Abstract

Efficient optical phase modulation is essential for information processing. The polarization response of metallic nanoparticles plays a key role in the formation of vector hologram. Commonly, Ag nanoparticles reduced by incoherent UV lamp tend to grow in isotropy, which is unsuitable for the formation of polarization hologram and the resultant multicolor holograms recording-readout in polarization channels. Here, the Ag nanoparticles storage with high polarization-sensitivity and anti-radiation interference are realized via bi-photonic irradiation from UV and visible lasers with participation of electron-acceptor. For the first time, the orthogonal polarization storage efficiency of the system is higher than that of the parallel mode. Color-tunable holographic reconstruction by polarization-multiplexing is achieved. This work provides a significant research strategy for stable, high-density data storage and advanced display.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Visible laser-assisted reduction of plasmonic Ag nanoparticles with narrow-band optical absorption for colored holographic reconstruction

Xinnong Wang, Shencheng Fu, Xintong Zhang, Xiuxiu Han, Shuangyan Liu, Lihong Kang, Yang Zhang, and Yichun Liu
Opt. Express 25(25) 31253-31262 (2017)

Nonvolatile plasmonic holographic memory based on photo-driven ion migration

Shuangyan Liu, Shencheng Fu, Xiuxiu Han, Xinnong Wang, Ruiya Ji, Xintong Zhang, and Yichun Liu
Appl. Opt. 56(24) 6942-6948 (2017)

UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors

Shuangyan Liu, Shencheng Fu, Xintong Zhang, Xinnong Wang, Lihong Kang, Xiuxiu Han, Xi Chen, Jiarui Wu, and Yichun Liu
Opt. Mater. Express 8(5) 1143-1153 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
    [Crossref] [PubMed]
  2. M. Gu, X. P. Li, and Y. Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
    [Crossref]
  3. D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
    [Crossref] [PubMed]
  4. F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
    [Crossref] [PubMed]
  5. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
    [Crossref] [PubMed]
  6. S. Q. Tao, Optical holographic storage (Beijing University of Technology Press, 1998).
  7. L. Dhar, A. Hale, H. E. Katz, M. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24(7), 487–489 (1999).
    [Crossref] [PubMed]
  8. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
    [Crossref] [PubMed]
  9. Q. T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Polarization-independent and high-efficiency dielectric metasurfaces for visible light,” Opt. Express 24(15), 16309–16319 (2016).
    [Crossref] [PubMed]
  10. Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
    [Crossref]
  11. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  12. E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
    [Crossref] [PubMed]
  13. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
    [Crossref] [PubMed]
  14. Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
    [Crossref]
  15. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [Crossref]
  16. R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
    [Crossref] [PubMed]
  17. R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
    [Crossref]
  18. K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys. 7(22), 3851–3855 (2005).
    [Crossref] [PubMed]
  19. N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud, and T. Fournel, “Reversible and irreversible laser microinscription on silver-containing mesoporous titania films,” Adv. Mater. 22(29), 3166–3170 (2010).
    [Crossref] [PubMed]
  20. K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
    [Crossref]
  21. X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
    [Crossref] [PubMed]
  22. S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
    [Crossref] [PubMed]
  23. S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
    [Crossref] [PubMed]
  24. X. Wang, S. Fu, X. Zhang, X. Han, S. Liu, L. Kang, Y. Zhang, and Y. Liu, “Visible laser-assisted reduction of plasmonic Ag nanoparticles with narrow-band optical absorption for colored holographic reconstruction,” Opt. Express 25(25), 31253–31262 (2017).
    [Crossref] [PubMed]
  25. S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
    [Crossref]
  26. K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
    [Crossref]
  27. E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
    [Crossref] [PubMed]
  28. S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).
    [Crossref]
  29. A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
    [Crossref] [PubMed]
  30. K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
    [Crossref] [PubMed]
  31. Y. J. Bai, W. Z. Liu, A. Chen, L. Shi, X. H. Liu, and J. Zi, “Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface,” Appl. Phys. Lett. 112(21), 211101 (2018).
    [Crossref]
  32. A. Sobolewska and A. Miniewicz, “On the inscription of period and half-period surface relief gratings in azobenzene-functionalized polymers,” J. Phys. Chem. B 112(15), 4526–4535 (2008).
    [Crossref] [PubMed]
  33. S. Y. Liu, S. C. Fu, X. T. Zhang, X. N. Wang, L. H. Kang, X. X. Han, X. Chen, J. R. Wu, and Y. C. Liu, “UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors,” Opt. Mater. Express 8(5), 1143–1153 (2018).
    [Crossref]

2018 (2)

