Abstract

In this paper, we proposed and experimentally demonstrated a long-distance high-speed underwater optical wireless communication (UOWC) system in a laboratory environment by using a low-cost green laser diode (LD) and power-efficient non-return-to-zero on-off keying (NRZ-OOK) modulation. The system successfully achieved a data rate of 500 Mbps through a 100 m tap-water channel by using a pigtailed single-mode fiber 520 nm green LD. The tap water was measured to have an attenuation coefficient comparable to pure seawater. The measured system bit error rate (BER) value of 2.5 × 10−3 was below the forward error correction (FEC) limit of 3.8 × 10−3 with 7% overhead. The distance can be extended if the received optical power is allowed to reduce to the minimum power to meet the data rate requirement. Based on the measured minimum required power and the power decay model in the water channel, the transmission performance was predicted to be 146 m/500 Mbps and 174 m/100 Mbps.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation

Xiaoyan Liu, Suyu Yi, Xiaolin Zhou, Zhilai Fang, Zhi-Jun Qiu, Laigui Hu, Chunxiao Cong, Lirong Zheng, Ran Liu, and Pengfei Tian
Opt. Express 25(22) 27937-27947 (2017)

2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

Hassan Makine Oubei, Changping Li, Ki-Hong Park, Tien Khee Ng, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 23(16) 20743-20748 (2015)

26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode

Yifei Chen, Meiwei Kong, Tariq Ali, Jiongliang Wang, Rohail Sarwar, Jun Han, Chaoyang Guo, Bing Sun, Ning Deng, and Jing Xu
Opt. Express 25(13) 14760-14765 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Ma, S. Zhou, G. Qiao, S. Liu, and F. Zhou, “Superposition coding for downlink underwater acoustic OFDM,” IEEE J. Oceanic Eng. 42(1), 175–187 (2017).
  2. J. H. Goh, A. Shaw, and A. I. Al-Shamma’a, “Underwater wireless communication system,” J. Phys. Conf. Ser. 178(2), 012029 (2009).
    [Crossref]
  3. H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
    [Crossref]
  4. Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
    [Crossref]
  5. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
    [Crossref] [PubMed]
  6. M. Elamassie, F. Miramirkhani, and M. Uysal, “Performance characterization of underwater visible light communication,” IEEE Trans. Commun. 67(1), 543–552 (2019).
    [Crossref]
  7. M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65(3), 1176–1192 (2017).
    [Crossref]
  8. N. Anous, M. Abdallah, and K. Qaraqe, “Performance evaluation for vertical inhomogeneous underwater visible light communications,” in Proc. of Vehicular Technology Conference (VTC-Fall) (2017), 1–5.
    [Crossref]
  9. J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
    [Crossref]
  10. J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
    [Crossref] [PubMed]
  11. J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
    [Crossref]
  12. H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  13. P. Wang, C. Li, and Z. Xu, “A cost-efficient real-time 25 Mb/s system for LED-UOWC: Design, channel coding, FPGA implementation, and characterization,” J. Lightwave Technol. 36(13), 2627–2637 (2018).
    [Crossref]
  14. C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
    [Crossref] [PubMed]
  15. H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
    [Crossref]
  16. T. Sawa, “Study of adaptive underwater optical wireless communication with photomultiplier tube,” http://www. godac.jamstec.go.jp/catalog/data/doc_catalog/media/KR17–11_leg2_all.pdf .
  17. C. Shen, Y. Guo, X. Sun, G. Liu, K. T. Ho, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Going beyond 10-meter,Gbit/s underwater optical wireless communication links based on visible lasers,” in Proc. of Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) 1–3 (2017).
    [Crossref]
  18. C.-Y. Li, H.-H. Lu, W.-S. Tsai, M.-T. Cheng, C.-M. Ho, Y.-C. Wang, Z.-Y. Yang, and D.-Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
    [Crossref] [PubMed]
  19. T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
    [Crossref] [PubMed]
  20. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
    [Crossref] [PubMed]
  21. X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
    [Crossref] [PubMed]
  22. S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Express 26(17), 21685–21699 (2018).
    [Crossref] [PubMed]
  23. S. Fasham and S. Dunn, “Bluecomm underwater optical communications,” http://www.sonardyne.com/products/all-products/instruments/1148-bluecomm-underwater-optical-modem.html .
  24. C. Lu, J. Wang, S. Li, and Z. Xu, “60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital equalization,” in Proc. of Conference on Lasers and Electro-Optics (CLEO) (2019) (accepted).
  25. S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A 26(3), 530–539 (2009).
    [Crossref] [PubMed]
  26. T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express 24(22), 25832–25845 (2016).
    [Crossref] [PubMed]
  27. Z. Zeng, “A survey of underwater wireless optical communication,” University of British Columbia, Canada, Master Thesis (2015).
  28. B. Zhuang, C. Li, N. Wu, and Z. Xu, “First demonstration of 400Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer,” in Prof. of Conference on Lasers and Electro-Optics (CLEO) (2017), 1–2.
    [Crossref]
  29. X. Li, H. Chen, S. Li, Q. Gao, C. Gong, and Z. Xu, “Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC,” in Proc. of International Wireless Communications and Mobile Computing Conference (IWCMC) (2017), 616–621.
    [Crossref]

