Abstract

Energy yield (EY) modelling is an indispensable tool to minimize payback time of emerging perovskite-based multi-junction photovoltaics (PV) but it relies on many assumptions about device architecture and environmental conditions. Here, we propose a comprehensive framework that enables rapid simulation of complex architectures of perovskite-based multi-junction PV and detailed calculation of their power output under realistic irradiation conditions in various climatic zones. Applying the framework to perovskite/silicon multi-junction solar modules, we showcase the impact of tracking on energy losses arising from spectral variations. Moreover, we demonstrate the strong dependency of the EY of bifacial multi-junction solar modules on the albedo.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling and designing multilayer 2D perovskite / silicon bifacial tandem photovoltaics for high efficiencies and long-term stability

Haejun Chung, Xingshu Sun, Aditya D. Mohite, Rahul Singh, Lokendra Kumar, Muhammad A. Alam, and Peter Bermel
Opt. Express 25(8) A311-A322 (2017)

Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers

Salman Manzoor, Jakob Häusele, Kevin A. Bush, Axel F. Palmstrom, Joe Carpenter, Zhengshan J. Yu, Stacey F. Bent, Michael D. Mcgehee, and Zachary C. Holman
Opt. Express 26(21) 27441-27460 (2018)

CH3NH3PbI3 perovskite / silicon tandem solar cells: characterization based optical simulations

Miha Filipič, Philipp Löper, Bjoern Niesen, Stefaan De Wolf, Janez Krč, Christophe Ballif, and Marko Topič
Opt. Express 23(7) A263-A278 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).
  2. K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
    [Crossref]
  3. “Perovskite world record of 28% | Oxford PV,” https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency .
  4. Y. Hirata and T. Tani, “Output variation of photovoltaic modules with environmental factors - I. The effect of spectral solar radiation on photovoltaic module output,” Sol. Energy 55, 463–468 (1995).
    [Crossref]
  5. R. Gottschalg, T. Betts, D. Infield, and M. Kearney, “The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 85, 415–428 (2005).
    [Crossref]
  6. M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443 (2014).
    [Crossref]
  7. G. S. Kinsey, “Spectrum Sensitivity, Energy Yield, and Revenue Prediction of PV Modules,” IEEE J. Photovoltaics 5, 258–262 (2015).
    [Crossref]
  8. S. Senthilarasu, E. F. Fernández, F. Almonacid, and T. K. Mallick, “Effects of spectral coupling on perovskite solar cells under diverse climatic conditions,” Sol. Energy Mater. Sol. Cells 133, 92–98 (2015).
    [Crossref]
  9. O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.
  10. A. Calcabrini, H. Ziar, O. Isabella, and M. Zeman, “A simplified skyline-based method for estimating the annual Solar Energy potential in urban environments,” Nat. Energy1 (2019).
  11. K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75, 707–714 (2003).
    [Crossref]
  12. G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovoltaics: Res. Appl. 17, 279–288 (2009).
    [Crossref]
  13. S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
    [Crossref]
  14. X. Wang and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovoltaics 2, 417–423 (2012).
    [Crossref]
  15. N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
    [Crossref]
  16. E. F. Fernández, F. Almonacid, J. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
    [Crossref]
  17. H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study,” Opt. Express 23, A382 (2015).
    [Crossref] [PubMed]
  18. H. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “On the methodology of energy yield assessment for one-Sun tandem solar cells,” Sol. Energy 135, 598–604 (2016).
    [Crossref]
  19. H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “Predicting the outdoor performance of flat-plate III-V/Si tandem solar cells,” Sol. Energy 149, 77–84 (2017).
    [Crossref]
  20. H. Schulte-Huxel, T. J. Silverman, M. G. Deceglie, D. J. Friedman, and A. C. Tamboli, “Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells,” IEEE J. Photovoltaics 8, 1376–1383 (2018).
    [Crossref]
  21. M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).
  22. J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).
  23. M. H. Futscher and B. Ehrler, “Efficiency Limit of Perovskite/Si Tandem Solar Cells,” ACS Energy Lett. 1, 863–868 (2016).
    [Crossref]
  24. M. H. Futscher and B. Ehrler, “Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions,” ACS Energy Lett. 2, 2089–2095 (2017).
    [Crossref] [PubMed]
  25. M. T. Hörantner and H. J. Snaith, “Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions,” Energy & Environmental Sci. 10, 1983–1993 (2017).
    [Crossref]
  26. O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices,” The J. Phys. Chem. Lett. 9, 446–458 (2018).
    [Crossref] [PubMed]
  27. M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
    [Crossref]
  28. M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
    [Crossref]
  29. P. Faine, S. R. Kurtz, C. Riordan, and J. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31, 259–278 (1991).
    [Crossref]
  30. C. A. Gueymard, “Parameterized transmittance model for direct beam and circumsolar spectral irradiance,” Sol. Energy 71, 325–346 (2001).
    [Crossref]
  31. A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.
  32. A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The aster spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
    [Crossref]
  33. S. Wilcox and W. Marion, Users manual for TMY3 data sets (National Renewable Energy Laboratory, 2008).
    [Crossref]
  34. I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76, 577–589 (2004).
    [Crossref]
  35. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Tech. rep., Air Force Geophysics Lab Hanscom Afb Ma (1979).
  36. O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field performance versus standard test condition efficiency of tandem solar cells and the singular case of perovskites/silicon devices,” The journal physical chemistry letters 9, 446–458 (2018).
    [Crossref]
  37. J. S. Bartlett, Á. M. Ciotti, R. F. Davis, and J. J. Cullen, “The spectral effects of clouds on solar irradiance,” J. Geophys. Res.: Ocean. 103, 31017–31031 (1998).
    [Crossref]
  38. C. Osterwald, K. Emery, and M. Muller, “Photovoltaic module calibration value versus optical air mass: the air mass function,” Prog. Photovoltaics: Res. Appl. 22, 560–573 (2014).
    [Crossref]
  39. H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).
  40. X. Liu, Q. Yang, H. Li, Z. Jin, W. Wu, S. Kizer, D. K. Zhou, and P. Yang, “Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region,” Appl. Opt. 55, 8236 (2016).
    [Crossref] [PubMed]
  41. S. J. Byrnes, “Multilayer optical calculations,” http://arxiv.org/abs/1603.02720 .
  42. S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovoltaics: Res. Appl. 19, 406–416 (2011).
    [Crossref]
  43. J. Eisenlohr, N. Tucher, O. Höhn, H. Hauser, M. Peters, P. Kiefel, J. C. Goldschmidt, and B. Bläsi, “Matrix formalism for light propagation and absorption in thick textured optical sheets,” Opt. Express 23, A502 (2015).
    [Crossref] [PubMed]
  44. M. K. Fuentes, “A simplified thermal model for flat-plate photovoltaic arrays,” Tech. rep., Sandia National Labs., Albuquerque, NM (USA) (1987).
  45. R. G. Ross, “Flat-plate photovoltaic array design optimization,” in 14th IEEE Photovoltaic Specialists Conference, (San Diego, CA, 1980), pp. 1126–1132.
  46. R. G. Ross and M. I. Smokler, “Flat-Plate Solar Array Project: Final Report: Volume 6, Engineering Sciences and Reliability,” Tech. Rep., Jet Propulsion Lab., Pasadena, CA (USA) (1986).
  47. O. Dupré, R. Vaillon, and M. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
    [Crossref]
  48. A. Jain and A. Kapoor, “Exact analytical solutions of the parameters of real solar cells using lambert w-function,” Sol. Energy Mater. Sol. Cells 81, 269–277 (2004).
    [Crossref]
  49. X. Gao, Y. Cui, J. Hu, G. Xu, and Y. Yu, “Lambert w-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction,” Energy Convers. Manag. 127, 443–460 (2016).
    [Crossref]
  50. T. Tayagaki, K. Makita, R. Oshima, H. Mizuno, and T. Sugaya, “Analysis of luminescence coupling effect in three-terminal tandem solar cells,” J. Photonics for Energy 8, 1 (2018).
    [Crossref]
  51. G. W. Adhyaksa, E. Johlin, and E. C. Garnett, “Nanoscale back contact perovskite solar cell design for improved tandem efficiency,” Nano letters 17, 5206–5212 (2017).
    [Crossref] [PubMed]
  52. T. Trupke and P. Würfel, “Improved spectral robustness of triple tandem solar cells by combined series/parallel interconnection,” J. applied physics 96, 2347–2351 (2004).
    [Crossref]
  53. A. M. Humada, M. Hojabri, S. Mekhilef, and H. M. Hamada, “Solar cell parameters extraction based on single and double-diode models: A review,” Renew. Sustain. Energy Rev. 56, 494–509 (2016).
    [Crossref]
  54. N. M. A. A. Shannan, N. Z. Yahaya, and B. Singh, “Single-diode model and two-diode model of pv modules: A comparison,” in Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference on, (IEEE, 2013), pp. 210–214.
  55. M. de Blas, J. Torres, E. Prieto, and A. García, “Selecting a suitable model for characterizing photovoltaic devices,” Renew. Energy 25, 371–380 (2002).
    [Crossref]
  56. X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl. Energy 212, 1601–1610 (2018).
    [Crossref]
  57. H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. sustainable energy reviews 13, 1800–1818 (2009).
    [Crossref]
  58. M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different pv (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443(2014).
    [Crossref]