Y. J. Bai, W. Z. Liu, A. Chen, L. Shi, X. H. Liu, and J. Zi, “Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface,” Appl. Phys. Lett. 112(21), 211101 (2018).
[Crossref]

S. Y. Liu, S. C. Fu, X. T. Zhang, X. N. Wang, L. H. Kang, X. X. Han, X. Chen, J. R. Wu, and Y. C. Liu, “UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors,” Opt. Mater. Express 8(5), 1143–1153 (2018).
[Crossref]

2017 (4)

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

X. Wang, S. Fu, X. Zhang, X. Han, S. Liu, L. Kang, Y. Zhang, and Y. Liu, “Visible laser-assisted reduction of plasmonic Ag nanoparticles with narrow-band optical absorption for colored holographic reconstruction,” Opt. Express 25(25), 31253–31262 (2017).
[Crossref] [PubMed]

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

2016 (4)

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Q. T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Polarization-independent and high-efficiency dielectric metasurfaces for visible light,” Opt. Express 24(15), 16309–16319 (2016).
[Crossref] [PubMed]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

2015 (1)

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

2014 (4)

M. Gu, X. P. Li, and Y. Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).
[Crossref]

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (2)

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

2010 (2)

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud, and T. Fournel, “Reversible and irreversible laser microinscription on silver-containing mesoporous titania films,” Adv. Mater. 22(29), 3166–3170 (2010).
[Crossref] [PubMed]

2009 (3)

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

2008 (1)

A. Sobolewska and A. Miniewicz, “On the inscription of period and half-period surface relief gratings in azobenzene-functionalized polymers,” J. Phys. Chem. B 112(15), 4526–4535 (2008).
[Crossref] [PubMed]

2007 (1)

K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

2005 (2)

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
[Crossref] [PubMed]

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys. 7(22), 3851–3855 (2005).
[Crossref] [PubMed]

2004 (2)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

2003 (1)

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

2002 (1)

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[Crossref] [PubMed]

1999 (1)

Alshehri, A. M.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Andrzejewski, L.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Bai, Y. J.

Y. J. Bai, W. Z. Liu, A. Chen, L. Shi, X. H. Liu, and J. Zi, “Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface,” Appl. Phys. Lett. 112(21), 211101 (2018).
[Crossref]

Bartkiewicz, S.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Bhardwaj, R.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Bois, L.

N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud, and T. Fournel, “Reversible and irreversible laser microinscription on silver-containing mesoporous titania films,” Adv. Mater. 22(29), 3166–3170 (2010).
[Crossref] [PubMed]

Bruder, F.-K.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Cao, Y. Y.

M. Gu, X. P. Li, and Y. Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Chassagneux, F.

N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud, and T. Fournel, “Reversible and irreversible laser microinscription on silver-containing mesoporous titania films,” Adv. Mater. 22(29), 3166–3170 (2010).
[Crossref] [PubMed]

Chen, A.

Y. J. Bai, W. Z. Liu, A. Chen, L. Shi, X. H. Liu, and J. Zi, “Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface,” Appl. Phys. Lett. 112(21), 211101 (2018).
[Crossref]

Chen, J.

Chen, X.

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Chu, W.

Crespo-Monteiro, N.

N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud, and T. Fournel, “Reversible and irreversible laser microinscription on silver-containing mesoporous titania films,” Adv. Mater. 22(29), 3166–3170 (2010).
[Crossref] [PubMed]

Dai, Q.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Dai, R.

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Daiber, A. J.

Deng, H.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Destouches, N.

N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud, and T. Fournel, “Reversible and irreversible laser microinscription on silver-containing mesoporous titania films,” Adv. Mater. 22(29), 3166–3170 (2010).
[Crossref] [PubMed]

Dhar, L.

Dong, F.

Fäcke, T.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Fang, C.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Fournel, T.

N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud, and T. Fournel, “Reversible and irreversible laser microinscription on silver-containing mesoporous titania films,” Adv. Mater. 22(29), 3166–3170 (2010).
[Crossref] [PubMed]

Fu, S.

Fu, S. C.

S. Y. Liu, S. C. Fu, X. T. Zhang, X. N. Wang, L. H. Kang, X. X. Han, X. Chen, J. R. Wu, and Y. C. Liu, “UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors,” Opt. Mater. Express 8(5), 1143–1153 (2018).
[Crossref]

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).
[Crossref]

Fujii, T.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Fujishima, A.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Gallego-Gómez, F.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[Crossref] [PubMed]

Gan, F.

Gao, J.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

Gong, Q.

