Abstract

The development of two high-speed monolithically integrated optical receivers for wireless optical communication is presented from the design phase to the measurement. The first high-speed receiver is the modified previous design with an integrated 200-µm diameter avalanche photodiode. The redesign improved the optical sensitivity by 3.7 dB resulting in the sensitivity of –35.5 dBm at 1 Gbit/s. The second receiver is an avalanche photodiode receiver with increased photodiode diameter of 400 µm with a sensitivity of –34.7 dBm at 1 Gbit/s. The receivers were employed in wireless optical communication experiments under various ambient light conditions. The maximum error free transmission distance is 22 m at 1 Gbit/s OWC link. The limits of the used standard 0.35 µm HV CMOS technology are estimated in terms of maximum possible detection area of avalanche photodiode receiver still capable for Gbit data rates.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector

Myung-Jae Lee, Jin-Sung Youn, Kang-Yeob Park, and Woo-Young Choi
Opt. Express 22(3) 2511-2518 (2014)

High-speed indoor optical wireless communication system with single channel imaging receiver

Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, and Efstratios Skafidas
Opt. Express 20(8) 8442-8456 (2012)

An integrated 12.5-Gb/s optoelectronic receiver with a silicon avalanche photodetectorin standard SiGe BiCMOS technology

Jin-Sung Youn, Myung-Jae Lee, Kang-Yeob Park, Holger Rücker, and Woo-Young Choi
Opt. Express 20(27) 28153-28162 (2012)

