, and S. M. Yarmoluk, “Spectroscopic study of squaraines as protein-sensitive fluorescent dyes,” Dyes Pigments 72(3), 285–292 (2007).
[Crossref]

Wang, G.

G. Wang, W. Xu, Y. Guo, and N. Fu, “Near-infrared squaraine dye as a selective protein sensor based on self-assembly,” Sens. Actuators B Chem. 245, 932–937 (2017).
[Crossref]

Wang, J.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
[Crossref]

Wang, Q.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Wang, S.

Wang, X.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Wang, X.-D.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Wang, Y.

H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
[Crossref]

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

Wang, Y.-M.

J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
[Crossref] [PubMed]

Webb, W. W.

Wei, W.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Wu, Q.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Xi, W.

Xu, C.

Xu, W.

G. Wang, W. Xu, Y. Guo, and N. Fu, “Near-infrared squaraine dye as a selective protein sensor based on self-assembly,” Sens. Actuators B Chem. 245, 932–937 (2017).
[Crossref]

Xu, Y.

X. Fan, Q. He, S. Sun, H. Li, Y. Pei, and Y. Xu, “Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging,” Chem. Commun. (Camb.) 52(6), 1178–1181 (2016).
[Crossref] [PubMed]

Xu, Z.-Z.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Yang, C.-C.

Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
[Crossref]

Yao, J.

C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
[Crossref]

Yao, S.

Y. Zhang, X. Yue, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes,” ACS Appl. Mater. Interfaces 5(17), 8710–8717 (2013).
[Crossref] [PubMed]

Yarmoluk, S. M.

K. D. Volkova, V. B. Kovalska, A. L. Tatarets, L. D. Patsenker, D. V. Kryvorotenko, and S. M. Yarmoluk, “Spectroscopic study of squaraines as protein-sensitive fluorescent dyes,” Dyes Pigments 72(3), 285–292 (2007).
[Crossref]

Young, A. C.

Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
[Crossref]

Yu, R.-Q.

J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
[Crossref] [PubMed]

Yuan, L.

L. Yuan, W. Lin, H. Chen, S. Zhu, and L. He, “A unique family of rigid analogues of the GFP chromophore with tunable two-photon action cross-sections for biological imaging,” Angew. Chem. Int. Ed. Engl. 52(38), 10018–10022 (2013).
[Crossref] [PubMed]

Yue, X.

Y. Zhang, X. Yue, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes,” ACS Appl. Mater. Interfaces 5(17), 8710–8717 (2013).
[Crossref] [PubMed]

Zhang, C.-H.

J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
[Crossref] [PubMed]

Zhang, F.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
[Crossref]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Zhang, H. L.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Zhang, H.-L.

C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
[Crossref]

Zhang, P.

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

Zhang, S. X.

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Zhang, X.

Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
[Crossref]

Zhang, Y.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Y. Zhang, X. Yue, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes,” ACS Appl. Mater. Interfaces 5(17), 8710–8717 (2013).
[Crossref] [PubMed]

Zhao, L.

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
[Crossref]

T. Luo, T. Zhou, Y. Zhao, L. Liu, and J. Qu, “Multiplexed fluorescence lifetime imaging by concentration-dependent quenching,” J. Mater. Chem. B Mater. Biol. Med. 6(13), 1912–1919 (2018).
[Crossref]

Zheng, W.

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

Zhou, T.

T. Luo, T. Zhou, Y. Zhao, L. Liu, and J. Qu, “Multiplexed fluorescence lifetime imaging by concentration-dependent quenching,” J. Mater. Chem. B Mater. Biol. Med. 6(13), 1912–1919 (2018).
[Crossref]

T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
[Crossref] [PubMed]

Zhu, S.

L. Yuan, W. Lin, H. Chen, S. Zhu, and L. He, “A unique family of rigid analogues of the GFP chromophore with tunable two-photon action cross-sections for biological imaging,” Angew. Chem. Int. Ed. Engl. 52(38), 10018–10022 (2013).
[Crossref] [PubMed]

Zhu, X.

Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
[Crossref]

Zhu, Z.

H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
[Crossref]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

Y. Zhang, X. Yue, B. Kim, S. Yao, M. V. Bondar, and K. D. Belfield, “Bovine serum albumin nanoparticles with fluorogenic near-IR-emitting squaraine dyes,” ACS Appl. Mater. Interfaces 5(17), 8710–8717 (2013).
[Crossref] [PubMed]

ACS Nano (1)

Y. Lv, M. Liu, Y. Zhang, X. Wang, F. Zhang, F. Li, W.-E. Bao, J. Wang, Y. Zhang, W. Wei, G. Ma, L. Zhao, and Z. Tian, “Cancer cell membrane-biomimetic nanoprobes with two-photon excitation and near-infrared emission for intravital tumor fluorescence imaging,” ACS Nano 12(2), 1350–1358 (2018).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Y. D. Lee, C. K. Lim, S. Kim, I. C. Kwon, and J. Kim, “Squaraine-doped functional nanoprobes: lipophilically protected near-infrared fluorescence for bioimaging,” Adv. Funct. Mater. 20(17), 2786–2793 (2010).
[Crossref]

