Abstract

An ellipso-polarimetric camera integrated with improved field of view tunable achromatic waveplate (AWP) over wide spectral band based on nematic liquid crystal retarders is presented. The AWP operates as half, quarter and full waveplate over a wide range of 430-780nm and wide field of view. The proposed analysis proved that capturing images at these modes is sufficient to extract the ellipsometric parameters: sin(2ψ), cos(Δ) and the Stokes parameters S1 and S3, besides showing the relations in between. Transmission and reflection modes setups are demonstrated in addition to an ellipso-polarimetric smartphone camera. The results show for the first time superiority of cos(Δ) images in which prominent contrast and fine details appear even with scattering objects and higher immunity to device errors. Biometric, remote sensing and archeological improved imaging applications are demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Achromatization of waveplate for broadband polarimetric system

Tingkui Mu, Chunmin Zhang, Qiwei Li, and Rongguang Liang
Opt. Lett. 40(11) 2485-2488 (2015)

Transmission imaging polarimetry for a linear birefringent medium using a carrier fringe method

Slawomir Drobczynski, Juan M. Bueno, Pablo Artal, and Henryk Kasprzak
Appl. Opt. 45(22) 5489-5496 (2006)

Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal

Su Shen, Jun She, and Tao Tao
J. Opt. Soc. Am. A 22(5) 961-965 (2005)

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Pub. Co., 1977).
  2. S. Y. Berezhna, I. V. Berezhnyy, and M. Takashi, “Dynamic photometric imaging polarizer-sample-analyzer polarimeter: instrument for mapping birefringence and optical rotation,” J. Opt. Soc. Am. A 18(3), 666 (2001).
    [Crossref]
  3. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  4. C.-Y. Han and Y.-F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
    [Crossref]
  5. H.-M. Tsai, C.-W. Chen, T.-H. Tsai, and Y.-F. Chao, “Deassociate the initial temporal phase deviation provided by photoelastic modulator for stroboscopic illumination polarization modulated ellipsometry,” Rev. Sci. Instrum. 82(3), 035117 (2011).
    [Crossref] [PubMed]
  6. A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38(8), 1402 (1999).
    [Crossref]
  7. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43(14), 2824–2832 (2004).
    [Crossref] [PubMed]
  8. J. Ladstein, F. Stabo-Eeg, E. Garcia-Caurel, and M. Kildemo, “Fast near-infra-red spectroscopic Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders,” Phys. Status Solidi 5(5), 1097–1100 (2008).
    [Crossref]
  9. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A, Pure Appl. Opt. 2(3), 216–222 (2000).
    [Crossref]
  10. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
    [Crossref] [PubMed]
  11. R. Uberna, “New polarization generator/analyzer for imaging Stokes and Mueller polarimetry,” SPIE Newsroom (2006).
  12. L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
    [Crossref]
  13. W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
    [Crossref] [PubMed]
  14. S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
    [Crossref] [PubMed]
  15. G. Anna, H. Sauer, F. Goudail, and D. Dolfi, “Fully tunable active polarization imager for contrast enhancement and partial polarimetry,” Appl. Opt. 51(21), 5302–5309 (2012).
    [Crossref] [PubMed]
  16. M. Boffety, H. Hu, and F. Goudail, “Contrast optimization in broadband passive polarimetric imaging,” Opt. Lett. 39(23), 6759–6762 (2014).
    [Crossref] [PubMed]
  17. G. Horváth, A. Barta, J. Gál, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41(3), 543–559 (2002).
    [Crossref] [PubMed]
  18. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
    [Crossref] [PubMed]
  19. M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52(5), 997–1005 (2013).
    [Crossref] [PubMed]
  20. J. Han, K. Yang, M. Xia, L. Sun, Z. Cheng, H. Liu, and J. Ye, “Resolution enhancement in active underwater polarization imaging with modulation transfer function analysis,” Appl. Opt. 54(11), 3294–3302 (2015).
    [Crossref] [PubMed]
  21. B. Huang, T. Liu, H. Hu, J. Han, and M. Yu, “Underwater image recovery considering polarization effects of objects,” Opt. Express 24(9), 9826–9838 (2016).
    [Crossref] [PubMed]
  22. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
    [Crossref] [PubMed]
  23. A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
    [Crossref] [PubMed]
  24. O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).
    [Crossref] [PubMed]
  25. L. Graham, Y. Yitzhaky, and I. Abdulhalim, “Classification of skin moles from optical spectropolarimetric images: a pilot study,” J. Biomed. Opt. 18(11), 111403 (2013).
    [Crossref] [PubMed]
  26. J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24(1), 64–66 (1999).
    [Crossref] [PubMed]
  27. M. J. Abuleil and I. Abdulhalim, “Tunable achromatic liquid crystal waveplates,” Opt. Lett. 39(19), 5487–5490 (2014).
    [Crossref] [PubMed]
  28. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, 2006).
  29. Y. Itoh, H. Seki, T. Uchida, and Y. Masuda, “A Double-Layer Electrically Controlled Birefringence Liquid-Crystal Display with a Wide-Viewing-Angle Cone,” Jpn. J. Appl. Phys. 30(Part 2, No. 7B), L1296–L1299 (1991).
    [Crossref]
  30. I. Abdulhalim, “Multi-spectral polarimetric variable optical device and imager,” U.S. patent 10,151,34 B2.
  31. I. Abdulhalim and M. J. Abuleil, “Tunable achromatic liquid crystal waveplates,” U.S. patent 10,146,095 B2.
  32. I. Abdulhalim, “Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,” J. Opt. A, Pure Appl. Opt. 1(5), 646–653 (1999).
    [Crossref]
  33. A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015).
    [Crossref] [PubMed]
  34. A. Safrani, “Spectropolarimetric method for optic axis, retardation, and birefringence dispersion measurement,” Opt. Eng. 48(5), 053601 (2009).
    [Crossref]