2018 (8)

H. Schulte-Huxel, T. J. Silverman, M. G. Deceglie, D. J. Friedman, and A. C. Tamboli, “Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells,” IEEE J. Photovoltaics 8, 1376–1383 (2018).
[Crossref]

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices,” The J. Phys. Chem. Lett. 9, 446–458 (2018).
[Crossref] [PubMed]

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field performance versus standard test condition efficiency of tandem solar cells and the singular case of perovskites/silicon devices,” The journal physical chemistry letters 9, 446–458 (2018).
[Crossref]

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

T. Tayagaki, K. Makita, R. Oshima, H. Mizuno, and T. Sugaya, “Analysis of luminescence coupling effect in three-terminal tandem solar cells,” J. Photonics for Energy 8, 1 (2018).
[Crossref]

X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl. Energy 212, 1601–1610 (2018).
[Crossref]

2017 (6)

G. W. Adhyaksa, E. Johlin, and E. C. Garnett, “Nanoscale back contact perovskite solar cell design for improved tandem efficiency,” Nano letters 17, 5206–5212 (2017).
[Crossref] [PubMed]

M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
[Crossref]

M. H. Futscher and B. Ehrler, “Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions,” ACS Energy Lett. 2, 2089–2095 (2017).
[Crossref] [PubMed]

M. T. Hörantner and H. J. Snaith, “Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions,” Energy & Environmental Sci. 10, 1983–1993 (2017).
[Crossref]

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “Predicting the outdoor performance of flat-plate III-V/Si tandem solar cells,” Sol. Energy 149, 77–84 (2017).
[Crossref]

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

2016 (5)

H. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “On the methodology of energy yield assessment for one-Sun tandem solar cells,” Sol. Energy 135, 598–604 (2016).
[Crossref]

M. H. Futscher and B. Ehrler, “Efficiency Limit of Perovskite/Si Tandem Solar Cells,” ACS Energy Lett. 1, 863–868 (2016).
[Crossref]

X. Liu, Q. Yang, H. Li, Z. Jin, W. Wu, S. Kizer, D. K. Zhou, and P. Yang, “Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region,” Appl. Opt. 55, 8236 (2016).
[Crossref] [PubMed]

A. M. Humada, M. Hojabri, S. Mekhilef, and H. M. Hamada, “Solar cell parameters extraction based on single and double-diode models: A review,” Renew. Sustain. Energy Rev. 56, 494–509 (2016).
[Crossref]

X. Gao, Y. Cui, J. Hu, G. Xu, and Y. Yu, “Lambert w-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction,” Energy Convers. Manag. 127, 443–460 (2016).
[Crossref]

2015 (5)

J. Eisenlohr, N. Tucher, O. Höhn, H. Hauser, M. Peters, P. Kiefel, J. C. Goldschmidt, and B. Bläsi, “Matrix formalism for light propagation and absorption in thick textured optical sheets,” Opt. Express 23, A502 (2015).
[Crossref] [PubMed]

O. Dupré, R. Vaillon, and M. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study,” Opt. Express 23, A382 (2015).
[Crossref] [PubMed]

G. S. Kinsey, “Spectrum Sensitivity, Energy Yield, and Revenue Prediction of PV Modules,” IEEE J. Photovoltaics 5, 258–262 (2015).
[Crossref]

S. Senthilarasu, E. F. Fernández, F. Almonacid, and T. K. Mallick, “Effects of spectral coupling on perovskite solar cells under diverse climatic conditions,” Sol. Energy Mater. Sol. Cells 133, 92–98 (2015).
[Crossref]

2014 (4)

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443 (2014).
[Crossref]

E. F. Fernández, F. Almonacid, J. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

C. Osterwald, K. Emery, and M. Muller, “Photovoltaic module calibration value versus optical air mass: the air mass function,” Prog. Photovoltaics: Res. Appl. 22, 560–573 (2014).
[Crossref]

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different pv (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443(2014).
[Crossref]

2013 (1)

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
[Crossref]

2012 (1)

X. Wang and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovoltaics 2, 417–423 (2012).
[Crossref]

2011 (1)

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovoltaics: Res. Appl. 19, 406–416 (2011).
[Crossref]

2010 (1)

S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
[Crossref]

2009 (3)

G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovoltaics: Res. Appl. 17, 279–288 (2009).
[Crossref]

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The aster spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. sustainable energy reviews 13, 1800–1818 (2009).
[Crossref]

2005 (1)

R. Gottschalg, T. Betts, D. Infield, and M. Kearney, “The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 85, 415–428 (2005).
[Crossref]

2004 (3)

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76, 577–589 (2004).
[Crossref]

A. Jain and A. Kapoor, “Exact analytical solutions of the parameters of real solar cells using lambert w-function,” Sol. Energy Mater. Sol. Cells 81, 269–277 (2004).
[Crossref]

T. Trupke and P. Würfel, “Improved spectral robustness of triple tandem solar cells by combined series/parallel interconnection,” J. applied physics 96, 2347–2351 (2004).
[Crossref]