Adv. Mater. (1)

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

J.-W. Liu, Y.-M. Wang, C.-H. Zhang, L.-Y. Duan, Z. Li, R.-Q. Yu, and J.-H. Jiang, “Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging,” Anal. Chem. 90(7), 4649–4656 (2018).
[Crossref] [PubMed]

Analyst (Lond.) (1)

T. Luo, D. Lin, T. Zhou, Y. Lu, S. Liu, and J. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes,” Analyst (Lond.) 143(10), 2243–2248 (2018).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. Yuan, W. Lin, H. Chen, S. Zhu, and L. He, “A unique family of rigid analogues of the GFP chromophore with tunable two-photon action cross-sections for biological imaging,” Angew. Chem. Int. Ed. Engl. 52(38), 10018–10022 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Brain Struct. Funct. (1)

C. Ricard, E. D. Arroyo, C. X. He, C. Portera-Cailliau, G. Lepousez, M. Canepari, and D. Fiole, “Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells,” Brain Struct. Funct. 223(7), 3011–3043 (2018).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (2)

P. Kumari, S. K. Verma, and S. M. Mobin, “Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids,” Chem. Commun. (Camb.) 54(5), 539–542 (2018).
[Crossref] [PubMed]

X. Fan, Q. He, S. Sun, H. Li, Y. Pei, and Y. Xu, “Nanoparticles self-assembled from multiple interactions: a novel near-infrared fluorescent sensor for the detection of serum albumin in human sera and turn-on live-cell imaging,” Chem. Commun. (Camb.) 52(6), 1178–1181 (2016).
[Crossref] [PubMed]

Chem. Mater. (1)

Y. Tian, C.-Y. Chen, C.-C. Yang, A. C. Young, S.-H. Jang, W.-C. Chen, and A. K.-Y. Jen, “2-(2′-Hydroxyphenyl) benzoxazole-containing two-photon-absorbing chromophores as sensors for zinc and hydroxide ions,” Chem. Mater. 20(5), 1977–1987 (2008).
[Crossref]

Chem. Sci. (Camb.) (2)

W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian, W. Zheng, and B. Z. Tang, “Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration,” Chem. Sci. (Camb.) 9(10), 2705–2710 (2018).
[Crossref] [PubMed]

C.-L. Sun, Q. Liao, T. Li, J. Li, J.-Q. Jiang, Z.-Z. Xu, X.-D. Wang, R. Shen, D.-C. Bai, Q. Wang, S. X. Zhang, H. B. Fu, and H. L. Zhang, “Rational design of small indolic squaraine dyes with large two-photon absorption cross section,” Chem. Sci. (Camb.) 6(1), 761–769 (2015).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu, K. Kim, and I. C. Kwon, “Multifunctional nanoparticles for multimodal imaging and theragnosis,” Chem. Soc. Rev. 41(7), 2656–2672 (2012).
[Crossref] [PubMed]

Dyes Pigments (1)

K. D. Volkova, V. B. Kovalska, A. L. Tatarets, L. D. Patsenker, D. V. Kryvorotenko, and S. M. Yarmoluk, “Spectroscopic study of squaraines as protein-sensitive fluorescent dyes,” Dyes Pigments 72(3), 285–292 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, and D. Kim, “Relationship between two-photon absorption and the π-conjugation pathway in porphyrin arrays through dihedral angle control,” J. Am. Chem. Soc. 128(5), 1700–1704 (2006).
[Crossref] [PubMed]

J. Mater. Chem. (1)

S. Sreejith, P. Carol, P. Chithra, and A. Ajayaghosh, “Squaraine dyes: a mine of molecular materials,” J. Mater. Chem. 18(3), 264–274 (2008).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (2)

T. Luo, T. Zhou, Y. Zhao, L. Liu, and J. Qu, “Multiplexed fluorescence lifetime imaging by concentration-dependent quenching,” J. Mater. Chem. B Mater. Biol. Med. 6(13), 1912–1919 (2018).
[Crossref]

H. Zhang, N. Alifu, T. Jiang, Z. Zhu, Y. Wang, J. Hua, and J. Qian, “Biocompatible aggregation-induced emission nanoparticles with red emission for in vivo three-photon brain vascular imaging,” J. Mater. Chem. B Mater. Biol. Med. 5(15), 2757–2762 (2017).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

C.-L. Sun, S.-K. Lv, Y.-P. Liu, Q. Liao, H.-L. Zhang, H. Fu, and J. Yao, “Benzoindolic squaraine dyes with a large two-photon absorption cross-section,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(5), 1224–1230 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