2017 (1)

2016 (2)

B. Huang, T. Liu, H. Hu, J. Han, and M. Yu, “Underwater image recovery considering polarization effects of objects,” Opt. Express 24(9), 9826–9838 (2016).
[Crossref] [PubMed]

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

2015 (3)

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

J. Han, K. Yang, M. Xia, L. Sun, Z. Cheng, H. Liu, and J. Ye, “Resolution enhancement in active underwater polarization imaging with modulation transfer function analysis,” Appl. Opt. 54(11), 3294–3302 (2015).
[Crossref] [PubMed]

A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52(5), 997–1005 (2013).
[Crossref] [PubMed]

L. Graham, Y. Yitzhaky, and I. Abdulhalim, “Classification of skin moles from optical spectropolarimetric images: a pilot study,” J. Biomed. Opt. 18(11), 111403 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
[Crossref] [PubMed]

O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).
[Crossref] [PubMed]

H.-M. Tsai, C.-W. Chen, T.-H. Tsai, and Y.-F. Chao, “Deassociate the initial temporal phase deviation provided by photoelastic modulator for stroboscopic illumination polarization modulated ellipsometry,” Rev. Sci. Instrum. 82(3), 035117 (2011).
[Crossref] [PubMed]

2010 (1)

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[Crossref] [PubMed]

2009 (1)

A. Safrani, “Spectropolarimetric method for optic axis, retardation, and birefringence dispersion measurement,” Opt. Eng. 48(5), 053601 (2009).
[Crossref]

2008 (1)

J. Ladstein, F. Stabo-Eeg, E. Garcia-Caurel, and M. Kildemo, “Fast near-infra-red spectroscopic Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders,” Phys. Status Solidi 5(5), 1097–1100 (2008).
[Crossref]

2006 (2)

C.-Y. Han and Y.-F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
[Crossref]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (2)

2001 (1)

2000 (1)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A, Pure Appl. Opt. 2(3), 216–222 (2000).
[Crossref]

1999 (3)

A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38(8), 1402 (1999).
[Crossref]

J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24(1), 64–66 (1999).
[Crossref] [PubMed]

I. Abdulhalim, “Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,” J. Opt. A, Pure Appl. Opt. 1(5), 646–653 (1999).
[Crossref]

Abdulhalim, I.