2003 (1)

K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75, 707–714 (2003).
[Crossref]

2002 (1)

M. de Blas, J. Torres, E. Prieto, and A. García, “Selecting a suitable model for characterizing photovoltaic devices,” Renew. Energy 25, 371–380 (2002).
[Crossref]

2001 (1)

C. A. Gueymard, “Parameterized transmittance model for direct beam and circumsolar spectral irradiance,” Sol. Energy 71, 325–346 (2001).
[Crossref]

1998 (1)

J. S. Bartlett, Á. M. Ciotti, R. F. Davis, and J. J. Cullen, “The spectral effects of clouds on solar irradiance,” J. Geophys. Res.: Ocean. 103, 31017–31031 (1998).
[Crossref]

1995 (1)

Y. Hirata and T. Tani, “Output variation of photovoltaic modules with environmental factors - I. The effect of spectral solar radiation on photovoltaic module output,” Sol. Energy 55, 463–468 (1995).
[Crossref]

1991 (1)

P. Faine, S. R. Kurtz, C. Riordan, and J. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31, 259–278 (1991).
[Crossref]

Aberle, A. G.

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “Predicting the outdoor performance of flat-plate III-V/Si tandem solar cells,” Sol. Energy 149, 77–84 (2017).
[Crossref]

H. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “On the methodology of energy yield assessment for one-Sun tandem solar cells,” Sol. Energy 135, 598–604 (2016).
[Crossref]

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study,” Opt. Express 23, A382 (2015).
[Crossref] [PubMed]

Abrinia, K.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. sustainable energy reviews 13, 1800–1818 (2009).
[Crossref]

Adachi, D.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Adhyaksa, G. W.

G. W. Adhyaksa, E. Johlin, and E. C. Garnett, “Nanoscale back contact perovskite solar cell design for improved tandem efficiency,” Nano letters 17, 5206–5212 (2017).
[Crossref] [PubMed]

Ahlswede, E.

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

Al-Abbadi, N.

S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
[Crossref]

Alam, M. A.

X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl. Energy 212, 1601–1610 (2018).
[Crossref]

Al-Ashouri, A.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Albrecht, S.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Almonacid, F.

S. Senthilarasu, E. F. Fernández, F. Almonacid, and T. K. Mallick, “Effects of spectral coupling on perovskite solar cells under diverse climatic conditions,” Sol. Energy Mater. Sol. Cells 133, 92–98 (2015).
[Crossref]

E. F. Fernández, F. Almonacid, J. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

Alonso-Abella, M.

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443 (2014).
[Crossref]

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different pv (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443(2014).
[Crossref]

Andreas, A.

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76, 577–589 (2004).
[Crossref]

Araki, K.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
[Crossref]

K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75, 707–714 (2003).
[Crossref]

Asatani, T.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Aumann, H. H.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

Baker-Finch, S. C.

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovoltaics: Res. Appl. 19, 406–416 (2011).
[Crossref]

Baldridge, A.

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The aster spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Ballif, C.

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field performance versus standard test condition efficiency of tandem solar cells and the singular case of perovskites/silicon devices,” The journal physical chemistry letters 9, 446–458 (2018).
[Crossref]

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices,” The J. Phys. Chem. Lett. 9, 446–458 (2018).
[Crossref] [PubMed]

Barnett, A.

X. Wang and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovoltaics 2, 417–423 (2012).
[Crossref]

Bartlett, J. S.

J. S. Bartlett, Á. M. Ciotti, R. F. Davis, and J. J. Cullen, “The spectral effects of clouds on solar irradiance,” J. Geophys. Res.: Ocean. 103, 31017–31031 (1998).
[Crossref]

Bett, A.

S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
[Crossref]

Betts, T.

R. Gottschalg, T. Betts, D. Infield, and M. Kearney, “The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 85, 415–428 (2005).
[Crossref]

Bittencourt, R. S.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Bläsi, B.

Brindley, H. E.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
[Crossref]

Buonassisi, T.

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “Predicting the outdoor performance of flat-plate III-V/Si tandem solar cells,” Sol. Energy 149, 77–84 (2017).
[Crossref]

H. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “On the methodology of energy yield assessment for one-Sun tandem solar cells,” Sol. Energy 135, 598–604 (2016).
[Crossref]

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study,” Opt. Express 23, A382 (2015).
[Crossref] [PubMed]

Calcabrini, A.

A. Calcabrini, H. Ziar, O. Isabella, and M. Zeman, “A simplified skyline-based method for estimating the annual Solar Energy potential in urban environments,” Nat. Energy1 (2019).

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

Case, C.

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

Chan, N. L. A.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
[Crossref]

Chen, X.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

Chenlo, F.

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different pv (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443(2014).
[Crossref]

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443 (2014).
[Crossref]

Christoforo, M. G.

M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
[Crossref]

Ciotti, Á. M.

J. S. Bartlett, Á. M. Ciotti, R. F. Davis, and J. J. Cullen, “The spectral effects of clouds on solar irradiance,” J. Geophys. Res.: Ocean. 103, 31017–31031 (1998).
[Crossref]

Cirilo, E. H.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Cui, Y.

X. Gao, Y. Cui, J. Hu, G. Xu, and Y. Yu, “Lambert w-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction,” Energy Convers. Manag. 127, 443–460 (2016).
[Crossref]

Cullen, J. J.

J. S. Bartlett, Á. M. Ciotti, R. F. Davis, and J. J. Cullen, “The spectral effects of clouds on solar irradiance,” J. Geophys. Res.: Ocean. 103, 31017–31031 (1998).
[Crossref]

Davis, R. F.

J. S. Bartlett, Á. M. Ciotti, R. F. Davis, and J. J. Cullen, “The spectral effects of clouds on solar irradiance,” J. Geophys. Res.: Ocean. 103, 31017–31031 (1998).
[Crossref]

de Blas, M.

M. de Blas, J. Torres, E. Prieto, and A. García, “Selecting a suitable model for characterizing photovoltaic devices,” Renew. Energy 25, 371–380 (2002).
[Crossref]

De Wolf, S.

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field performance versus standard test condition efficiency of tandem solar cells and the singular case of perovskites/silicon devices,” The journal physical chemistry letters 9, 446–458 (2018).
[Crossref]

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices,” The J. Phys. Chem. Lett. 9, 446–458 (2018).
[Crossref] [PubMed]

Deceglie, M. G.

H. Schulte-Huxel, T. J. Silverman, M. G. Deceglie, D. J. Friedman, and A. C. Tamboli, “Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells,” IEEE J. Photovoltaics 8, 1376–1383 (2018).
[Crossref]

Deline, C.

X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl. Energy 212, 1601–1610 (2018).
[Crossref]

DeSouza-Machado, S.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

Dimroth, F.

S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
[Crossref]

Dupré, O.

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices,” The J. Phys. Chem. Lett. 9, 446–458 (2018).
[Crossref] [PubMed]

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field performance versus standard test condition efficiency of tandem solar cells and the singular case of perovskites/silicon devices,” The journal physical chemistry letters 9, 446–458 (2018).
[Crossref]

O. Dupré, R. Vaillon, and M. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

Edmondson, K. M.