2019 (1)

M. Elamassie, F. Miramirkhani, and M. Uysal, “Performance characterization of underwater visible light communication,” IEEE Trans. Commun. 67(1), 543–552 (2019).
[Crossref]

2018 (2)

2017 (8)

C.-Y. Li, H.-H. Lu, W.-S. Tsai, M.-T. Cheng, C.-M. Ho, Y.-C. Wang, Z.-Y. Yang, and D.-Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
[Crossref] [PubMed]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65(3), 1176–1192 (2017).
[Crossref]

L. Ma, S. Zhou, G. Qiao, S. Liu, and F. Zhou, “Superposition coding for downlink underwater acoustic OFDM,” IEEE J. Oceanic Eng. 42(1), 175–187 (2017).

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[Crossref] [PubMed]

2016 (7)

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
[Crossref] [PubMed]

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
[Crossref]

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express 24(22), 25832–25845 (2016).
[Crossref] [PubMed]

2015 (1)

2009 (2)

J. H. Goh, A. Shaw, and A. I. Al-Shamma’a, “Underwater wireless communication system,” J. Phys. Conf. Ser. 178(2), 012029 (2009).
[Crossref]

S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A 26(3), 530–539 (2009).
[Crossref] [PubMed]

Akhoundi, F.

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65(3), 1176–1192 (2017).
[Crossref]

Ali, T.

Alouini, M.-S.

Al-Shamma’a, A. I.

J. H. Goh, A. Shaw, and A. I. Al-Shamma’a, “Underwater wireless communication system,” J. Phys. Conf. Ser. 178(2), 012029 (2009).
[Crossref]

Arnon, S.

Bourennane, S.

Chen, B. R.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
[Crossref]

Chen, D.-Y.

Chen, H.

X. Li, H. Chen, S. Li, Q. Gao, C. Gong, and Z. Xu, “Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC,” in Proc. of International Wireless Communications and Mobile Computing Conference (IWCMC) (2017), 616–621.
[Crossref]

Chen, W.

Chen, Y.

Cheng, J.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Cheng, M.-T.

Chi, Y.-C.

Chu, C. A.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
[Crossref]

Cong, C.

Deng, N.

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Dong, Y.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Duran, J. R.

Elamassie, M.

M. Elamassie, F. Miramirkhani, and M. Uysal, “Performance characterization of underwater visible light communication,” IEEE Trans. Commun. 67(1), 543–552 (2019).
[Crossref]

Fang, Z.

Fu, S.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Gao, Q.

X. Li, H. Chen, S. Li, Q. Gao, C. Gong, and Z. Xu, “Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC,” in Proc. of International Wireless Communications and Mobile Computing Conference (IWCMC) (2017), 616–621.
[Crossref]

Goh, J. H.

J. H. Goh, A. Shaw, and A. I. Al-Shamma’a, “Underwater wireless communication system,” J. Phys. Conf. Ser. 178(2), 012029 (2009).
[Crossref]

Gong, C.

X. Li, H. Chen, S. Li, Q. Gao, C. Gong, and Z. Xu, “Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC,” in Proc. of International Wireless Communications and Mobile Computing Conference (IWCMC) (2017), 616–621.
[Crossref]

Guo, C.

Guo, Y.

Hamza, T.

Han, J.

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

He, J.-H.

Ho, C.-M.

Ho, K.-T.

Hu, L.

Hu, S.

Huang, Y.

Jamali, M. V.

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65(3), 1176–1192 (2017).
[Crossref]

Janjua, B.

Jia, W.

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Kaushal, H.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Kedar, D.

Khalighi, M.-A.

Kong, M.

Kong, M. W.

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Kuo, H.-C.

Léon, P.

Li, C.

Li, C. Y.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
[Crossref]

Li, C.-Y.

Li, S.

X. Li, H. Chen, S. Li, Q. Gao, C. Gong, and Z. Xu, “Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC,” in Proc. of International Wireless Communications and Mobile Computing Conference (IWCMC) (2017), 616–621.
[Crossref]

C. Lu, J. Wang, S. Li, and Z. Xu, “60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital equalization,” in Proc. of Conference on Lasers and Electro-Optics (CLEO) (2019) (accepted).

Li, X.

X. Li, H. Chen, S. Li, Q. Gao, C. Gong, and Z. Xu, “Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC,” in Proc. of International Wireless Communications and Mobile Computing Conference (IWCMC) (2017), 616–621.
[Crossref]

Lin, A.