S. Das, K. G. Thomas, R. Ramanathan, M. George, and P. V. Kamat, “Photochemistry of squaraine dyes. 6. Solvent hydrogen bonding effects on the photophysical properties of bis (benzothiazolylidene) squaraines,” J. Phys. Chem. 97(51), 13625–13628 (1993).
[Crossref]

J. Phys. Chem. A (1)

S. J. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, and J. W. Perry, “One-and two-photon spectroscopy of donor− acceptor− donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity,” J. Phys. Chem. A 106(47), 11470–11480 (2002).
[Crossref]

Nano Lett. (1)

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4(1), 11–18 (2004).
[Crossref] [PubMed]

Org. Lett. (1)

L. Beverina, A. Abbotto, M. Landenna, M. Cerminara, R. Tubino, F. Meinardi, S. Bradamante, and G. A. Pagani, “New π-extended water-soluble squaraines as singlet oxygen generators,” Org. Lett. 7(19), 4257–4260 (2005).
[Crossref] [PubMed]

Protoplasma (1)

J. A. Feijó and N. Moreno, “Imaging plant cells by two-photon excitation,” Protoplasma 223(1), 1–32 (2004).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sens. Actuators B Chem. (3)

G. Wang, W. Xu, Y. Guo, and N. Fu, “Near-infrared squaraine dye as a selective protein sensor based on self-assembly,” Sens. Actuators B Chem. 245, 932–937 (2017).
[Crossref]

Y. Guo, Y. Chen, X. Zhu, Z. Pan, X. Zhang, J. Wang, and N. Fu, “Self-assembled nanosensor based on squaraine dye for specific recognition and detection of human serum albumin,” Sens. Actuators B Chem. 255, 977–985 (2018).
[Crossref]

Y. Zhao, L. Liu, T. Luo, L. Hong, X. Peng, R. H. Austin, and J. Qu, “A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging,” Sens. Actuators B Chem. 269, 88–95 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup and the energy level of SD in the two-photon absorption process.
Fig. 2
Fig. 2 Synthesis and optical characterization of SD. (a) Chemical structure of SD. (b) Absorption and fluorescence spectra of SD (2 μM) in deionized water. (c) The SPEF of the SD as a function of the SD concentration, excitation at 597 nm. (d) The SPEF of the SD (2 μM) with addition of BSA (6 μM) in deionized water.
Fig. 3
Fig. 3 The relationship between added BSA concentration and fluorescence lifetime of SD. (a) The ratio of short component and long component lifetime of SD + BSA under the condition of different BSA concentration. The added BSA concentration of the 7 line is listed in the same line in part b. (b) The relationship between the mean fluorescence lifetime and the added BSA concentration. (c) The fluorescence lifetime images of SD and SD + BSA solution in different culture dishes.
Fig. 4
Fig. 4 The TPEF characteristics and cytotoxicity of SD in deionized water and cells. (a) TPEF spectra of SD (2 μM) and SD + BSA (6 μM). (b) TPEF photographs of the SD and SD + BSA solutions under 800 nm illumination. (c) The TPEF intensity of the SD as a function of the excitation wavelength, the insets show two-photon confocal scanning microscopy (TPLCSM) images of ovarian cancer cells incubated with SD upon excitation at 850 and 1190 nm, respectively. (d) A cell counting kit-8 (CCK-8) assay of ovarian cancer cells treated with SD at different concentrations at 24 h.
Fig. 5
Fig. 5 Photostability of SD in cells. (a) TPEF images of stained ovarian cancer cells (SD, 2 μM) at different times under successive irradiation (excitation wavelength: 850 nm). (b) Relative intensities of SD under successive two-photon irradiation at different times (excitation wavelength: 850 nm, illumination time: 10 min). (c) TPEF images of stained ovarian cancer cells (SD, 2 μM) at different times under successive irradiation (excitation wavelength: 1200 nm). (d) Relative intensities of SD under successive two-photon irradiation at different times (excitation wavelength: 1200 nm, illumination time: 60 min). The insets show square dependence of TPEF intensity of SD on excitation intensity of the 850 and 1200 nm-fs laser, respectively.
Fig. 6
Fig. 6 The image of ovarian cancer cells under different condition. (a) One-photon imaging. (b) Bright field imaging. (c) Two-photon imaging. (d) Merge imaging of a + b.
Fig. 7
Fig. 7 The TPEF image of mouse ear blood vessels stained with SD.

Tables (1)

Tables Icon

Table 1 Two-Photon Absorption Cross Sections of the Rhodamine B and SD (@800 nm)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 [ ( 1 - a ) e t τ 1 + a e t τ 2 ] ,
δ 1 = δ 0 F 1 c 0 n 0 η 0 F 0 c 1 n 1 η 1 ,

Metrics