G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovoltaics: Res. Appl. 17, 279–288 (2009).
[Crossref]

Ehrler, B.

M. H. Futscher and B. Ehrler, “Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions,” ACS Energy Lett. 2, 2089–2095 (2017).
[Crossref] [PubMed]

M. H. Futscher and B. Ehrler, “Efficiency Limit of Perovskite/Si Tandem Solar Cells,” ACS Energy Lett. 1, 863–868 (2016).
[Crossref]

Eisenlohr, J.

Ekins-Daukes, N. J.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
[Crossref]

Emery, K.

C. Osterwald, K. Emery, and M. Muller, “Photovoltaic module calibration value versus optical air mass: the air mass function,” Prog. Photovoltaics: Res. Appl. 22, 560–573 (2014).
[Crossref]

Eperon, G. E.

M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
[Crossref]

Faine, P.

P. Faine, S. R. Kurtz, C. Riordan, and J. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31, 259–278 (1991).
[Crossref]

Fenn, R. W.

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Tech. rep., Air Force Geophysics Lab Hanscom Afb Ma (1979).

Fernández, E. F.

S. Senthilarasu, E. F. Fernández, F. Almonacid, and T. K. Mallick, “Effects of spectral coupling on perovskite solar cells under diverse climatic conditions,” Sol. Energy Mater. Sol. Cells 133, 92–98 (2015).
[Crossref]

E. F. Fernández, F. Almonacid, J. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

Fishbein, E.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

Friedman, D. J.

H. Schulte-Huxel, T. J. Silverman, M. G. Deceglie, D. J. Friedman, and A. C. Tamboli, “Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells,” IEEE J. Photovoltaics 8, 1376–1383 (2018).
[Crossref]

Fuentes, M. K.

M. K. Fuentes, “A simplified thermal model for flat-plate photovoltaic arrays,” Tech. rep., Sandia National Labs., Albuquerque, NM (USA) (1987).

Futscher, M. H.

M. H. Futscher and B. Ehrler, “Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions,” ACS Energy Lett. 2, 2089–2095 (2017).
[Crossref] [PubMed]

M. H. Futscher and B. Ehrler, “Efficiency Limit of Perovskite/Si Tandem Solar Cells,” ACS Energy Lett. 1, 863–868 (2016).
[Crossref]

Gao, X.

X. Gao, Y. Cui, J. Hu, G. Xu, and Y. Yu, “Lambert w-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction,” Energy Convers. Manag. 127, 443–460 (2016).
[Crossref]

García, A.

M. de Blas, J. Torres, E. Prieto, and A. García, “Selecting a suitable model for characterizing photovoltaic devices,” Renew. Energy 25, 371–380 (2002).
[Crossref]

Garnett, E. C.

G. W. Adhyaksa, E. Johlin, and E. C. Garnett, “Nanoscale back contact perovskite solar cell design for improved tandem efficiency,” Nano letters 17, 5206–5212 (2017).
[Crossref] [PubMed]

Geer, A.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

Goldschmidt, J. C.

Goma, E. G.

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

Gottschalg, R.

R. Gottschalg, T. Betts, D. Infield, and M. Kearney, “The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 85, 415–428 (2005).
[Crossref]

Green, M.

O. Dupré, R. Vaillon, and M. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

Grove, C.

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The aster spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Gueymard, C. A.

C. A. Gueymard, “Parameterized transmittance model for direct beam and circumsolar spectral irradiance,” Sol. Energy 71, 325–346 (2001).
[Crossref]

Hamada, H. M.

A. M. Humada, M. Hojabri, S. Mekhilef, and H. M. Hamada, “Solar cell parameters extraction based on single and double-diode models: A review,” Renew. Sustain. Energy Rev. 56, 494–509 (2016).
[Crossref]

Hartmann, N.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

Hauser, H.

Havemann, S.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

Hirata, Y.

Y. Hirata and T. Tani, “Output variation of photovoltaic modules with environmental factors - I. The effect of spectral solar radiation on photovoltaic module output,” Sol. Energy 55, 463–468 (1995).
[Crossref]

Hoheisel, R.

S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
[Crossref]

Höhn, O.

Hojabri, M.

A. M. Humada, M. Hojabri, S. Mekhilef, and H. M. Hamada, “Solar cell parameters extraction based on single and double-diode models: A review,” Renew. Sustain. Energy Rev. 56, 494–509 (2016).
[Crossref]

Hook, S.

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The aster spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Hörantner, M. T.

M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
[Crossref]

M. T. Hörantner and H. J. Snaith, “Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions,” Energy & Environmental Sci. 10, 1983–1993 (2017).
[Crossref]

Hornung, T.

S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
[Crossref]

Hu, J.

X. Gao, Y. Cui, J. Hu, G. Xu, and Y. Yu, “Lambert w-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction,” Energy Convers. Manag. 127, 443–460 (2016).
[Crossref]

Huang, X.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

Hughes, G. B.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Humada, A. M.

A. M. Humada, M. Hojabri, S. Mekhilef, and H. M. Hamada, “Solar cell parameters extraction based on single and double-diode models: A review,” Renew. Sustain. Energy Rev. 56, 494–509 (2016).
[Crossref]

Infield, D.

R. Gottschalg, T. Betts, D. Infield, and M. Kearney, “The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 85, 415–428 (2005).
[Crossref]

Irie, T.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Isabella, O.

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

A. Calcabrini, H. Ziar, O. Isabella, and M. Zeman, “A simplified skyline-based method for estimating the annual Solar Energy potential in urban environments,” Nat. Energy1 (2019).

Ishibashi, H.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Jäger, K.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Jain, A.

A. Jain and A. Kapoor, “Exact analytical solutions of the parameters of real solar cells using lambert w-function,” Sol. Energy Mater. Sol. Cells 81, 269–277 (2004).
[Crossref]

Javadi, A.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. sustainable energy reviews 13, 1800–1818 (2009).
[Crossref]

Jin, Z.

Johlin, E.

G. W. Adhyaksa, E. Johlin, and E. C. Garnett, “Nanoscale back contact perovskite solar cell design for improved tandem efficiency,” Nano letters 17, 5206–5212 (2017).
[Crossref] [PubMed]

Jošt, M.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Kanematsu, M.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Kapoor, A.

A. Jain and A. Kapoor, “Exact analytical solutions of the parameters of real solar cells using lambert w-function,” Sol. Energy Mater. Sol. Cells 81, 269–277 (2004).
[Crossref]

Kawasaki, H.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Kearney, M.

R. Gottschalg, T. Betts, D. Infield, and M. Kearney, “The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 85, 415–428 (2005).
[Crossref]

Kemmoku, Y.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
[Crossref]

Keyhani, A.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. sustainable energy reviews 13, 1800–1818 (2009).
[Crossref]

Khan, M. R.

X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl. Energy 212, 1601–1610 (2018).
[Crossref]

Kiefel, P.

Kinsey, G. S.

G. S. Kinsey, “Spectrum Sensitivity, Energy Yield, and Revenue Prediction of PV Modules,” IEEE J. Photovoltaics 5, 258–262 (2015).
[Crossref]

G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovoltaics: Res. Appl. 17, 279–288 (2009).
[Crossref]

Kirner, S.