M. J. Abuleil and I. Abdulhalim, “Tunable achromatic liquid crystal waveplates,” Opt. Lett. 39(19), 5487–5490 (2014).
[Crossref] [PubMed]

L. Graham, Y. Yitzhaky, and I. Abdulhalim, “Classification of skin moles from optical spectropolarimetric images: a pilot study,” J. Biomed. Opt. 18(11), 111403 (2013).
[Crossref] [PubMed]

O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).
[Crossref] [PubMed]

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[Crossref] [PubMed]

I. Abdulhalim, “Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,” J. Opt. A, Pure Appl. Opt. 1(5), 646–653 (1999).
[Crossref]

Abuleil, M. J.

Aharon, O.

O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).
[Crossref] [PubMed]

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[Crossref] [PubMed]

Alfalou, A.

Anna, G.

Arnon, O.

O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).
[Crossref] [PubMed]

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[Crossref] [PubMed]

Artal, P.

Barta, A.

Berezhna, S. Y.

Berezhnyy, I. V.

Boffety, M.

Brosseau, C.

Bueno, J. M.

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A, Pure Appl. Opt. 2(3), 216–222 (2000).
[Crossref]

J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24(1), 64–66 (1999).
[Crossref] [PubMed]

Chao, Y.-F.

H.-M. Tsai, C.-W. Chen, T.-H. Tsai, and Y.-F. Chao, “Deassociate the initial temporal phase deviation provided by photoelastic modulator for stroboscopic illumination polarization modulated ellipsometry,” Rev. Sci. Instrum. 82(3), 035117 (2011).
[Crossref] [PubMed]

C.-Y. Han and Y.-F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
[Crossref]

Chen, C.-W.

H.-M. Tsai, C.-W. Chen, T.-H. Tsai, and Y.-F. Chao, “Deassociate the initial temporal phase deviation provided by photoelastic modulator for stroboscopic illumination polarization modulated ellipsometry,” Rev. Sci. Instrum. 82(3), 035117 (2011).
[Crossref] [PubMed]

Chen, P.

S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref] [PubMed]

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Chenault, D. B.

Cheng, Z.

Chigrinov, V.

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

De Martino, A.

Delrot, P.

Dereniak, E. L.

Dogariu, A.

Dolfi, D.

Drévillon, B.

Dubreuil, M.

Dyomin, V.

O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).
[Crossref] [PubMed]

Escuti, M. J.

Gál, J.

Gandorfer, A. M.

A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38(8), 1402 (1999).
[Crossref]

Garcia-Caurel, E.

J. Ladstein, F. Stabo-Eeg, E. Garcia-Caurel, and M. Kildemo, “Fast near-infra-red spectroscopic Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders,” Phys. Status Solidi 5(5), 1097–1100 (2008).
[Crossref]

A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
[Crossref] [PubMed]

Ge, S.

Goldstein, D. L.

Goudail, F.

Graham, L.

L. Graham, Y. Yitzhaky, and I. Abdulhalim, “Classification of skin moles from optical spectropolarimetric images: a pilot study,” J. Biomed. Opt. 18(11), 111403 (2013).
[Crossref] [PubMed]

Haiman, O.

Han, C.-Y.

C.-Y. Han and Y.-F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
[Crossref]

Han, J.

Hegyi, A.

Horváth, G.

Hu, H.

Hu, W.

S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref] [PubMed]

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Huang, B.

Jacques, S. L.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Ji, W.

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Jin, B.-B.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Kildemo, M.

J. Ladstein, F. Stabo-Eeg, E. Garcia-Caurel, and M. Kildemo, “Fast near-infra-red spectroscopic Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders,” Phys. Status Solidi 5(5), 1097–1100 (2008).
[Crossref]

Kim, Y.-K.

Kudenov, M. W.