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

Lin, G. R.

Lin, G.-R.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

Lin, H. H.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
[Crossref]

Liu, G.

Liu, R.

Liu, S.

L. Ma, S. Zhou, G. Qiao, S. Liu, and F. Zhou, “Superposition coding for downlink underwater acoustic OFDM,” IEEE J. Oceanic Eng. 42(1), 175–187 (2017).

Liu, X.

Lu, C.

C. Lu, J. Wang, S. Li, and Z. Xu, “60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital equalization,” in Proc. of Conference on Lasers and Electro-Optics (CLEO) (2019) (accepted).

Lu, H. H.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
[Crossref]

Lu, H.-H.

Ma, L.

L. Ma, S. Zhou, G. Qiao, S. Liu, and F. Zhou, “Superposition coding for downlink underwater acoustic OFDM,” IEEE J. Oceanic Eng. 42(1), 175–187 (2017).

Mi, L.

Miramirkhani, F.

M. Elamassie, F. Miramirkhani, and M. Uysal, “Performance characterization of underwater visible light communication,” IEEE Trans. Commun. 67(1), 543–552 (2019).
[Crossref]

Ng, T. K.

Ooi, B. S.

Opderbecke, J.

Oubei, H. M.

Park, K.-H.

Qiao, G.

L. Ma, S. Zhou, G. Qiao, S. Liu, and F. Zhou, “Superposition coding for downlink underwater acoustic OFDM,” IEEE J. Oceanic Eng. 42(1), 175–187 (2017).

Qiu, Z.-J.

Qu, F.

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

Salehi, J. A.

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65(3), 1176–1192 (2017).
[Crossref]

Sarwar, R.

Shaw, A.

J. H. Goh, A. Shaw, and A. I. Al-Shamma’a, “Underwater wireless communication system,” J. Phys. Conf. Ser. 178(2), 012029 (2009).
[Crossref]

Shen, C.

Song, Y.

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

Song, Y. H.

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Sun, B.

Tian, P.

Tsai, C.-T.

Tsai, W. S.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
[Crossref]

Tsai, W.-S.

Uysal, M.

M. Elamassie, F. Miramirkhani, and M. Uysal, “Performance characterization of underwater visible light communication,” IEEE Trans. Commun. 67(1), 543–552 (2019).
[Crossref]

Wang, H.-Y.

Wang, J.

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

C. Lu, J. Wang, S. Li, and Z. Xu, “60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital equalization,” in Proc. of Conference on Lasers and Electro-Optics (CLEO) (2019) (accepted).

Wang, P.

Wang, Y.-C.

Wu, C. J.

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
[Crossref]

Wu, T.-C.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

Xu, J.

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

Xu, Z.

P. Wang, C. Li, and Z. Xu, “A cost-efficient real-time 25 Mb/s system for LED-UOWC: Design, channel coding, FPGA implementation, and characterization,” J. Lightwave Technol. 36(13), 2627–2637 (2018).
[Crossref]

C. Lu, J. Wang, S. Li, and Z. Xu, “60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital equalization,” in Proc. of Conference on Lasers and Electro-Optics (CLEO) (2019) (accepted).

X. Li, H. Chen, S. Li, Q. Gao, C. Gong, and Z. Xu, “Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC,” in Proc. of International Wireless Communications and Mobile Computing Conference (IWCMC) (2017), 616–621.
[Crossref]

Yang, Z.-Y.

Yi, S.

Yu, X.

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Zeng, Z.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Zhang, H.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Zhang, S.

Zheng, L.

Zhou, F.

L. Ma, S. Zhou, G. Qiao, S. Liu, and F. Zhou, “Superposition coding for downlink underwater acoustic OFDM,” IEEE J. Oceanic Eng. 42(1), 175–187 (2017).

Zhou, S.

L. Ma, S. Zhou, G. Qiao, S. Liu, and F. Zhou, “Superposition coding for downlink underwater acoustic OFDM,” IEEE J. Oceanic Eng. 42(1), 175–187 (2017).

Zhou, T.

Zhou, X.

IEEE Access (1)

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

IEEE J. Oceanic Eng. (1)

L. Ma, S. Zhou, G. Qiao, S. Liu, and F. Zhou, “Superposition coding for downlink underwater acoustic OFDM,” IEEE J. Oceanic Eng. 42(1), 175–187 (2017).