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

Kizer, S.

Köhnen, E.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Konishi, K.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Korte, L.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Kost, C.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

Krc, J.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Kurtz, S. R.

P. Faine, S. R. Kurtz, C. Riordan, and J. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31, 259–278 (1991).
[Crossref]

Langenhorst, M.

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

Lehr, J.

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

Leijtens, T.

M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
[Crossref]

Lemmer, U.

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

Li, H.

Lipovšek, B.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Liu, H.

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “Predicting the outdoor performance of flat-plate III-V/Si tandem solar cells,” Sol. Energy 149, 77–84 (2017).
[Crossref]

H. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “On the methodology of energy yield assessment for one-Sun tandem solar cells,” Sol. Energy 135, 598–604 (2016).
[Crossref]

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study,” Opt. Express 23, A382 (2015).
[Crossref] [PubMed]

Liu, X.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

X. Liu, Q. Yang, H. Li, Z. Jin, W. Wu, S. Kizer, D. K. Zhou, and P. Yang, “Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region,” Appl. Opt. 55, 8236 (2016).
[Crossref] [PubMed]

Liu, Z.

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “Predicting the outdoor performance of flat-plate III-V/Si tandem solar cells,” Sol. Energy 149, 77–84 (2017).
[Crossref]

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study,” Opt. Express 23, A382 (2015).
[Crossref] [PubMed]

Liuzzi, G.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

Lizcano, J. C. O.

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

Lubin, P.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Lude, S.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

Macco, B.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Madajian, J.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Makita, K.

T. Tayagaki, K. Makita, R. Oshima, H. Mizuno, and T. Sugaya, “Analysis of luminescence coupling effect in three-terminal tandem solar cells,” J. Photonics for Energy 8, 1 (2018).
[Crossref]

Mallick, T. K.

S. Senthilarasu, E. F. Fernández, F. Almonacid, and T. K. Mallick, “Effects of spectral coupling on perovskite solar cells under diverse climatic conditions,” Sol. Energy Mater. Sol. Cells 133, 92–98 (2015).
[Crossref]

Manning, E. M.

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

Marion, W.

S. Wilcox and W. Marion, Users manual for TMY3 data sets (National Renewable Energy Laboratory, 2008).
[Crossref]

Mayer, J. N.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

McGehee, M. D.

M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
[Crossref]

McIntosh, K. R.

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovoltaics: Res. Appl. 19, 406–416 (2011).
[Crossref]

Mekhilef, S.

A. M. Humada, M. Hojabri, S. Mekhilef, and H. M. Hamada, “Solar cell parameters extraction based on single and double-diode models: A review,” Renew. Sustain. Energy Rev. 56, 494–509 (2016).
[Crossref]

Miller, B.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Mizuno, H.

T. Tayagaki, K. Makita, R. Oshima, H. Mizuno, and T. Sugaya, “Analysis of luminescence coupling effect in three-terminal tandem solar cells,” J. Photonics for Energy 8, 1 (2018).
[Crossref]

Mobli, H.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. sustainable energy reviews 13, 1800–1818 (2009).
[Crossref]

Morales-Vilches, A. B.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Mousazadeh, H.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. sustainable energy reviews 13, 1800–1818 (2009).
[Crossref]

Muller, M.

C. Osterwald, K. Emery, and M. Muller, “Photovoltaic module calibration value versus optical air mass: the air mass function,” Prog. Photovoltaics: Res. Appl. 22, 560–573 (2014).
[Crossref]

Nepal, P.

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

Niesen, B.

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices,” The J. Phys. Chem. Lett. 9, 446–458 (2018).
[Crossref] [PubMed]

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field performance versus standard test condition efficiency of tandem solar cells and the singular case of perovskites/silicon devices,” The journal physical chemistry letters 9, 446–458 (2018).
[Crossref]

Nofuentes, G.

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different pv (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443(2014).
[Crossref]

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443 (2014).
[Crossref]

Nold, S.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

Olson, J.

P. Faine, S. R. Kurtz, C. Riordan, and J. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31, 259–278 (1991).
[Crossref]

Oshima, R.

T. Tayagaki, K. Makita, R. Oshima, H. Mizuno, and T. Sugaya, “Analysis of luminescence coupling effect in three-terminal tandem solar cells,” J. Photonics for Energy 8, 1 (2018).
[Crossref]

Osterwald, C.

C. Osterwald, K. Emery, and M. Muller, “Photovoltaic module calibration value versus optical air mass: the air mass function,” Prog. Photovoltaics: Res. Appl. 22, 560–573 (2014).
[Crossref]

Paetzold, U. W.

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

Peharz, G.

S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
[Crossref]

Peters, I. M.

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “Predicting the outdoor performance of flat-plate III-V/Si tandem solar cells,” Sol. Energy 149, 77–84 (2017).
[Crossref]

H. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “On the methodology of energy yield assessment for one-Sun tandem solar cells,” Sol. Energy 135, 598–604 (2016).
[Crossref]

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study,” Opt. Express 23, A382 (2015).
[Crossref] [PubMed]

Peters, M.

Philipps, S.

S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
[Crossref]

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

Powalla, M.

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

Prieto, E.

M. de Blas, J. Torres, E. Prieto, and A. García, “Selecting a suitable model for characterizing photovoltaic devices,” Renew. Energy 25, 371–380 (2002).
[Crossref]

Rech, B.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Reda, I.

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76, 577–589 (2004).
[Crossref]

Ren, Z.

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “Predicting the outdoor performance of flat-plate III-V/Si tandem solar cells,” Sol. Energy 149, 77–84 (2017).
[Crossref]

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study,” Opt. Express 23, A382 (2015).
[Crossref] [PubMed]

Richards, B. S.

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

Riordan, C.

P. Faine, S. R. Kurtz, C. Riordan, and J. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31, 259–278 (1991).
[Crossref]

Rivera, G.

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The aster spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Ross, R. G.

R. G. Ross, “Flat-plate photovoltaic array design optimization,” in 14th IEEE Photovoltaic Specialists Conference, (San Diego, CA, 1980), pp. 1126–1132.

R. G. Ross and M. I. Smokler, “Flat-Plate Solar Array Project: Final Report: Volume 6, Engineering Sciences and Reliability,” Tech. Rep., Jet Propulsion Lab., Pasadena, CA (USA) (1986).

Ruiz-Arias, J.

E. F. Fernández, F. Almonacid, J. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

Saad, N.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

Santbergen, R.

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

Sautter, B.

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

Schepel, V.

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

Schlatmann, R.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Schlegel, T.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

Schmager, R.

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

Schulte-Huxel, H.

H. Schulte-Huxel, T. J. Silverman, M. G. Deceglie, D. J. Friedman, and A. C. Tamboli, “Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells,” IEEE J. Photovoltaics 8, 1376–1383 (2018).
[Crossref]

Senkpiel, C.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

Senthilarasu, S.

S. Senthilarasu, E. F. Fernández, F. Almonacid, and T. K. Mallick, “Effects of spectral coupling on perovskite solar cells under diverse climatic conditions,” Sol. Energy Mater. Sol. Cells 133, 92–98 (2015).
[Crossref]

Shannan, N. M. A. A.