Ladstein, J.

J. Ladstein, F. Stabo-Eeg, E. Garcia-Caurel, and M. Kildemo, “Fast near-infra-red spectroscopic Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders,” Phys. Status Solidi 5(5), 1097–1100 (2008).
[Crossref]

Laude, B.

Laude-Boulesteix, B.

Lee, C.-H.

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Leonard, I.

Liang, L.-J.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liang, X.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lin, T.-H.

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Lin, X.-W.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liu, H.

Liu, T.

Lu, Y.

Lu, Y.-N.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y.-Q.

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Martini, J.

Ming, Y.

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Mor, S.

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[Crossref] [PubMed]

Oka, K.

Qian, H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Rosenberg, L.

O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).
[Crossref] [PubMed]

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[Crossref] [PubMed]

Safrani, A.

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[Crossref] [PubMed]

A. Safrani, “Spectropolarimetric method for optic axis, retardation, and birefringence dispersion measurement,” Opt. Eng. 48(5), 053601 (2009).
[Crossref]

Sauer, H.

Schwartz, L.

Shao, G.-H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Shaw, J. A.

Shen, Z.

Silberstein, E.

O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).
[Crossref] [PubMed]

Stabo-Eeg, F.

J. Ladstein, F. Stabo-Eeg, E. Garcia-Caurel, and M. Kildemo, “Fast near-infra-red spectroscopic Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders,” Phys. Status Solidi 5(5), 1097–1100 (2008).
[Crossref]

Suhai, B.

Sun, L.

Sun, W.

Takashi, M.

Tsai, H.-M.

H.-M. Tsai, C.-W. Chen, T.-H. Tsai, and Y.-F. Chao, “Deassociate the initial temporal phase deviation provided by photoelastic modulator for stroboscopic illumination polarization modulated ellipsometry,” Rev. Sci. Instrum. 82(3), 035117 (2011).
[Crossref] [PubMed]

Tsai, T.-H.

H.-M. Tsai, C.-W. Chen, T.-H. Tsai, and Y.-F. Chao, “Deassociate the initial temporal phase deviation provided by photoelastic modulator for stroboscopic illumination polarization modulated ellipsometry,” Rev. Sci. Instrum. 82(3), 035117 (2011).
[Crossref] [PubMed]

Tyo, J. S.

Uberna, R.

R. Uberna, “New polarization generator/analyzer for imaging Stokes and Mueller polarimetry,” SPIE Newsroom (2006).

Wang, L.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wang, X.

Wu, P.-H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Xia, M.

Yang, K.

Ye, J.

Yitzhaky, Y.

L. Graham, Y. Yitzhaky, and I. Abdulhalim, “Classification of skin moles from optical spectropolarimetric images: a pilot study,” J. Biomed. Opt. 18(11), 111403 (2013).
[Crossref] [PubMed]

Yu, M.

Zhang, L.

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zheng, Z.-G.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Appl. Opt. (7)

J. Biomed. Opt. (4)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[Crossref] [PubMed]

O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging,” J. Biomed. Opt. 16(8), 086008 (2011).
[Crossref] [PubMed]

L. Graham, Y. Yitzhaky, and I. Abdulhalim, “Classification of skin moles from optical spectropolarimetric images: a pilot study,” J. Biomed. Opt. 18(11), 111403 (2013).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (2)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A, Pure Appl. Opt. 2(3), 216–222 (2000).
[Crossref]

I. Abdulhalim, “Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,” J. Opt. A, Pure Appl. Opt. 1(5), 646–653 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Opt. Eng. (2)

A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38(8), 1402 (1999).
[Crossref]

A. Safrani, “Spectropolarimetric method for optic axis, retardation, and birefringence dispersion measurement,” Opt. Eng. 48(5), 053601 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Status Solidi (1)

J. Ladstein, F. Stabo-Eeg, E. Garcia-Caurel, and M. Kildemo, “Fast near-infra-red spectroscopic Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders,” Phys. Status Solidi 5(5), 1097–1100 (2008).
[Crossref]

