Abstract

To address the accommodation-convergence conflict problem in conventional augmented reality (AR) head-mounted displays, we propose a compact multi-plane display design based on cholesteric liquid crystal (CLC) reflective films and a polarization switch. Because of the polarization selectivity of CLC films, circularly-polarized light with different handedness is reflected by different CLC films, resulting in different optical path lengths and different image depths by the lens. A flicker-free dual-plane prototype with correct focus cues and relatively low operating voltage has been implemented. Moreover, a multi-plane AR display scheme with more than 2 depth planes is proposed by stacking multiple CLC films and polarization switches together.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses

Tao Zhan, Yun-Han Lee, and Shin-Tson Wu
Opt. Express 26(4) 4863-4872 (2018)

Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate

Haiwei Chen, Yishi Weng, Daming Xu, Nelson V. Tabiryan, and Shin-Tson Wu
Opt. Express 24(7) 7287-7298 (2016)

Light-efficient augmented reality 3D display using highly transparent retro-reflective screen

Shoaib R. Soomro and Hakan Urey
Appl. Opt. 56(22) 6108-6113 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  2. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref] [PubMed]
  3. G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
    [Crossref] [PubMed]
  4. P. Zhou, Y. Li, S. Liu, S. Huang, Q. Chen, and Y. Su, “Holographic see-through AR display with zero-order eliminated,” SID Symp. Digest48(1), 1638–1640 (2017).
    [Crossref]
  5. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  6. M.-Y. He, H.-L. Zhang, H. Deng, X.-W. Li, D.-H. Li, and Q.-H. Wang, “Dual-view-zone tabletop 3D display system based on integral imaging,” Appl. Opt. 57(4), 952–958 (2018).
    [Crossref] [PubMed]
  7. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
    [Crossref] [PubMed]
  8. S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
    [Crossref]
  9. X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  10. H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref] [PubMed]
  11. S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
    [Crossref]
  12. S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
    [Crossref] [PubMed]
  13. Y.-H. Lee, H.-W. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image plane display based on polymer-stabilized cholesteric texture,” SID Symp. Digest48(1), 760–762, (2017).
    [Crossref]
  14. G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
    [Crossref] [PubMed]
  15. Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
    [Crossref] [PubMed]
  16. C.-K. Lee, S. Moon, S. Lee, D. Yoo, J.-Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
    [Crossref] [PubMed]
  17. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  18. M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
    [Crossref] [PubMed]
  19. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley,2006).
  20. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  21. C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D: Appl Phys. 8(13), 1575–1584 (1975).
    [Crossref]
  22. M. D. Lavrentovich, T. A. Sergan, and J. R. Kelly, “Switchable broadband achromatic half-wave plate with nematic liquid crystals,” Opt. Lett. 29(12), 1411–1413 (2004).
    [Crossref] [PubMed]
  23. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
    [Crossref] [PubMed]
  24. Y. Zhou, E. E. Jang, Y. Huang, and S.-T. Wu, “Enhanced laser emission in opposite handedness using a cholesteric polymer film stack,” Opt. Express 15(6), 3470–3477 (2007).
    [Crossref] [PubMed]

2018 (2)

2016 (4)

2015 (1)

2014 (2)

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

2013 (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

2012 (1)

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

2011 (2)

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

2004 (1)

1975 (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D: Appl Phys. 8(13), 1575–1584 (1975).
[Crossref]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Ando, H.

Banks, M. S.

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Chen, H.-S.

Chen, H.-W.

Y.-H. Lee, H.-W. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image plane display based on polymer-stabilized cholesteric texture,” SID Symp. Digest48(1), 760–762, (2017).
[Crossref]

Chen, P.-J.

Chen, Q.

S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
[Crossref] [PubMed]

P. Zhou, Y. Li, S. Liu, S. Huang, Q. Chen, and Y. Su, “Holographic see-through AR display with zero-order eliminated,” SID Symp. Digest48(1), 1638–1640 (2017).
[Crossref]

Cho, J.

Deng, H.

Dessaud, N.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Gao, J.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Gooch, C. H.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D: Appl Phys. 8(13), 1575–1584 (1975).
[Crossref]

Hands, P. J. W.

He, M.-Y.

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Hoffman, D. M.

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Hong, J.-Y.

Hu, X.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Hua, H.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

Huang, S.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

P. Zhou, Y. Li, S. Liu, S. Huang, Q. Chen, and Y. Su, “Holographic see-through AR display with zero-order eliminated,” SID Symp. Digest48(1), 1638–1640 (2017).
[Crossref]

Huang, Y.

Jang, E. E.

Javidi, B.

Jeong, Y.

Kashiwada, S.

Kelly, J. R.

Kim, D.-W.

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

Kim, E.-H.

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

Kim, S.-K.

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

Kirby, A. K.

Lavrentovich, M. D.

Lee, B.

Lee, C.-K.

Lee, D.

Lee, S.

Lee, Y.-H.

Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref] [PubMed]

Y.-H. Lee, H.-W. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image plane display based on polymer-stabilized cholesteric texture,” SID Symp. Digest48(1), 760–762, (2017).
[Crossref]

Li, D.-H.

Li, G.

Li, X.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Li, X.-W.

Li, Y.

S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
[Crossref] [PubMed]

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

P. Zhou, Y. Li, S. Liu, S. Huang, Q. Chen, and Y. Su, “Holographic see-through AR display with zero-order eliminated,” SID Symp. Digest48(1), 1638–1640 (2017).
[Crossref]

Lin, Y.-H.

Liu, S.