N. M. A. A. Shannan, N. Z. Yahaya, and B. Singh, “Single-diode model and two-diode model of pv modules: A comparison,” in Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference on, (IEEE, 2013), pp. 210–214.

Sharifi, A.

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. sustainable energy reviews 13, 1800–1818 (2009).
[Crossref]

Shettle, E. P.

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Tech. rep., Air Force Geophysics Lab Hanscom Afb Ma (1979).

Silverman, T. J.

H. Schulte-Huxel, T. J. Silverman, M. G. Deceglie, D. J. Friedman, and A. C. Tamboli, “Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells,” IEEE J. Photovoltaics 8, 1376–1383 (2018).
[Crossref]

Singh, B.

N. M. A. A. Shannan, N. Z. Yahaya, and B. Singh, “Single-diode model and two-diode model of pv modules: A comparison,” in Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference on, (IEEE, 2013), pp. 210–214.

Smokler, M. I.

R. G. Ross and M. I. Smokler, “Flat-Plate Solar Array Project: Final Report: Volume 6, Engineering Sciences and Reliability,” Tech. Rep., Jet Propulsion Lab., Pasadena, CA (USA) (1986).

Snaith, H. J.

M. T. Hörantner and H. J. Snaith, “Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions,” Energy & Environmental Sci. 10, 1983–1993 (2017).
[Crossref]

M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
[Crossref]

Snyder, T.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Soria-Moya, A.

E. F. Fernández, F. Almonacid, J. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

Srinivasan, P.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Stannowski, B.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Sucich, A.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Sugaya, T.

T. Tayagaki, K. Makita, R. Oshima, H. Mizuno, and T. Sugaya, “Analysis of luminescence coupling effect in three-terminal tandem solar cells,” J. Photonics for Energy 8, 1 (2018).
[Crossref]

Sun, X.

X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl. Energy 212, 1601–1610 (2018).
[Crossref]

Tamboli, A. C.

H. Schulte-Huxel, T. J. Silverman, M. G. Deceglie, D. J. Friedman, and A. C. Tamboli, “Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells,” IEEE J. Photovoltaics 8, 1376–1383 (2018).
[Crossref]

Tani, T.

Y. Hirata and T. Tani, “Output variation of photovoltaic modules with environmental factors - I. The effect of spectral solar radiation on photovoltaic module output,” Sol. Energy 55, 463–468 (1995).
[Crossref]

Tayagaki, T.

T. Tayagaki, K. Makita, R. Oshima, H. Mizuno, and T. Sugaya, “Analysis of luminescence coupling effect in three-terminal tandem solar cells,” J. Photonics for Energy 8, 1 (2018).
[Crossref]

Thomsen, J.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

Topic, M.

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Torres, J.

M. de Blas, J. Torres, E. Prieto, and A. García, “Selecting a suitable model for characterizing photovoltaic devices,” Renew. Energy 25, 371–380 (2002).
[Crossref]

Torres-Ramírez, M.

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different pv (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443(2014).
[Crossref]

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443 (2014).
[Crossref]

Trupke, T.

T. Trupke and P. Würfel, “Improved spectral robustness of triple tandem solar cells by combined series/parallel interconnection,” J. applied physics 96, 2347–2351 (2004).
[Crossref]

Tucher, N.

Uzu, H.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Vaillon, R.

O. Dupré, R. Vaillon, and M. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

Wang, X.

X. Wang and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovoltaics 2, 417–423 (2012).
[Crossref]

Wang, Y.

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

Wilcox, S.

S. Wilcox and W. Marion, Users manual for TMY3 data sets (National Renewable Energy Laboratory, 2008).
[Crossref]

Wu, W.

Würfel, P.

T. Trupke and P. Würfel, “Improved spectral robustness of triple tandem solar cells by combined series/parallel interconnection,” J. applied physics 96, 2347–2351 (2004).
[Crossref]

Xu, G.

X. Gao, Y. Cui, J. Hu, G. Xu, and Y. Yu, “Lambert w-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction,” Energy Convers. Manag. 127, 443–460 (2016).
[Crossref]

Yahaya, N. Z.

N. M. A. A. Shannan, N. Z. Yahaya, and B. Singh, “Single-diode model and two-diode model of pv modules: A comparison,” in Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference on, (IEEE, 2013), pp. 210–214.

Yamaguchi, M.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
[Crossref]

K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75, 707–714 (2003).
[Crossref]

Yamamoto, K.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Yang, P.

Yang, Q.

Yoshida, W.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Yoshikawa, K.

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

Young, T. B.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
[Crossref]

Yu, Y.

X. Gao, Y. Cui, J. Hu, G. Xu, and Y. Yu, “Lambert w-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction,” Energy Convers. Manag. 127, 443–460 (2016).
[Crossref]

Zeman, M.

A. Calcabrini, H. Ziar, O. Isabella, and M. Zeman, “A simplified skyline-based method for estimating the annual Solar Energy potential in urban environments,” Nat. Energy1 (2019).

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

Zhou, D. K.

Ziar, H.

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

A. Calcabrini, H. Ziar, O. Isabella, and M. Zeman, “A simplified skyline-based method for estimating the annual Solar Energy potential in urban environments,” Nat. Energy1 (2019).

Ziffer, M. E.

M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
[Crossref]

ACS Energy Lett. (3)

M. H. Futscher and B. Ehrler, “Efficiency Limit of Perovskite/Si Tandem Solar Cells,” ACS Energy Lett. 1, 863–868 (2016).
[Crossref]

M. H. Futscher and B. Ehrler, “Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions,” ACS Energy Lett. 2, 2089–2095 (2017).
[Crossref] [PubMed]

M. T. Hörantner, T. Leijtens, M. E. Ziffer, G. E. Eperon, M. G. Christoforo, M. D. McGehee, and H. J. Snaith, “The Potential of Multijunction Perovskite Solar Cells,” ACS Energy Lett. 2, 2506–2513 (2017).
[Crossref]

Appl. Energy (1)

X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl. Energy 212, 1601–1610 (2018).
[Crossref]

Appl. Opt. (1)

Energy (2)

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different pv (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443(2014).
[Crossref]

M. Alonso-Abella, F. Chenlo, G. Nofuentes, and M. Torres-Ramírez, “Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites,” Energy 67, 435–443 (2014).
[Crossref]

Energy & Environmental Sci. (2)

M. T. Hörantner and H. J. Snaith, “Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions,” Energy & Environmental Sci. 10, 1983–1993 (2017).
[Crossref]

M. Jošt, E. Köhnen, A. B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech, R. Schlatmann, M. Topič, B. Stannowski, and S. Albrecht, “Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield,” Energy & Environmental Sci. 11, 3511 (2018).
[Crossref]

Energy Convers. Manag. (1)

X. Gao, Y. Cui, J. Hu, G. Xu, and Y. Yu, “Lambert w-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction,” Energy Convers. Manag. 127, 443–460 (2016).
[Crossref]

IEEE J. Photovoltaics (3)

H. Schulte-Huxel, T. J. Silverman, M. G. Deceglie, D. J. Friedman, and A. C. Tamboli, “Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells,” IEEE J. Photovoltaics 8, 1376–1383 (2018).
[Crossref]

G. S. Kinsey, “Spectrum Sensitivity, Energy Yield, and Revenue Prediction of PV Modules,” IEEE J. Photovoltaics 5, 258–262 (2015).
[Crossref]

X. Wang and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovoltaics 2, 417–423 (2012).
[Crossref]

J. applied physics (1)

T. Trupke and P. Würfel, “Improved spectral robustness of triple tandem solar cells by combined series/parallel interconnection,” J. applied physics 96, 2347–2351 (2004).
[Crossref]

J. Geophys. Res.: Atmospheres (1)

H. H. Aumann, X. Chen, E. Fishbein, A. Geer, S. Havemann, X. Huang, X. Liu, G. Liuzzi, S. DeSouza-Machado, E. M. Manning, and et al., “Evaluation of radiative transfer models with clouds,” J. Geophys. Res.: Atmospheres 123, 6142–6157 (2018).