References

  • View by:
  • |
  • |
  • |

  1. “IEEE standard for information technology – local and metropolitan area networks-specific requirements – part 11: Wireless LAN medium access control (mac) and physical layer (phy) specifications amendment 5: Enhancements for higher throughput,” IEEE Standard 802.11n, October 2009.
  2. “IEEE Standard for Ethernet Amendment 9: Physical Layer Specifications and Management Parameters for 1000 Mb/s Operation Over Plastic Optical Fiber,” in IEEE Std 802.3bv-2017, March 2017.
  3. R. D. Roberts, S. Rajagopal, and S.-K. Lim, “IEEE 802.15.7 physical layer summary,” IEEE Globecom Workshops 2011, 772–776 (2011).
    [Crossref]
  4. D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
    [Crossref]
  5. H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
    [Crossref]
  6. H. Zimmermann, Silicon Optoelectronic Integrated Circuits (Springer, 2004).
  7. H.-Y. Jung, J.-M. Lee, and W.-Y. Choi, “A high-speed CMOS integrated optical receiver with an under-damped TIA,” IEEE Photonics Technol. Lett. 27(13), 1367–1370 (2015).
    [Crossref]
  8. M. J. Lee and W. Y. Choi, “Area-dependent photodetection frequency response characterization of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Trans. Electron Dev. 60(3), 998–1004 (2013).
    [Crossref]
  9. S. Ray, M. Hella, M. M. Hossain, P. Zarkesh-Ha, and M. M. Hayat, “Speed optimized large area avalanche photodetector in standard CMOS technology for Visible light communication,” in IEEE Sensors 2014 Proceedings, 2147–2150 (IEEE, 2014).
  10. B. Fahs and M. M. Hella, “3 Gb/s OOK VLC link using bandwidth-enhanced CMOS avalanche photodiode,” in Optical Fiber Communications Conference and Exhibition (OFC, 2017), paper W3F.2.
  11. B. Fahs, M. Romanowicz, and M. M. Hella, “A Gbps building-to-building VLC link using standard CMOS avalanche photodiodes,” IEEE Photonics J. 9(6), 7907709 (2017).
    [Crossref]
  12. T. Jukić, B. Steindl, R. Enne, and H. Zimmermann, “200 μm APD OEIC in 0.35 μm BiCMOS,” Electron. Lett. 52(2), 128–130 (2016).
    [Crossref]
  13. T. Jukić, B. Steindl, and H. Zimmermann, “400μm diameter APD OEIC in 0.35μm BiCMOS,” IEEE Photonics Technol. Lett. 28(18), 2004–2007 (2016).
    [Crossref]
  14. B. Steindl, R. Enne, S. Schidl, and H. Zimmermann, “Linear mode avalanche photodiode with high responsivity integrated in high-voltage CMOS,” IEEE Electron Device Lett. 35(9), 897–899 (2014).
    [Crossref]
  15. P. Brandl, T. Jukić, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless APD receiver with high background-light immunity for increased communication distances,” IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016).
    [Crossref]
  16. P. Brandl, R. Enne, and H. Zimmermann, “Optical wireless receiver circuit with integrated APD and high background-light immunity,” 41st ESSCIRC Conference, 48–51 (IEEE, 2015).
    [Crossref]
  17. P. Brandl, R. Enne, T. Jukić, and H. Zimmermann, “Monolithically integrated optical receiver with large-area avalanche photodiode in high-voltage CMOS technology,” Electron. Lett. 50(21), 1541–1543 (2014).
    [Crossref]
  18. K. Phang and D. A. Johns, “A CMOS optical preamplifier for wireless infrared communications,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process 46(7), 852–859 (1999).
  19. E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, 2005).
  20. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2010).
  21. T. Jukić, “Empfänger mit integrierter Lawinenfotodiode [Receiver with integrated avalanche photodiode],” Ph.D. dissertation, TU Wien, Vienna, Austria, June 2017.
  22. T. Jukić, P. Brandl, and H. Zimmermann, “Determination of the excess noise of avalanche photodiodes integrated in 0.35-μm CMOS technologies,” Opt. Eng. 57(4), 044101 (2018).
    [Crossref]
  23. E. Säckinger, Analysis and design of transimpedance amplifiers for optical receivers (Wiley, 2018).
  24. P. Brandl, R. Enne, T. Jukic, and H. Zimmermann, “OWC using a fully integrated optical receiver with large-diameter APD,” IEEE Photonics Technol. Lett. 27(5), 482–485 (2015).
    [Crossref]
  25. D. Milovančev, T. Jukić, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless communication with monolithic avalanche photodiode receivers,” 2017 IEEE Photonics Conference (IPC), 25–26 (IEEE, 2017).
    [Crossref]
  26. D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “OWC using a monolithically integrated 200 µm APD OEIC in 0.35 µm BiCMOS technology,” Opt. Express 24(2), 918–923 (2016).
    [Crossref] [PubMed]
  27. D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “Optical wireless communication using a fully integrated 400 µm diameter APD receiver,” J. Eng. (Stevenage) 2017(8), 506–511 (2017).
    [Crossref]
  28. M. Atef and H. Zimmermann, Optoelectronic Circuits in Nanometer CMOS Technology (Springer, 2016).

2018 (1)

T. Jukić, P. Brandl, and H. Zimmermann, “Determination of the excess noise of avalanche photodiodes integrated in 0.35-μm CMOS technologies,” Opt. Eng. 57(4), 044101 (2018).
[Crossref]

2017 (2)

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “Optical wireless communication using a fully integrated 400 µm diameter APD receiver,” J. Eng. (Stevenage) 2017(8), 506–511 (2017).
[Crossref]

B. Fahs, M. Romanowicz, and M. M. Hella, “A Gbps building-to-building VLC link using standard CMOS avalanche photodiodes,” IEEE Photonics J. 9(6), 7907709 (2017).
[Crossref]

2016 (4)

T. Jukić, B. Steindl, R. Enne, and H. Zimmermann, “200 μm APD OEIC in 0.35 μm BiCMOS,” Electron. Lett. 52(2), 128–130 (2016).
[Crossref]

T. Jukić, B. Steindl, and H. Zimmermann, “400μm diameter APD OEIC in 0.35μm BiCMOS,” IEEE Photonics Technol. Lett. 28(18), 2004–2007 (2016).
[Crossref]

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “OWC using a monolithically integrated 200 µm APD OEIC in 0.35 µm BiCMOS technology,” Opt. Express 24(2), 918–923 (2016).
[Crossref] [PubMed]