S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
[Crossref] [PubMed]

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

P. Zhou, Y. Li, S. Liu, S. Huang, Q. Chen, and Y. Su, “Holographic see-through AR display with zero-order eliminated,” SID Symp. Digest48(1), 1638–1640 (2017).
[Crossref]

Love, G. D.

Lu, W.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Martinez, R.

Y.-H. Lee, H.-W. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image plane display based on polymer-stabilized cholesteric texture,” SID Symp. Digest48(1), 760–762, (2017).
[Crossref]

Mitov, M.

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Moon, S.

Nakamura, K.

Pang, S.

Y.-H. Lee, H.-W. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image plane display based on polymer-stabilized cholesteric texture,” SID Symp. Digest48(1), 760–762, (2017).
[Crossref]

Peng, F.

Rong, N.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Sergan, T. A.

Su, Y.

S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
[Crossref] [PubMed]

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

P. Zhou, Y. Li, S. Liu, S. Huang, Q. Chen, and Y. Su, “Holographic see-through AR display with zero-order eliminated,” SID Symp. Digest48(1), 1638–1640 (2017).
[Crossref]

Sun, Y.

Y.-H. Lee, H.-W. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image plane display based on polymer-stabilized cholesteric texture,” SID Symp. Digest48(1), 760–762, (2017).
[Crossref]

Takaki, Y.

Tarry, H. A.

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D: Appl Phys. 8(13), 1575–1584 (1975).
[Crossref]

Urano, Y.

Wang, Q.-H.

Wang, Y.-J.

Wu, S.-T.

Yoo, D.

Zhang, H.-L.

Zhou, P.

S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
[Crossref] [PubMed]

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

P. Zhou, Y. Li, S. Liu, S. Huang, Q. Chen, and Y. Su, “Holographic see-through AR display with zero-order eliminated,” SID Symp. Digest48(1), 1638–1640 (2017).
[Crossref]

Zhou, Y.

Adv. Mater. (1)

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

J. Disp. Technol. (1)

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

J. Phys. D: Appl Phys. (1)

C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D: Appl Phys. 8(13), 1575–1584 (1975).
[Crossref]

J. Soc. Inf. Disp. (1)

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

J. Vis. (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Opt. Eng. (1)

S.-K. Kim, E.-H. Kim, and D.-W. Kim, “Full parallax multifocus three-dimensional display using a slanted light source array,” Opt. Eng. 50(11), 114001 (2011).
[Crossref]

Opt. Express (8)

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
[Crossref] [PubMed]

S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Opt. Express 26(3), 3394–3403 (2018).
[Crossref] [PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref] [PubMed]

C.-K. Lee, S. Moon, S. Lee, D. Yoo, J.-Y. Hong, and B. Lee, “Compact three-dimensional head-mounted display system with Savart plate,” Opt. Express 24(17), 19531–19544 (2016).
[Crossref] [PubMed]

Y. Zhou, E. E. Jang, Y. Huang, and S.-T. Wu, “Enhanced laser emission in opposite handedness using a cholesteric polymer film stack,” Opt. Express 15(6), 3470–3477 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (4)

P. Zhou, Y. Li, S. Liu, S. Huang, Q. Chen, and Y. Su, “Holographic see-through AR display with zero-order eliminated,” SID Symp. Digest48(1), 1638–1640 (2017).
[Crossref]

S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Y.-H. Lee, H.-W. Chen, R. Martinez, Y. Sun, S. Pang, and S.-T. Wu, “Multi-image plane display based on polymer-stabilized cholesteric texture,” SID Symp. Digest48(1), 760–762, (2017).
[Crossref]

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley,2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) System design of a proposed multi-plane display with two CLC films. The optical paths of LH and RH circularly polarized light are denoted by anticlockwise and clockwise arrows, respectively. P is polarizer, CLC1 is RH and CLC2 is LH. λ/4 is quarter-wave plate. (b) Unfolded optical path of RH or LH circular polarization.
Fig. 2
Fig. 2 Reflection band of the LHCHC (red curve) and RHCLC (blue curve). Insets show the fabricated CLC films attached with anti-reflection glass pieces.
Fig. 3
Fig. 3 Experimental setup of the dual-plane AR system.
Fig. 4
Fig. 4 Displayed images by the dual-plane AR display system when the camera was focused at (a) 20 cm and (b) 130 cm, respectively.
Fig. 5
Fig. 5 RH circularly-polarized virtual “flower” imaged at 20 cm: camera focused at (a) 20 cm and (b) 130 cm, respectively. LH circularly-polarized virtual “flower” imaged at 130 cm: camera focused at (c) 130 cm and (d) 20 cm, respectively.
Fig. 6
Fig. 6 A yellow star imaged at 1 m away, and the camera was focused at 1m.
Fig. 7
Fig. 7 Multi-plane AR display design by stacking switchable λ/2 plates and CLC films. Green arrows—RH circularly polarized light, and red arrows—LH circularly polarized light.
Fig. 8
Fig. 8 Images displayed at (a) 20 cm (b) 50 cm (c) 110 cm (d) 110 cm when the camera was focused at (a) 20 cm (b) 50 cm (c) 110 cm (d) 50 cm, respectively.

Tables (1)

Tables Icon

Table 1 Reflectance of the fabricated CLC films for circular polarizations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 f = 1 s 1 + 1 s 1 .
s 2i =2 d i s 1 ,
1 f = 1 s 2i + 1 s 2i .
s 2i = 2 d i f( s 1 f ) s 1 f 2 2 d i ( s 1 f )( 2 s 1 f )f .