Gu, J. Q.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Gu, M.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

M. Gu, X. P. Li, and Y. Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Guo, B.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Hagen, R.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Hale, A.

Han, J. G.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Han, Q.

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Han, R.

Han, R. Y.

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Han, X.

Han, X. X.

Hesselink, L.

Hörhold, H.-H.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[Crossref] [PubMed]

Hummelen, J. C.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[Crossref] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Ji, R.

Jiang, R.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Kallepalli, D. L. N.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Kang, L.

Kang, L. H.

Katz, H. E.

Kawahara, K.

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys. 7(22), 3851–3855 (2005).
[Crossref] [PubMed]

Kazuma, E.

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

Kelly, K. L.

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

Kubota, Y.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Lan, S.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Li, B.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Li, J.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

Li, J. X.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Li, Q. T.

Li, X. P.

M. Gu, X. P. Li, and Y. Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Li, Y.

Liao, Y.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Liu, S.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

X. Wang, S. Fu, X. Zhang, X. Han, S. Liu, L. Kang, Y. Zhang, and Y. Liu, “Visible laser-assisted reduction of plasmonic Ag nanoparticles with narrow-band optical absorption for colored holographic reconstruction,” Opt. Express 25(25), 31253–31262 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

Liu, S. Y.

Liu, W. Z.

Y. J. Bai, W. Z. Liu, A. Chen, L. Shi, X. H. Liu, and J. Zi, “Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface,” Appl. Phys. Lett. 112(21), 211101 (2018).
[Crossref]

Liu, X. H.

Y. J. Bai, W. Z. Liu, A. Chen, L. Shi, X. H. Liu, and J. Zi, “Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface,” Appl. Phys. Lett. 112(21), 211101 (2018).
[Crossref]

Liu, Y.

Liu, Y. C.

S. Y. Liu, S. C. Fu, X. T. Zhang, X. N. Wang, L. H. Kang, X. X. Han, X. Chen, J. R. Wu, and Y. C. Liu, “UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors,” Opt. Mater. Express 8(5), 1143–1153 (2018).
[Crossref]

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).
[Crossref]

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Lu, G.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Lu, S.

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Lu, Z. F.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Marquez, D. T.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Matsubara, K.

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

McDonald, M. E.

McLeod, R. R.

Mecher, E.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[Crossref] [PubMed]

Meerholz, K.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[Crossref] [PubMed]

Miniewicz, A.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

A. Sobolewska and A. Miniewicz, “On the inscription of period and half-period surface relief gratings in azobenzene-functionalized polymers,” J. Phys. Chem. B 112(15), 4526–4535 (2008).
[Crossref] [PubMed]

Naoi, K.

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Niwa, C.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Ohko, Y.

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys. 7(22), 3851–3855 (2005).
[Crossref] [PubMed]

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Ouyang, M.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Plum, E.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Qiao, Q.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Reynaud, S.

N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud, and T. Fournel, “Reversible and irreversible laser microinscription on silver-containing mesoporous titania films,” Adv. Mater. 22(29), 3166–3170 (2010).
[Crossref] [PubMed]

Robertson, T. L.

Rölle, T.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Sakai, N.

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

Scaiano, J. C.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Schab-Balcerzak, E.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Schilling, F. C.

Schilling, M.

Schnoes, M. G.

Shi, L.

Y. J. Bai, W. Z. Liu, A. Chen, L. Shi, X. H. Liu, and J. Zi, “Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface,” Appl. Phys. Lett. 112(21), 211101 (2018).
[Crossref]

Slagle, T.

Sobolewska, A.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

A. Sobolewska and A. Miniewicz, “On the inscription of period and half-period surface relief gratings in azobenzene-functionalized polymers,” J. Phys. Chem. B 112(15), 4526–4535 (2008).
[Crossref] [PubMed]

Sochava, S. L.

Song, Z.

Sun, S.

Sun, S. Y.

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).
[Crossref]

Suzuki, K.

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys. 7(22), 3851–3855 (2005).
[Crossref] [PubMed]

Tatsuma, T.

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys. 7(22), 3851–3855 (2005).
[Crossref] [PubMed]

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Tie, S.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Tillmann, H.

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[Crossref] [PubMed]

Wan, W.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

Wang, B.

Wang, J.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Wang, L.

Wang, L. L.

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Wang, Q.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Wang, X.

Wang, X. L.

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).
[Crossref]

Wang, X. N.

Wei, M. G.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Weiser, M.-S.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Wu, J. R.

Xiao, Y. F.

Xu, L.

Xu, Q.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Xu, Y.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Xu, Y. H.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Yang, X.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

Yuan, W.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Zhang, H. F.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Zhang, Q.