P. Brandl, T. Jukić, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless APD receiver with high background-light immunity for increased communication distances,” IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016).
[Crossref]

2015 (2)

P. Brandl, R. Enne, T. Jukic, and H. Zimmermann, “OWC using a fully integrated optical receiver with large-diameter APD,” IEEE Photonics Technol. Lett. 27(5), 482–485 (2015).
[Crossref]

H.-Y. Jung, J.-M. Lee, and W.-Y. Choi, “A high-speed CMOS integrated optical receiver with an under-damped TIA,” IEEE Photonics Technol. Lett. 27(13), 1367–1370 (2015).
[Crossref]

2014 (2)

B. Steindl, R. Enne, S. Schidl, and H. Zimmermann, “Linear mode avalanche photodiode with high responsivity integrated in high-voltage CMOS,” IEEE Electron Device Lett. 35(9), 897–899 (2014).
[Crossref]

P. Brandl, R. Enne, T. Jukić, and H. Zimmermann, “Monolithically integrated optical receiver with large-area avalanche photodiode in high-voltage CMOS technology,” Electron. Lett. 50(21), 1541–1543 (2014).
[Crossref]

2013 (1)

M. J. Lee and W. Y. Choi, “Area-dependent photodetection frequency response characterization of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Trans. Electron Dev. 60(3), 998–1004 (2013).
[Crossref]

2011 (1)

R. D. Roberts, S. Rajagopal, and S.-K. Lim, “IEEE 802.15.7 physical layer summary,” IEEE Globecom Workshops 2011, 772–776 (2011).
[Crossref]

2010 (1)

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
[Crossref]

2005 (1)

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

1999 (1)

K. Phang and D. A. Johns, “A CMOS optical preamplifier for wireless infrared communications,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process 46(7), 852–859 (1999).

Bellon, J.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Bouchet, O.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
[Crossref]

Brandl, P.

T. Jukić, P. Brandl, and H. Zimmermann, “Determination of the excess noise of avalanche photodiodes integrated in 0.35-μm CMOS technologies,” Opt. Eng. 57(4), 044101 (2018).
[Crossref]

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “Optical wireless communication using a fully integrated 400 µm diameter APD receiver,” J. Eng. (Stevenage) 2017(8), 506–511 (2017).
[Crossref]

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “OWC using a monolithically integrated 200 µm APD OEIC in 0.35 µm BiCMOS technology,” Opt. Express 24(2), 918–923 (2016).
[Crossref] [PubMed]

P. Brandl, T. Jukić, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless APD receiver with high background-light immunity for increased communication distances,” IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016).
[Crossref]

P. Brandl, R. Enne, T. Jukic, and H. Zimmermann, “OWC using a fully integrated optical receiver with large-diameter APD,” IEEE Photonics Technol. Lett. 27(5), 482–485 (2015).
[Crossref]

P. Brandl, R. Enne, T. Jukić, and H. Zimmermann, “Monolithically integrated optical receiver with large-area avalanche photodiode in high-voltage CMOS technology,” Electron. Lett. 50(21), 1541–1543 (2014).
[Crossref]

P. Brandl, R. Enne, and H. Zimmermann, “Optical wireless receiver circuit with integrated APD and high background-light immunity,” 41st ESSCIRC Conference, 48–51 (IEEE, 2015).
[Crossref]

Choi, W. Y.

M. J. Lee and W. Y. Choi, “Area-dependent photodetection frequency response characterization of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Trans. Electron Dev. 60(3), 998–1004 (2013).
[Crossref]

Choi, W.-Y.

H.-Y. Jung, J.-M. Lee, and W.-Y. Choi, “A high-speed CMOS integrated optical receiver with an under-damped TIA,” IEEE Photonics Technol. Lett. 27(13), 1367–1370 (2015).
[Crossref]

Edwards, D. J.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Enne, R.