Rev. Sci. Instrum. (2)

C.-Y. Han and Y.-F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic illumination technique,” Rev. Sci. Instrum. 77(2), 023107 (2006).
[Crossref]

H.-M. Tsai, C.-W. Chen, T.-H. Tsai, and Y.-F. Chao, “Deassociate the initial temporal phase deviation provided by photoelastic modulator for stroboscopic illumination polarization modulated ellipsometry,” Rev. Sci. Instrum. 82(3), 035117 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

W. Ji, C.-H. Lee, P. Chen, W. Hu, Y. Ming, L. Zhang, T.-H. Lin, V. Chigrinov, and Y.-Q. Lu, “Meta-q-plate for complex beam shaping,” Sci. Rep. 6(1), 25528 (2016).
[Crossref] [PubMed]

Other (6)

R. Uberna, “New polarization generator/analyzer for imaging Stokes and Mueller polarimetry,” SPIE Newsroom (2006).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Pub. Co., 1977).

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, 2006).

Y. Itoh, H. Seki, T. Uchida, and Y. Masuda, “A Double-Layer Electrically Controlled Birefringence Liquid-Crystal Display with a Wide-Viewing-Angle Cone,” Jpn. J. Appl. Phys. 30(Part 2, No. 7B), L1296–L1299 (1991).
[Crossref]