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

Zhang, W. L.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Zhang, X.

Zhang, X. Q.

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Zhang, X. T.

S. Y. Liu, S. C. Fu, X. T. Zhang, X. N. Wang, L. H. Kang, X. X. Han, X. Chen, J. R. Wu, and Y. C. Liu, “UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors,” Opt. Mater. Express 8(5), 1143–1153 (2018).
[Crossref]

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).
[Crossref]

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Zhang, Y.

Zhu, X. F.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

Zi, J.

Y. J. Bai, W. Z. Liu, A. Chen, L. Shi, X. H. Liu, and J. Zi, “Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface,” Appl. Phys. Lett. 112(21), 211101 (2018).
[Crossref]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

ACS Nano (1)

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10(12), 10671–10680 (2016).
[Crossref] [PubMed]

Adv. Mater. (5)

Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, and M. Gu, “Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory,” Adv. Mater. 29(35), 1701918 (2017).
[Crossref] [PubMed]

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

N. Crespo-Monteiro, N. Destouches, L. Bois, F. Chassagneux, S. Reynaud, and T. Fournel, “Reversible and irreversible laser microinscription on silver-containing mesoporous titania films,” Adv. Mater. 22(29), 3166–3170 (2010).
[Crossref] [PubMed]

K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

Adv. Opt. Mater. (1)

Q. Wang, X. Q. Zhang, E. Plum, Q. Xu, M. G. Wei, Y. H. Xu, H. F. Zhang, Y. Liao, J. Q. Gu, J. G. Han, and W. L. Zhang, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5(14), 1700277 (2017).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

Y. J. Bai, W. Z. Liu, A. Chen, L. Shi, X. H. Liu, and J. Zi, “Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface,” Appl. Phys. Lett. 112(21), 211101 (2018).
[Crossref]

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
[Crossref]

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[Crossref] [PubMed]

J. Mater. Chem. (1)

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
[Crossref]

J. Phys. Chem. B (2)

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

A. Sobolewska and A. Miniewicz, “On the inscription of period and half-period surface relief gratings in azobenzene-functionalized polymers,” J. Phys. Chem. B 112(15), 4526–4535 (2008).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Light Sci. Appl. (1)

M. Gu, X. P. Li, and Y. Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Nanoscale (1)

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[Crossref] [PubMed]

Nature (2)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418(6901), 959–964 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

K. Kawahara, K. Suzuki, Y. Ohko, and T. Tatsuma, “Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism,” Phys. Chem. Chem. Phys. 7(22), 3851–3855 (2005).
[Crossref] [PubMed]

Sci. Rep. (2)

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

Other (1)

S. Q. Tao, Optical holographic storage (Beijing University of Technology Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sketch for UV and visible lasers co-depositing Ag NPs in TiO2 nanoporous films.
Fig. 2
Fig. 2 Optical setup for colored holographic recording and reconstruction in Ag/TiO2 nanocomposite films.
Fig. 3
Fig. 3 Differential absorption spectra in the UV–Vis–NIR region (350–900 nm) of SSA irradiated at different irradiation times excited by (a) s-polarized and (b) p-polarized lights. (c) The corresponding differential absorbance at 671 nm versus irradiation time.
Fig. 4
Fig. 4 (a) Schematic diagram of photo-dissolution of Ag NPs on TiO2 loaded with SA. (b) Top-viewed SEM image of SSA, regularly-oriented Ag NPs are marked with red dashed lines. (c) Top-viewed SEM image of Ag NPs reduced by incoherent UV lamp on TiO2.
Fig. 5
Fig. 5 Time dependence of the first-order diffraction efficiency in the sample of SSA in holographic recording with different polarization configurations (s-s, p-p and s-p).
Fig. 6
Fig. 6 (a) Competitive growth of the two holographic gratings: the (s-s) grating recording separately in the first 450 s, followed by the overlapping with the (s-p) grating recorded from 450 s to 890 s. (b) The holographic image of “star” is recorded in (s-s) mode. The “pagoda” information is written at the same point of the sample by switching object beam to p-polarization.
Fig. 7
Fig. 7 First-order diffraction efficiency of the holographic gratings versus exposure time under irradiation by two coherent s-polarized green lights in Ag/TiO2 film with and without SA.
Fig. 8
Fig. 8 Green light (532 nm, s-polarized) and yellow light (589 nm, p-polarized) are used as probe sources to read images simultaneously. Reconstruction of colored holographic image with a “star” and a “pagoda”.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A( t )=( A 0 A ) e t/τ + A
D( t )= D max ( 1 e t/τ )