P. Brandl, T. Jukić, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless APD receiver with high background-light immunity for increased communication distances,” IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016).
[Crossref]

T. Jukić, B. Steindl, R. Enne, and H. Zimmermann, “200 μm APD OEIC in 0.35 μm BiCMOS,” Electron. Lett. 52(2), 128–130 (2016).
[Crossref]

P. Brandl, R. Enne, T. Jukic, and H. Zimmermann, “OWC using a fully integrated optical receiver with large-diameter APD,” IEEE Photonics Technol. Lett. 27(5), 482–485 (2015).
[Crossref]

B. Steindl, R. Enne, S. Schidl, and H. Zimmermann, “Linear mode avalanche photodiode with high responsivity integrated in high-voltage CMOS,” IEEE Electron Device Lett. 35(9), 897–899 (2014).
[Crossref]

P. Brandl, R. Enne, T. Jukić, and H. Zimmermann, “Monolithically integrated optical receiver with large-area avalanche photodiode in high-voltage CMOS technology,” Electron. Lett. 50(21), 1541–1543 (2014).
[Crossref]

P. Brandl, R. Enne, and H. Zimmermann, “Optical wireless receiver circuit with integrated APD and high background-light immunity,” 41st ESSCIRC Conference, 48–51 (IEEE, 2015).
[Crossref]

D. Milovančev, T. Jukić, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless communication with monolithic avalanche photodiode receivers,” 2017 IEEE Photonics Conference (IPC), 25–26 (IEEE, 2017).
[Crossref]

Fahs, B.

B. Fahs, M. Romanowicz, and M. M. Hella, “A Gbps building-to-building VLC link using standard CMOS avalanche photodiodes,” IEEE Photonics J. 9(6), 7907709 (2017).
[Crossref]

Faulkner, G.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
[Crossref]

Faulkner, G. E.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Grobe, L.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
[Crossref]

Hella, M. M.

B. Fahs, M. Romanowicz, and M. M. Hella, “A Gbps building-to-building VLC link using standard CMOS avalanche photodiodes,” IEEE Photonics J. 9(6), 7907709 (2017).
[Crossref]

Hofbauer, M.

D. Milovančev, T. Jukić, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless communication with monolithic avalanche photodiode receivers,” 2017 IEEE Photonics Conference (IPC), 25–26 (IEEE, 2017).
[Crossref]

Holburn, D. M.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Jim, K.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Johns, D. A.

K. Phang and D. A. Johns, “A CMOS optical preamplifier for wireless infrared communications,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process 46(7), 852–859 (1999).

Joyner, V. M.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Jukic, T.

T. Jukić, P. Brandl, and H. Zimmermann, “Determination of the excess noise of avalanche photodiodes integrated in 0.35-μm CMOS technologies,” Opt. Eng. 57(4), 044101 (2018).
[Crossref]

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “Optical wireless communication using a fully integrated 400 µm diameter APD receiver,” J. Eng. (Stevenage) 2017(8), 506–511 (2017).
[Crossref]

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “OWC using a monolithically integrated 200 µm APD OEIC in 0.35 µm BiCMOS technology,” Opt. Express 24(2), 918–923 (2016).
[Crossref] [PubMed]

P. Brandl, T. Jukić, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless APD receiver with high background-light immunity for increased communication distances,” IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016).
[Crossref]

T. Jukić, B. Steindl, and H. Zimmermann, “400μm diameter APD OEIC in 0.35μm BiCMOS,” IEEE Photonics Technol. Lett. 28(18), 2004–2007 (2016).
[Crossref]

T. Jukić, B. Steindl, R. Enne, and H. Zimmermann, “200 μm APD OEIC in 0.35 μm BiCMOS,” Electron. Lett. 52(2), 128–130 (2016).
[Crossref]

P. Brandl, R. Enne, T. Jukic, and H. Zimmermann, “OWC using a fully integrated optical receiver with large-diameter APD,” IEEE Photonics Technol. Lett. 27(5), 482–485 (2015).
[Crossref]

P. Brandl, R. Enne, T. Jukić, and H. Zimmermann, “Monolithically integrated optical receiver with large-area avalanche photodiode in high-voltage CMOS technology,” Electron. Lett. 50(21), 1541–1543 (2014).
[Crossref]

D. Milovančev, T. Jukić, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless communication with monolithic avalanche photodiode receivers,” 2017 IEEE Photonics Conference (IPC), 25–26 (IEEE, 2017).
[Crossref]

Jung, H.-Y.

