Abstract

We introduce a graded-index plastic optical fiber (GI POF) design for very short-distance household applications, in which the transmission quality is predominantly determined by system noise rather than the loss and bandwidth. The developed GI POF has strong mode coupling with low accompanying scattering loss, which is closely related to the specific microscopic heterogeneities in the core material. Such characteristic mode coupling significantly decreases reflection noise, improving the transmission quality compared with silica GI multimode fiber (MMF) for lengths below 30 m. Moreover, in the GI POF link, the transmission quality tends to improve with increasing fiber length, despite the increased loss and decreased bandwidth. This feature suggests that the system noise can be controlled by the microscopic heterogeneous properties of the GI POF for a very short MMF link, where the fiber loss and bandwidth are sufficiently low and high, respectively. This unconventional concept for optical-fiber design can advance fiber-optic communication in emerging applications in households located near optical network terminals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient group delay averaging in graded-index plastic optical fiber with microscopic heterogeneous core

Azusa Inoue, Takafumi Sassa, Rei Furukawa, Kenji Makino, Atsushi Kondo, and Yasuhiro Koike
Opt. Express 21(14) 17379-17385 (2013)

Bidirectional optical coupler for plastic optical fibers

Tatsuya Sugita, Tomiya Abae, Kouki Hirano, and Yuzo Itoh
Appl. Opt. 44(15) 2933-2942 (2005)

Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance

Hak-Soon Lee, Jun-Young Park, Sang-Mo Cha, Sang-Shin Lee, Gyo-Sun Hwang, and Yung-Sung Son
Opt. Express 19(5) 4301-4309 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index, “Forecast and methodology, 2016-2021” White Paper, Cisco, San Jose, CA, USA (2017).
  2. C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
    [Crossref]
  3. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  4. C. F. Lam, “Fiber to the home: getting beyond 10 Gb/s,” Opt. Photonics News 27(3), 22–29 (2016).
    [Crossref]
  5. International Telecommunication Union, Recommendation ITU-R BT.2077–2, 2017.
  6. N. Bamiedakis, J. L. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2015), Paper STu4F.5.
    [Crossref]
  7. D. Kuchta, “High-capacity VCSEL links,” Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), Paper Tu3C.4.
  8. Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-dB/km loss optical fiber,” Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5D.1.
    [Crossref]
  9. Y. Koike, Fundamentals of Plastic Optical Fibers (Wiley-VCH, 2015).
  10. Y. Koike and A. Inoue, “High-speed graded-index plastic optical fibers and their simple interconnects for 4K/8K video transmission,” J. Lightwave Technol. 34(6), 1551–1555 (2016).
    [Crossref]
  11. A. Inoue and Y. Koike, “Low-noise graded-index plastic optical fiber for significantly stable and robust data transmission,” J. Lightwave Technol. 36(24), 5887–5892 (2018).
    [Crossref]
  12. A. Inoue and Y. Koike, “Intrinsically stabilized plastic optical fiber link subject to external optical feedback,” IEEE Photonics J. 11(1), 7201207 (2019).
  13. A. Inoue, T. Sassa, K. Makino, A. Kondo, and Y. Koike, “Intrinsic transmission bandwidths of graded-index plastic optical fibers,” Opt. Lett. 37(13), 2583–2585 (2012).
    [Crossref] [PubMed]
  14. A. Inoue, T. Sassa, R. Furukawa, K. Makino, A. Kondo, and Y. Koike, “Efficient group delay averaging in graded-index plastic optical fiber with microscopic heterogeneous core,” Opt. Express 21(14), 17379–17385 (2013).
    [Crossref] [PubMed]
  15. M. Asai, R. Hirose, A. Kondo, and Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” J. Lightwave Technol. 25(10), 3062–3067 (2007).
    [Crossref]
  16. Y. Mukawa, A. Kondo, and Y. Koike, “Optimization of the refractive-index distribution of graded-index polymer optical fiber by the diffusion-assisted fabrication process,” Appl. Phys. Express 5(4), 042501 (2012).
    [Crossref]
  17. Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly (methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
    [Crossref]
  18. Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25(18), 4807–4815 (1992).
    [Crossref]
  19. International Standard ISO, “Lasers and laser-related equipment – test methods for laser beam widths, divergence angles and beam propagation ratios,” 11146–1 (2005).
  20. A. M. J. Koonen, “Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise,” J. Sel. Areas Commun. 4(9), 1515–1522 (1986).
    [Crossref]
  21. J. Ohtsubo, Semiconductor Lasers - Stability, Instability and Chaos (Springer-Verlag, 2013).
  22. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1988).