IEEE Photonics J. (1)

H. H. Lu, C. Y. Li, H. H. Lin, W. S. Tsai, C. A. Chu, B. R. Chen, and C. J. Wu, “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J. 8(5), 1–7 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Xu, A. Lin, X. Yu, Y. Song, M. Kong, F. Qu, J. Han, W. Jia, and N. Deng, “Underwater laser communication using an OFDM-modulated 520-nm laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

IEEE Trans. Commun. (2)

M. Elamassie, F. Miramirkhani, and M. Uysal, “Performance characterization of underwater visible light communication,” IEEE Trans. Commun. 67(1), 543–552 (2019).
[Crossref]

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65(3), 1176–1192 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Conf. Ser. (1)

J. H. Goh, A. Shaw, and A. I. Al-Shamma’a, “Underwater wireless communication system,” J. Phys. Conf. Ser. 178(2), 012029 (2009).
[Crossref]

Opt. Commun. (1)

J. Xu, M. W. Kong, A. Lin, Y. H. Song, X. Yu, F. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Opt. Express (9)

S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Express 26(17), 21685–21699 (2018).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H.-Y. Wang, C.-T. Tsai, Y.-C. Chi, T. K. Ng, H.-C. Kuo, J.-H. He, M.-S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
[Crossref] [PubMed]

T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express 24(22), 25832–25845 (2016).
[Crossref] [PubMed]

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[Crossref] [PubMed]

C.-Y. Li, H.-H. Lu, W.-S. Tsai, M.-T. Cheng, C.-M. Ho, Y.-C. Wang, Z.-Y. Yang, and D.-Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref] [PubMed]

Other (8)

S. Fasham and S. Dunn, “Bluecomm underwater optical communications,” http://www.sonardyne.com/products/all-products/instruments/1148-bluecomm-underwater-optical-modem.html .

C. Lu, J. Wang, S. Li, and Z. Xu, “60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital equalization,” in Proc. of Conference on Lasers and Electro-Optics (CLEO) (2019) (accepted).

Z. Zeng, “A survey of underwater wireless optical communication,” University of British Columbia, Canada, Master Thesis (2015).

B. Zhuang, C. Li, N. Wu, and Z. Xu, “First demonstration of 400Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer,” in Prof. of Conference on Lasers and Electro-Optics (CLEO) (2017), 1–2.
[Crossref]

X. Li, H. Chen, S. Li, Q. Gao, C. Gong, and Z. Xu, “Volterra-based nonlinear equalization for nonlinearity mitigation in organic VLC,” in Proc. of International Wireless Communications and Mobile Computing Conference (IWCMC) (2017), 616–621.
[Crossref]

T. Sawa, “Study of adaptive underwater optical wireless communication with photomultiplier tube,” http://www. godac.jamstec.go.jp/catalog/data/doc_catalog/media/KR17–11_leg2_all.pdf .

C. Shen, Y. Guo, X. Sun, G. Liu, K. T. Ho, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Going beyond 10-meter,Gbit/s underwater optical wireless communication links based on visible lasers,” in Proc. of Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) 1–3 (2017).
[Crossref]

N. Anous, M. Abdallah, and K. Qaraqe, “Performance evaluation for vertical inhomogeneous underwater visible light communications,” in Proc. of Vehicular Technology Conference (VTC-Fall) (2017), 1–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experimental setup of the proposed long-distance LD-based UOWC system. PRBS: pseudo-random binary sequence; AWG: arbitrary waveform generator; DC: direct current; APD: avalanche photodiode.
Fig. 2
Fig. 2 Components of the experimental UOWC system: (a) transmitter and receiver, (b) water tank, (c) mirrors, (d) 520nm pigtailed laser, (e) green light reflection paths.
Fig. 3
Fig. 3 Characteristics of 520 nm LD, (a) P-V-I curve and (b) frequency response of the whole system. The receiver is C12702-11.
Fig. 4
Fig. 4 BER performance as a function of driving current IDC for 250 Mbps NRZ-OOK.
Fig. 5
Fig. 5 Curve fitting to find the water extinction coefficient for a range of distance up to 100 m.
Fig. 6
Fig. 6 Signal amplitude distributions with HD and NE for different data rates, (a) after 80m, (b) after 100m.
Fig. 7
Fig. 7 Eye diagrams for different data rates at 100 m with a nonlinear equalizer.
Fig. 8
Fig. 8 Experimental setup for the BER vs. received optical power for different data rate.
Fig. 9
Fig. 9 BER vs. received optical power by detector for different data rates at a BER level of 3.8 × 10−3.
Fig. 10
Fig. 10 Received optical power as a function of transmission distance and the maximum achievable distance for different data rates.
Fig. 11
Fig. 11 Schematic diagram of LD beam divergence angle measurement.

Tables (2)

Tables Icon

Table 1 Comparisons of UOWC system performances

Tables Icon

Table 2 Measured BER values of different data rates at distances of 80m and 100m

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P i ( λ ) = P o ( λ ) ( P α ( λ ) + P b ( λ ) ) .
P i ( λ ) = P o ( λ ) e c ( λ ) z ,
θ = 2 × arc tan ( 1 2 × x 2 x 1 d 2 d 1 ) .

Metrics