H.-Y. Jung, J.-M. Lee, and W.-Y. Choi, “A high-speed CMOS integrated optical receiver with an under-damped TIA,” IEEE Photonics Technol. Lett. 27(13), 1367–1370 (2015).
[Crossref]

Lalithambika, V. A.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Le Minh, H.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
[Crossref]

Lee, J.-M.

H.-Y. Jung, J.-M. Lee, and W.-Y. Choi, “A high-speed CMOS integrated optical receiver with an under-damped TIA,” IEEE Photonics Technol. Lett. 27(13), 1367–1370 (2015).
[Crossref]

Lee, M. J.

M. J. Lee and W. Y. Choi, “Area-dependent photodetection frequency response characterization of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Trans. Electron Dev. 60(3), 998–1004 (2013).
[Crossref]

Li, J.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
[Crossref]

Lim, S.-K.

R. D. Roberts, S. Rajagopal, and S.-K. Lim, “IEEE 802.15.7 physical layer summary,” IEEE Globecom Workshops 2011, 772–776 (2011).
[Crossref]

Mears, R. J.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Milovancev, D.

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “Optical wireless communication using a fully integrated 400 µm diameter APD receiver,” J. Eng. (Stevenage) 2017(8), 506–511 (2017).
[Crossref]

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “OWC using a monolithically integrated 200 µm APD OEIC in 0.35 µm BiCMOS technology,” Opt. Express 24(2), 918–923 (2016).
[Crossref] [PubMed]

D. Milovančev, T. Jukić, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless communication with monolithic avalanche photodiode receivers,” 2017 IEEE Photonics Conference (IPC), 25–26 (IEEE, 2017).
[Crossref]

O’Brien, D.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
[Crossref]

O’Brien, D. C.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Parry, G.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Phang, K.

K. Phang and D. A. Johns, “A CMOS optical preamplifier for wireless infrared communications,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process 46(7), 852–859 (1999).

Rajagopal, S.

R. D. Roberts, S. Rajagopal, and S.-K. Lim, “IEEE 802.15.7 physical layer summary,” IEEE Globecom Workshops 2011, 772–776 (2011).
[Crossref]

Roberts, R. D.

R. D. Roberts, S. Rajagopal, and S.-K. Lim, “IEEE 802.15.7 physical layer summary,” IEEE Globecom Workshops 2011, 772–776 (2011).
[Crossref]

Romanowicz, M.

B. Fahs, M. Romanowicz, and M. M. Hella, “A Gbps building-to-building VLC link using standard CMOS avalanche photodiodes,” IEEE Photonics J. 9(6), 7907709 (2017).
[Crossref]

Samsudin, R. J.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Schidl, S.

B. Steindl, R. Enne, S. Schidl, and H. Zimmermann, “Linear mode avalanche photodiode with high responsivity integrated in high-voltage CMOS,” IEEE Electron Device Lett. 35(9), 897–899 (2014).
[Crossref]

Schneider-Hornstein, K.

P. Brandl, T. Jukić, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless APD receiver with high background-light immunity for increased communication distances,” IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016).
[Crossref]

D. Milovančev, T. Jukić, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless communication with monolithic avalanche photodiode receivers,” 2017 IEEE Photonics Conference (IPC), 25–26 (IEEE, 2017).
[Crossref]

Sibley, M. J.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Stavrinou, P.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Steindl, B.