I. Abdulhalim, “Multi-spectral polarimetric variable optical device and imager,” U.S. patent 10,151,34 B2.

I. Abdulhalim and M. J. Abuleil, “Tunable achromatic liquid crystal waveplates,” U.S. patent 10,146,095 B2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic diagram of the AWP device consisting of two nematic LC cells with optical axes OA 1 and OA 2 at 90 degrees to each other. (b) The LC cells structure of the old AWP: The two retarders are built with anti-parallel configuration. (c) The LC cells structure of the improved AWP: the first retarder is replaced with a parallel pi-cell configuration while the 2nd part is composed of a cascade of two anti-parallel alignment cells oriented as mirror images one to the other. The pi-cell is the thicker one held at fixed voltage to avoid its effect on the switching time and any instabilities during voltage variations
Fig. 2
Fig. 2 (a) and (b) show schematically, the AWP sandwiched between two polarizers while the optical axis of the first part (violet arrow) is rotated 45 degrees with respect to the polarizer (P) represented by the red arrow. The yellow arrow represents the analyzer oriented in (a) parallel or (b) crossed orientation with respect to the polarizer respectively. (c) Normalized measured transmission of the device performance: the suffixes “-p” and “-c” symbolize measurements in case of parallel and crossed polarizers respectively. AFWP, AHWP and AQWP present measurements when the device operates as: achromatic full, half and quarter wave plate respectively. The applied voltage on the 1st part for the three operation modes is fixed at 2 Volts while on the 2nd part the voltages are: 2.325, 2.365 and 2.4 Volts for AHWP, AQWP and AFWP operation modes respectively.
Fig. 3
Fig. 3 Ellipso-polarimetric imaging systems built both with different and similar illumination paths: (a) transmission, and (b) reflection modes. The illumination path in (a) is composed of: light source (L), diffuser (D), lens pair (LP) and polarizer (P). The illumination path in (b) is composed of: annular light source (AL) followed by an annular linear polarizer (AP). T represents the imaged target (fingerprint as an example). The common imaging path is composed of: lens pair, AWP, analyzer (A) and zoom camera (ZC). (c) presents integration of the AWP with a smartphone using an analyzer (A) and attached zoom lens X8 (Z).
Fig. 4
Fig. 4 The result of transmission imaging setup by imaging a target (left) composed of two different films: HWP and FWP at 45 degrees to the optical axis:(a) non-polarized image, (b-d) the captured images at different operation mode of the AWP: AHWP, AQWP and AFWP respectively. (e-i) show the extracted images: (e) S 1 , (f) S 3 , (g) sin( 2Ψ ), (h) cos( Δ ) and (i) | Δ |.
Fig. 5
Fig. 5 The result of reflection imaging setup:(a) non-polarized image of a finger laying on a glass substrate as the imaged target, (b-d) the captured images at different operation modes of the AWP: AHWP, AQWP and AFWL respectively. (e-i) show the extracted images: (e) S 1 , (f) S 3 , (g) sin( 2Ψ ), (h) cos( Δ ) and (i) | Δ |.
Fig. 6
Fig. 6 The result of integrating the AWP with smartphone camera:(a) non-polarized image of the target that is composed of two different films: HWP and FWP at 45 degrees to the optical axis, (b-d) the captured images at different operation modes of the AWP: AHWP, AQWP and AFWL respectively. (e-i) show the extracted images: (e) S 1 , (f) S 3 , (g) sin( 2Ψ ), (h) cos( Δ ) and (i) | Δ |.
Fig. 7
Fig. 7 The viewing angle difference between AWP based antiparallel and parallel cells. (a) Schematically, the light incident angle Φ in xz plane. The calculated retardation variation from the case of normal incident light ( ΔΓ= Γ Φ Γ 0 ) of AWP device based on BL036 LC cell with 28μm thickness and E7 LC cell with 50μm thickness in both configurations: (b)Anti-parallel and (c) Parallel LC cells.
Fig. 8
Fig. 8 Schematically, the viewing angle difference between AWP based antiparallel and parallel cells. (a) The plane of incidence composed of: z-axis and optical axis of one of the retarders ( OA 1 ) while the oblique incident light angle is Φ. (b) The oblique incident angle Φ interferes directly with the LC molecules tilt angle ϑ of the antiparallel cell with thickness d. (c) The oblique incident angle “Φ” interferes directly with the LC molecules tilt angle “ϑ” of two anti-parallel alignment cells with thickness d/2 oriented as mirror images one to the other that can replace one parallel alignment LC cell with thickness d.
Fig. 9
Fig. 9 The calculated retardation variation from the case of normal incident light ( ΔΓ= Γ Φ Γ 0 ) of LC cells. (a-b) BL036 LC cell with 28μm thickness in both configurations: (a) Anti-parallel cell and (b) Parallel cell. (c-d) E7 LC cell with 50μm thickness in both configurations: © Anti-parallel and ( d ) Parallel cell.
Fig. 10
Fig. 10 Error estimation in the extracted EP parameters ( S 1 , S 3 , sin(2Ψ) and cos( Δ )) as a result of non-ideal LC performance. The error calculation is based on Eq. (11) and the measured normalized transmission from the testing performance setup (from the case of crossed polarizers that appears in Fig. 2(c)).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

J out =P(β) J Ret J target J in
J Ret J target =C( exp(i Γ AWP ) 0 0 1 )( tan(Ψ)exp(iΔ) 0 0 1 )=C( tan(Ψ)exp( i(Δ Γ AWP ) ) 0 0 1 )
I=C[ 0.5+0.5 tan 2 (Ψ)tan(Ψ)cos(Δ Γ AWP ) ]
sin(2Ψ)= 2 0.25 ( I H I F ) 2 + ( I Q 0.5( I H + I F ) ) 2 ( I H + I F )
cos(Δ)= ( I H I F ) 2 0.25 ( I H I F ) 2 + ( I Q 0.5( I H + I F ) ) 2
S 1 = ( I H I F ) ( I H + I F )
S 3 = ( ( I H + I F )2 I Q ) ( I H + I F )
cos(Δ)= S 1 sin(2Ψ)
r=[ n e (ϑ+Φ) n o ]d
r=[ n e (ϑ+Φ) n o ] d 2 +[ n e (Φϑ) n o ] d 2 =[ n e (ϑ+Φ)+ n e (Φϑ) 2 n o ]d
Δ f Theoretical = ( f( I H , I F , I Q ) I H Δ I H ) 2 + ( f( I H , I F , I Q ) I F Δ I F ) 2 + ( f( I H , I F , I Q ) I Q Δ I Q ) 2 ,