J. Geophys. Res.: Ocean. (1)

J. S. Bartlett, Á. M. Ciotti, R. F. Davis, and J. J. Cullen, “The spectral effects of clouds on solar irradiance,” J. Geophys. Res.: Ocean. 103, 31017–31031 (1998).
[Crossref]

J. Photonics for Energy (1)

T. Tayagaki, K. Makita, R. Oshima, H. Mizuno, and T. Sugaya, “Analysis of luminescence coupling effect in three-terminal tandem solar cells,” J. Photonics for Energy 8, 1 (2018).
[Crossref]

Nano letters (1)

G. W. Adhyaksa, E. Johlin, and E. C. Garnett, “Nanoscale back contact perovskite solar cell design for improved tandem efficiency,” Nano letters 17, 5206–5212 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Prog. Photovoltaics: Res. Appl. (4)

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovoltaics: Res. Appl. 21, 1598–1610 (2013).
[Crossref]

G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovoltaics: Res. Appl. 17, 279–288 (2009).
[Crossref]

C. Osterwald, K. Emery, and M. Muller, “Photovoltaic module calibration value versus optical air mass: the air mass function,” Prog. Photovoltaics: Res. Appl. 22, 560–573 (2014).
[Crossref]

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovoltaics: Res. Appl. 19, 406–416 (2011).
[Crossref]

Remote Sens. Environ. (1)

A. Baldridge, S. Hook, C. Grove, and G. Rivera, “The aster spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Renew. Energy (1)

M. de Blas, J. Torres, E. Prieto, and A. García, “Selecting a suitable model for characterizing photovoltaic devices,” Renew. Energy 25, 371–380 (2002).
[Crossref]

Renew. Sustain. Energy Rev. (1)

A. M. Humada, M. Hojabri, S. Mekhilef, and H. M. Hamada, “Solar cell parameters extraction based on single and double-diode models: A review,” Renew. Sustain. Energy Rev. 56, 494–509 (2016).
[Crossref]

Renew. sustainable energy reviews (1)

H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. sustainable energy reviews 13, 1800–1818 (2009).
[Crossref]

Sol. Cells (1)

P. Faine, S. R. Kurtz, C. Riordan, and J. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31, 259–278 (1991).
[Crossref]

Sol. Energy (5)

C. A. Gueymard, “Parameterized transmittance model for direct beam and circumsolar spectral irradiance,” Sol. Energy 71, 325–346 (2001).
[Crossref]

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76, 577–589 (2004).
[Crossref]

H. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “On the methodology of energy yield assessment for one-Sun tandem solar cells,” Sol. Energy 135, 598–604 (2016).
[Crossref]

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi, and I. M. Peters, “Predicting the outdoor performance of flat-plate III-V/Si tandem solar cells,” Sol. Energy 149, 77–84 (2017).
[Crossref]

Y. Hirata and T. Tani, “Output variation of photovoltaic modules with environmental factors - I. The effect of spectral solar radiation on photovoltaic module output,” Sol. Energy 55, 463–468 (1995).
[Crossref]

Sol. Energy Mater. Sol. Cells (8)

R. Gottschalg, T. Betts, D. Infield, and M. Kearney, “The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 85, 415–428 (2005).
[Crossref]

K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).
[Crossref]

S. Senthilarasu, E. F. Fernández, F. Almonacid, and T. K. Mallick, “Effects of spectral coupling on perovskite solar cells under diverse climatic conditions,” Sol. Energy Mater. Sol. Cells 133, 92–98 (2015).
[Crossref]

E. F. Fernández, F. Almonacid, J. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

S. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. Al-Abbadi, F. Dimroth, and A. Bett, “Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94, 869–877 (2010).
[Crossref]

K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75, 707–714 (2003).
[Crossref]

O. Dupré, R. Vaillon, and M. Green, “Physics of the temperature coefficients of solar cells,” Sol. Energy Mater. Sol. Cells 140, 92–100 (2015).
[Crossref]

A. Jain and A. Kapoor, “Exact analytical solutions of the parameters of real solar cells using lambert w-function,” Sol. Energy Mater. Sol. Cells 81, 269–277 (2004).
[Crossref]

Sustain. Energy & Fuels (1)

J. Lehr, M. Langenhorst, R. Schmager, S. Kirner, U. Lemmer, B. S. Richards, C. Case, and U. W. Paetzold, “Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces,” Sustain. Energy & Fuels 2, 2754 (2018).

The J. Phys. Chem. Lett. (1)

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices,” The J. Phys. Chem. Lett. 9, 446–458 (2018).
[Crossref] [PubMed]

The journal physical chemistry letters (1)

O. Dupré, B. Niesen, S. De Wolf, and C. Ballif, “Field performance versus standard test condition efficiency of tandem solar cells and the singular case of perovskites/silicon devices,” The journal physical chemistry letters 9, 446–458 (2018).
[Crossref]

Other (13)

M. K. Fuentes, “A simplified thermal model for flat-plate photovoltaic arrays,” Tech. rep., Sandia National Labs., Albuquerque, NM (USA) (1987).

R. G. Ross, “Flat-plate photovoltaic array design optimization,” in 14th IEEE Photovoltaic Specialists Conference, (San Diego, CA, 1980), pp. 1126–1132.

R. G. Ross and M. I. Smokler, “Flat-Plate Solar Array Project: Final Report: Volume 6, Engineering Sciences and Reliability,” Tech. Rep., Jet Propulsion Lab., Pasadena, CA (USA) (1986).

S. J. Byrnes, “Multilayer optical calculations,” http://arxiv.org/abs/1603.02720 .

N. M. A. A. Shannan, N. Z. Yahaya, and B. Singh, “Single-diode model and two-diode model of pv modules: A comparison,” in Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference on, (IEEE, 2013), pp. 210–214.

M. Langenhorst, B. Sautter, R. Schmager, J. Lehr, E. Ahlswede, M. Powalla, U. Lemmer, B. S. Richards, and U. W. Paetzold, “Energy yield of all thin-film perovskite/CIGS tandem solar modules,” Prog. Photovoltaics: Res. Appl. (2018).