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “Optical wireless communication using a fully integrated 400 µm diameter APD receiver,” J. Eng. (Stevenage) 2017(8), 506–511 (2017).
[Crossref]

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “OWC using a monolithically integrated 200 µm APD OEIC in 0.35 µm BiCMOS technology,” Opt. Express 24(2), 918–923 (2016).
[Crossref] [PubMed]

T. Jukić, B. Steindl, R. Enne, and H. Zimmermann, “200 μm APD OEIC in 0.35 μm BiCMOS,” Electron. Lett. 52(2), 128–130 (2016).
[Crossref]

T. Jukić, B. Steindl, and H. Zimmermann, “400μm diameter APD OEIC in 0.35μm BiCMOS,” IEEE Photonics Technol. Lett. 28(18), 2004–2007 (2016).
[Crossref]

B. Steindl, R. Enne, S. Schidl, and H. Zimmermann, “Linear mode avalanche photodiode with high responsivity integrated in high-voltage CMOS,” IEEE Electron Device Lett. 35(9), 897–899 (2014).
[Crossref]

D. Milovančev, T. Jukić, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless communication with monolithic avalanche photodiode receivers,” 2017 IEEE Photonics Conference (IPC), 25–26 (IEEE, 2017).
[Crossref]

Wolf, M.

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
[Crossref]

Zimmermann, H.

T. Jukić, P. Brandl, and H. Zimmermann, “Determination of the excess noise of avalanche photodiodes integrated in 0.35-μm CMOS technologies,” Opt. Eng. 57(4), 044101 (2018).
[Crossref]

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “Optical wireless communication using a fully integrated 400 µm diameter APD receiver,” J. Eng. (Stevenage) 2017(8), 506–511 (2017).
[Crossref]

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “OWC using a monolithically integrated 200 µm APD OEIC in 0.35 µm BiCMOS technology,” Opt. Express 24(2), 918–923 (2016).
[Crossref] [PubMed]

T. Jukić, B. Steindl, and H. Zimmermann, “400μm diameter APD OEIC in 0.35μm BiCMOS,” IEEE Photonics Technol. Lett. 28(18), 2004–2007 (2016).
[Crossref]

T. Jukić, B. Steindl, R. Enne, and H. Zimmermann, “200 μm APD OEIC in 0.35 μm BiCMOS,” Electron. Lett. 52(2), 128–130 (2016).
[Crossref]

P. Brandl, T. Jukić, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless APD receiver with high background-light immunity for increased communication distances,” IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016).
[Crossref]

P. Brandl, R. Enne, T. Jukic, and H. Zimmermann, “OWC using a fully integrated optical receiver with large-diameter APD,” IEEE Photonics Technol. Lett. 27(5), 482–485 (2015).
[Crossref]

P. Brandl, R. Enne, T. Jukić, and H. Zimmermann, “Monolithically integrated optical receiver with large-area avalanche photodiode in high-voltage CMOS technology,” Electron. Lett. 50(21), 1541–1543 (2014).
[Crossref]

B. Steindl, R. Enne, S. Schidl, and H. Zimmermann, “Linear mode avalanche photodiode with high responsivity integrated in high-voltage CMOS,” IEEE Electron Device Lett. 35(9), 897–899 (2014).
[Crossref]

P. Brandl, R. Enne, and H. Zimmermann, “Optical wireless receiver circuit with integrated APD and high background-light immunity,” 41st ESSCIRC Conference, 48–51 (IEEE, 2015).
[Crossref]

D. Milovančev, T. Jukić, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless communication with monolithic avalanche photodiode receivers,” 2017 IEEE Photonics Conference (IPC), 25–26 (IEEE, 2017).
[Crossref]

Zyambo, E. B.

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

Electron. Lett. (2)

T. Jukić, B. Steindl, R. Enne, and H. Zimmermann, “200 μm APD OEIC in 0.35 μm BiCMOS,” Electron. Lett. 52(2), 128–130 (2016).
[Crossref]

P. Brandl, R. Enne, T. Jukić, and H. Zimmermann, “Monolithically integrated optical receiver with large-area avalanche photodiode in high-voltage CMOS technology,” Electron. Lett. 50(21), 1541–1543 (2014).
[Crossref]

IEEE Electron Device Lett. (1)

B. Steindl, R. Enne, S. Schidl, and H. Zimmermann, “Linear mode avalanche photodiode with high responsivity integrated in high-voltage CMOS,” IEEE Electron Device Lett. 35(9), 897–899 (2014).
[Crossref]