2019 (1)

A. Inoue and Y. Koike, “Intrinsically stabilized plastic optical fiber link subject to external optical feedback,” IEEE Photonics J. 11(1), 7201207 (2019).

2018 (1)

2016 (2)

2013 (2)

2012 (2)

A. Inoue, T. Sassa, K. Makino, A. Kondo, and Y. Koike, “Intrinsic transmission bandwidths of graded-index plastic optical fibers,” Opt. Lett. 37(13), 2583–2585 (2012).
[Crossref] [PubMed]

Y. Mukawa, A. Kondo, and Y. Koike, “Optimization of the refractive-index distribution of graded-index polymer optical fiber by the diffusion-assisted fabrication process,” Appl. Phys. Express 5(4), 042501 (2012).
[Crossref]

2010 (1)

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

2007 (1)

1992 (1)

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

1989 (1)

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly (methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

1986 (1)

A. M. J. Koonen, “Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise,” J. Sel. Areas Commun. 4(9), 1515–1522 (1986).
[Crossref]

Asai, M.

Bair, H. E.

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Furukawa, R.

Gill, V.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Hirose, R.

Inoue, A.

Kamalov, V.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Koike, Y.

A. Inoue and Y. Koike, “Intrinsically stabilized plastic optical fiber link subject to external optical feedback,” IEEE Photonics J. 11(1), 7201207 (2019).

A. Inoue and Y. Koike, “Low-noise graded-index plastic optical fiber for significantly stable and robust data transmission,” J. Lightwave Technol. 36(24), 5887–5892 (2018).
[Crossref]

Y. Koike and A. Inoue, “High-speed graded-index plastic optical fibers and their simple interconnects for 4K/8K video transmission,” J. Lightwave Technol. 34(6), 1551–1555 (2016).
[Crossref]

A. Inoue, T. Sassa, R. Furukawa, K. Makino, A. Kondo, and Y. Koike, “Efficient group delay averaging in graded-index plastic optical fiber with microscopic heterogeneous core,” Opt. Express 21(14), 17379–17385 (2013).
[Crossref] [PubMed]

A. Inoue, T. Sassa, K. Makino, A. Kondo, and Y. Koike, “Intrinsic transmission bandwidths of graded-index plastic optical fibers,” Opt. Lett. 37(13), 2583–2585 (2012).
[Crossref] [PubMed]

Y. Mukawa, A. Kondo, and Y. Koike, “Optimization of the refractive-index distribution of graded-index polymer optical fiber by the diffusion-assisted fabrication process,” Appl. Phys. Express 5(4), 042501 (2012).
[Crossref]

M. Asai, R. Hirose, A. Kondo, and Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” J. Lightwave Technol. 25(10), 3062–3067 (2007).
[Crossref]

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly (methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

Koley, B.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Kondo, A.

Koonen, A. M. J.

A. M. J. Koonen, “Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise,” J. Sel. Areas Commun. 4(9), 1515–1522 (1986).
[Crossref]

Lam, C.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Lam, C. F.

C. F. Lam, “Fiber to the home: getting beyond 10 Gb/s,” Opt. Photonics News 27(3), 22–29 (2016).
[Crossref]

Liu, H.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Makino, K.

Matsuoka, S.

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

Mukawa, Y.

Y. Mukawa, A. Kondo, and Y. Koike, “Optimization of the refractive-index distribution of graded-index polymer optical fiber by the diffusion-assisted fabrication process,” Appl. Phys. Express 5(4), 042501 (2012).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ohtsuka, Y.