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Tech. rep., Air Force Geophysics Lab Hanscom Afb Ma (1979).

S. Wilcox and W. Marion, Users manual for TMY3 data sets (National Renewable Energy Laboratory, 2008).
[Crossref]

A. Sucich, T. Snyder, R. S. Bittencourt, E. H. Cirilo, J. Madajian, Y. Wang, B. Miller, P. Srinivasan, P. Lubin, and G. B. Hughes, “Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept,” in CubeSats and NanoSats for Remote Sensing II, vol. 10769 (International Society for Optics and Photonics, 2018), p. 107690O.

C. Kost, J. N. Mayer, J. Thomsen, N. Hartmann, C. Senkpiel, S. Philipps, S. Nold, S. Lude, N. Saad, and T. Schlegel, “Levelized cost of electricity: Renewable energy technologies,” Tech. Rep. March, Fraunhofer-Institut für Solare Energiesysteme ISE (2018).

O. Isabella, R. Santbergen, H. Ziar, A. Calcabrini, J. C. O. Lizcano, E. G. Goma, P. Nepal, V. Schepel, and M. Zeman, “Advanced modelling of e/uipv systems from location to load,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), (IEEE, 2018), pp. 2691–2696.

A. Calcabrini, H. Ziar, O. Isabella, and M. Zeman, “A simplified skyline-based method for estimating the annual Solar Energy potential in urban environments,” Nat. Energy1 (2019).

“Perovskite world record of 28% | Oxford PV,” https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic flow of the modular EY modelling. The irradiance module computes the spectral irradiance I, the optics module the absorptance A, and the energy yield module calculates the short-circuit current density JSC and EY with the help of the electrics module.
Fig. 2
Fig. 2 Schematic of energy yield modelling for multi-junction solar modules. The power generation of the tilted multi-junction solar module varies with the sun’s specular and diffuse irradiance, which is linked to the location, time, orientation of the solar module and the cloud coverage. For different architectures (monofacial or bifacial) and module installations (albedo), additional contributions of incident light to the generated current need to be considered.
Fig. 3
Fig. 3 (a) Monthly average spectral irradiance of Phoenix (Arizona, USA) during June and December broken down into direct and diffuse portions. (b) Hourly resolved overall intensity of direct and diffuse irradiance and the average photon energy (APE) in November 19   th in Phoenix (Arizona, USA).
Fig. 4
Fig. 4 (a) Illustration of the abstraction levels of the complex architecture of multi-junction solar modules used for the optical simulation of their spectral response in dependence of the wavelength λ and the angle of incidence θ t i n . A perovskite/Si multi-junction solar module commonly exhibits three distinct features: optically-thick layers, multi-layer thin-film stacks and textures. (b) Textures are simulated using geometrical ray-tracing. The geometry of pyramidally textures only allows a specific set of characteristic light paths.
Fig. 5
Fig. 5 Electrical interconnection of the multi-junction solar module: (a) In the 2T configuration the two sub-cells are connected in series; (b) in the 3T configuration the the current excess in one of the sub-cells can be extracted; (c) in the 4T configuration both sub-cells are operated at their maximum power point.
Fig. 6
Fig. 6 EY of a perovskite/Si multi-junction solar module for different tracking methods for a single day and the complete year in Phoenix (Arizona, USA). (a) Schematic of two different 1-axis tracking methods; (b) the angular EY; (c) the EY for a chosenday (November 19   th ); (d) the sun’s polar θ sun and azimuth angle φ sun as well as the direct and diffuse irradiance for the same day; (e) the average usable photon energy (AUPE) for a chosen day (June 14   th ) and (f) JSC of the top and bottom solar cell for optimal tilt (green) and 2-axis tracking (red) for the same chosen day (June 14   th ).
Fig. 7
Fig. 7 Absorptance of the individual layers in the (a) 2T and the (b) 4T multi-junction solar modules. (c) Annual EY for four locations with different climatic conditions: temperate (Portland, Oregon), tropical (Miami, Florida), boreal (Chicago, Illinois), and arid (Phoenix, Arizona) for a 2T, 3T and 4T monofacial perovskite/Si solar module. (d) Annual EY for a monofacial and bificial 4T perovskite/Si solar module with three different ground surfaces (sandstone, grass and concrete) leading to different albedos.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I clouds , dir ( λ ) = I clear , dir ( λ ) I clear , dir ( λ ) d λ I meas , dir .
I clouds , diff ( λ ) = I clear , diff ( λ ) ( 1 CC ) + I clear , dir ( λ ) CC [ I clear , diff ( λ ) ( 1 CC ) + I clear , dir ( λ ) CC ] d λ I meas , diff .
A incoh ( λ ) = [ e α ( λ ) d / cos  θ 1   0     0   e α ( λ ) d / cos  θ n ] ,
A path , i ( λ , θ in ) = A coh ( λ , θ intersect , 1 ) + j = 2 j max k = 1 j 1 R coh ( λ , θ intersect , k ) A coh ( λ , θ intersect , j ) .
A tex/coh ( λ , θ in ) = i P path , i ( θ in ) A path , i ( λ , θ in ) ,
R , T ( λ ) = [ R , T ( λ , θ 1 θ 1 ) R , T ( λ , θ n θ 1 ) R , T ( λ , θ 1 θ n ) R , T ( λ , θ n θ n ) ]
θ ref R ( λ , θ in θ ref ) + θ trans T ( λ , θ in θ trans ) + A tex/coh ( λ , θ in ) = 1 ,
A ( λ , θ in ) = A forward ( λ , θ in ) + A backward ( λ , θ in ) = i = 0 i max A forward , i ( λ , θ in ) + i = 1 i max A backward , i ( λ , θ in ) .
J ( V ) = J SC J 0 ( e V + J R s n k T module 1 ) V + J R s R sh
T module = T ambient + NOCT 20 ° C 800 W/m 2 S .
V OC = V OC,0 ( 1 + t V OC 10 6 ( T T 0 ) )
J SC = J SC,0 ( 1 + t J SC 10 6 ( T T 0 ) )
V OC,0 = ( J SC + J 0 ) R sh n V th W ( J 0 R sh n V th exp ( ( J SC + J 0 ) R sh n V th ) )
V ( J ) = J R s + ( J SC + J 0 J ) R sh n V th W ( J 0 R sh n V th exp ( ( J SC + J 0 J ) R sh n V th ) ) V OC RT + V OC .
θ sun θ sun  
φ sun φ sun   .
S = qS q 1 with q = cos  θ e 2 + ( S x x + S y y + S z z ) sin  θ e 2 .
J SC dir = q h c χ ( λ ) A ( θ sun , λ ) I dir ( λ ) λ cos ( θ sun ) d λ , θ sun < 90 ° , Γ ( θ sun , φ sun ) = 1 .
J SC diff = q h c χ ( λ ) A ( θ , λ ) I diff ( λ ) λ Γ ( θ , φ ) sin ( θ ) cos ( θ ) d φ d θ d λ
J SC tot = J SC dir + J SC diff + J SC diff,albedo-front .
J SC tot = J SC dir + J SC diff + J SC diff,albedo-front + J SC diff,albedo-back + J SC dir,back + J SC diff,back .

Metrics