IEEE Globecom Workshops (1)

R. D. Roberts, S. Rajagopal, and S.-K. Lim, “IEEE 802.15.7 physical layer summary,” IEEE Globecom Workshops 2011, 772–776 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. O’Brien, G. E. Faulkner, E. B. Zyambo, K. Jim, D. J. Edwards, P. Stavrinou, G. Parry, J. Bellon, M. J. Sibley, V. A. Lalithambika, V. M. Joyner, R. J. Samsudin, D. M. Holburn, and R. J. Mears, “Integrated transceivers for optical wireless communications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 173–183 (2005).
[Crossref]

IEEE J. Solid-State Circuits (1)

P. Brandl, T. Jukić, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless APD receiver with high background-light immunity for increased communication distances,” IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016).
[Crossref]

IEEE Photonics J. (1)

B. Fahs, M. Romanowicz, and M. M. Hella, “A Gbps building-to-building VLC link using standard CMOS avalanche photodiodes,” IEEE Photonics J. 9(6), 7907709 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (4)

P. Brandl, R. Enne, T. Jukic, and H. Zimmermann, “OWC using a fully integrated optical receiver with large-diameter APD,” IEEE Photonics Technol. Lett. 27(5), 482–485 (2015).
[Crossref]

H. Le Minh, D. O’Brien, G. Faulkner, O. Bouchet, M. Wolf, L. Grobe, and J. Li, “A 1.25-Gb/s indoor cellular optical wireless communications demonstrator,” IEEE Photonics Technol. Lett. 22(21), 1598–1600 (2010).
[Crossref]

H.-Y. Jung, J.-M. Lee, and W.-Y. Choi, “A high-speed CMOS integrated optical receiver with an under-damped TIA,” IEEE Photonics Technol. Lett. 27(13), 1367–1370 (2015).
[Crossref]

T. Jukić, B. Steindl, and H. Zimmermann, “400μm diameter APD OEIC in 0.35μm BiCMOS,” IEEE Photonics Technol. Lett. 28(18), 2004–2007 (2016).
[Crossref]

IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process (1)

K. Phang and D. A. Johns, “A CMOS optical preamplifier for wireless infrared communications,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process 46(7), 852–859 (1999).

IEEE Trans. Electron Dev. (1)

M. J. Lee and W. Y. Choi, “Area-dependent photodetection frequency response characterization of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Trans. Electron Dev. 60(3), 998–1004 (2013).
[Crossref]

J. Eng. (Stevenage) (1)

D. Milovančev, T. Jukić, P. Brandl, B. Steindl, and H. Zimmermann, “Optical wireless communication using a fully integrated 400 µm diameter APD receiver,” J. Eng. (Stevenage) 2017(8), 506–511 (2017).
[Crossref]

Opt. Eng. (1)

T. Jukić, P. Brandl, and H. Zimmermann, “Determination of the excess noise of avalanche photodiodes integrated in 0.35-μm CMOS technologies,” Opt. Eng. 57(4), 044101 (2018).
[Crossref]

Opt. Express (1)

Other (12)

D. Milovančev, T. Jukić, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, and H. Zimmermann, “Optical wireless communication with monolithic avalanche photodiode receivers,” 2017 IEEE Photonics Conference (IPC), 25–26 (IEEE, 2017).
[Crossref]

E. Säckinger, Analysis and design of transimpedance amplifiers for optical receivers (Wiley, 2018).

P. Brandl, R. Enne, and H. Zimmermann, “Optical wireless receiver circuit with integrated APD and high background-light immunity,” 41st ESSCIRC Conference, 48–51 (IEEE, 2015).
[Crossref]

M. Atef and H. Zimmermann, Optoelectronic Circuits in Nanometer CMOS Technology (Springer, 2016).

S. Ray, M. Hella, M. M. Hossain, P. Zarkesh-Ha, and M. M. Hayat, “Speed optimized large area avalanche photodetector in standard CMOS technology for Visible light communication,” in IEEE Sensors 2014 Proceedings, 2147–2150 (IEEE, 2014).