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly (methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Sassa, T.

Tanio, N.

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly (methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

Zhao, X.

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

Appl. Phys. Express (1)

Y. Mukawa, A. Kondo, and Y. Koike, “Optimization of the refractive-index distribution of graded-index polymer optical fiber by the diffusion-assisted fabrication process,” Appl. Phys. Express 5(4), 042501 (2012).
[Crossref]

IEEE Commun. Mag. (1)

C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
[Crossref]

IEEE Photonics J. (1)

A. Inoue and Y. Koike, “Intrinsically stabilized plastic optical fiber link subject to external optical feedback,” IEEE Photonics J. 11(1), 7201207 (2019).

J. Lightwave Technol. (3)

J. Sel. Areas Commun. (1)

A. M. J. Koonen, “Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise,” J. Sel. Areas Commun. 4(9), 1515–1522 (1986).
[Crossref]

Macromolecules (2)

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly (methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Photonics News (1)

C. F. Lam, “Fiber to the home: getting beyond 10 Gb/s,” Opt. Photonics News 27(3), 22–29 (2016).
[Crossref]

Other (9)

International Telecommunication Union, Recommendation ITU-R BT.2077–2, 2017.

N. Bamiedakis, J. L. Wei, J. Chen, P. Westbergh, A. Larsson, R. V. Penty, and I. H. White, “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2015), Paper STu4F.5.
[Crossref]

D. Kuchta, “High-capacity VCSEL links,” Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), Paper Tu3C.4.

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, and T. Hasegawa, “Lowest-ever 0.1419-dB/km loss optical fiber,” Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5D.1.
[Crossref]

Y. Koike, Fundamentals of Plastic Optical Fibers (Wiley-VCH, 2015).

J. Ohtsubo, Semiconductor Lasers - Stability, Instability and Chaos (Springer-Verlag, 2013).

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1988).

International Standard ISO, “Lasers and laser-related equipment – test methods for laser beam widths, divergence angles and beam propagation ratios,” 11146–1 (2005).

Cisco Visual Networking Index, “Forecast and methodology, 2016-2021” White Paper, Cisco, San Jose, CA, USA (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of microscopic structures of GI POF core materials. (b) Estimated correlation length a vs. mean square of relative dielectric constant fluctuation δ ε r 2 of microscopic heterogeneities in fabricated low-noise GI POF core.
Fig. 2
Fig. 2 (a) Beam diameters and (b) divergence angles of optical fiber output beams as functions of fiber length. From left to right, the insets show the NFPs and FFPs of the input beam and the output beams from the 10-m silica GI MMF and 10-m low-noise GI POF. The beam parameters were estimated according to the second-order moment method. The scale bars for the NFPs and FFPs are 10 μm and 5°, respectively.
Fig. 3
Fig. 3 (a) Experimental setup. A broadband dichroic mirror with negligible polarization dependence is located between the fiber and PD to monitor the PD irradiated by the output beam. The dichroic mirror barely influences the transmission quality because the reflectivity of the mirror is almost the same for all the oscillation wavelengths of the VCSEL modes. (b) Microscopic images of PD active area irradiated with output beam from silica GI MMF and low-noise GI POF with fiber lengths of 30 m.
Fig. 4
Fig. 4 (a) BERs and (b) received optical powers for 10-Gb/s NRZ data transmission through MMF links with silica GI MMF and low-noise GI POF as functions of fiber length.
Fig. 5
Fig. 5 (a) Average noise spectra of optical links with silica GI MMF (green) and low-noise GI POF (red) for various fiber lengths; the RBW is 1 MHz. (b) Corresponding spectra measured for wider frequency range; the RBW is 10 MHz. The noise spectra were obtained by averaging the scanned spectra over 1000 scans. The reference plane corresponds to an electrical noise power of −60 dBm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P i z = j = 1 N h i j ( P j P i ) ,
h i j = δ ε r 2 ε 0 2 ω 2 π 3 / 2 a 3 8 exp ( Δ β i j 2 a 2 4 ) | E i E j | 2 d x d y .

Metrics