B. Fahs and M. M. Hella, “3 Gb/s OOK VLC link using bandwidth-enhanced CMOS avalanche photodiode,” in Optical Fiber Communications Conference and Exhibition (OFC, 2017), paper W3F.2.

H. Zimmermann, Silicon Optoelectronic Integrated Circuits (Springer, 2004).

E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, 2005).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2010).

T. Jukić, “Empfänger mit integrierter Lawinenfotodiode [Receiver with integrated avalanche photodiode],” Ph.D. dissertation, TU Wien, Vienna, Austria, June 2017.

“IEEE standard for information technology – local and metropolitan area networks-specific requirements – part 11: Wireless LAN medium access control (mac) and physical layer (phy) specifications amendment 5: Enhancements for higher throughput,” IEEE Standard 802.11n, October 2009.

“IEEE Standard for Ethernet Amendment 9: Physical Layer Specifications and Management Parameters for 1000 Mb/s Operation Over Plastic Optical Fiber,” in IEEE Std 802.3bv-2017, March 2017.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) Cross section and (b) capacitance vs. reverse bias voltage of the HV CMOS APDs.
Fig. 2
Fig. 2 (a) GBW curve and (b) BW of the HV CMOS APD at different optical powers.
Fig. 3
Fig. 3 Block diagram of the 200APD OEIC: (a) offset loop around the TIAs (previous design) (b) offset loop around the whole amplifying chain and dc current cancellation (new design).
Fig. 4
Fig. 4 TIA circuit diagram with component values and biasing.
Fig. 5
Fig. 5 Simulated (a) optimum M and (b) sensitivity of the APD receivers in HV CMOS.
Fig. 6
Fig. 6 Measured BER vs. average optical power, λ = 675 nm, PRBS31: (a) 200APD OEIC, (b) 400APD OEIC.
Fig. 7
Fig. 7 Normalized AC responses of 200APD and 400APD OEIC, VSUB = –74 V, λ = 675 nm, Pavg = –31.2 dBm.
Fig. 8
Fig. 8 (a) OWC setup and (b) beam diameter vs. transmitting distance.
Fig. 9
Fig. 9 Measured BER at different transmitting distances at 1 Gbit/s.
Fig. 10
Fig. 10 Eye diagram at: (a) 12 m distance, 200APD OEIC and (b) 22 m distance, 400APD OEIC at 1 Gbit/s.
Fig. 11
Fig. 11 Optical spectra of the used adjustable ambient light sources and office lighting.
Fig. 12
Fig. 12 200APD OEIC: BER vs. background illuminance, distance 11 m, 1 Gbit/s, VCSEL 680 nm.
Fig. 13
Fig. 13 400APD OEIC: BER vs. background illuminance, distance 20 m, 1 Gbit/s, VCSEL 680 nm.
Fig. 14
Fig. 14 (a) Simulated optimum APD multiplication and (b) simulated sensitivity curve depending on APD diameter, ER = 8, BWn = 700 MHz, R = 0.41 A/W, keff = 0.0849, in,TIA = 80 nA @ APD Ø = 100 µm, Ith in the middle.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i ¯ n,APD{0,1} 2 =F(M) M 2 2q I PIN{0,1} B W n ,
F= k eff M+( 1 k eff )( 2 1 M ).
i n,{0,1} rms = i ¯ n,TIA 2 + i ¯ n,APD{0,1} 2 .
BER= 1 4 [ erfc( P 1 R PIN M I th i n,1 rms 2 )+erfc( I th P 0 R PIN M i n,0 rms 2 ) ].
P ¯ sens = Q( i n,0 rms + i n,1 rms ) 2 R PIN M .
C APD =A ε r ε 0 W = π d 2 4 ε r ε 0 W .
i ¯ n,TIA 2 = 4kT R F B W n +2q I G B W n + 4kTΓ (2π C ˜ T ) 2 3 g m B W n,2 3 .
B W total 2 =B W EX 2 +B W IN 2