Abstract

We present an ultra-broadband perfect absorber composed of metal-insulator composite multilayer (MICM) stacks by placing the insulator-metal-insulator (IMI) grating on the metal-insulator-metal (MIM) film stacks. The absorber shows over 90% absorption spanning between 570 nm and 3539 nm, with an average absorption of 97% under normal incidence. The ultra-broadband perfect absorption characteristics are achieved by the synergy of guided mode resonances (GMRs), localized surface plasmons (LSPs), propagating surface plasmons (PSPs), and cavity modes. The polarization insensitivity is demonstrated by analyzing the absorption performance over arbitrary polarization angles. The ultra-broadband absorption remains more than 80% over a wide incident angle up to 50°, for both transverse electric (TE) and transverse magnetic (TM) modes. The ultra-broadband perfect absorber has tremendous potential for various applications, such as solar thermal energy harvesting, thermoelectrics, and imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband wide-angle perfect absorber in the visible regime through a thin grating–insulator–metal structure

Xu Chen, Jiu Hui Wu, Chong Rui Liu, and Pei Cao
J. Opt. Soc. Am. B 36(2) 153-161 (2019)

Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber

Aliaksandr Hubarevich, Aliaksandr Kukhta, Hilmi Volkan Demir, Xiaowei Sun, and Hong Wang
Opt. Express 23(8) 9753-9761 (2015)

Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth

Amir Ghobadi, Hodjat Hajian, Alireza Rahimi Rashed, Bayram Butun, and Ekmel Ozbay
Photon. Res. 6(3) 168-176 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
    [Crossref]
  2. X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
    [Crossref]
  3. Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
    [Crossref]
  4. X. Wang, J. Wang, Z.-D. Hu, T. Sang, and Y. Feng, “Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures,” Appl. Phys. Express 11(6), 062601 (2018).
    [Crossref]
  5. Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
    [Crossref] [PubMed]
  6. A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
    [Crossref] [PubMed]
  7. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
    [Crossref] [PubMed]
  8. X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W. L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
    [Crossref] [PubMed]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  10. X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
    [Crossref]
  11. A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photon. Res. 6(3), 168–176 (2018).
    [Crossref]
  12. F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
    [Crossref]
  13. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
    [Crossref] [PubMed]
  14. S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: The optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7(1), 14872 (2017).
    [Crossref] [PubMed]
  15. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. L. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for hightemperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
    [Crossref]
  16. Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
    [Crossref]
  17. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
    [Crossref] [PubMed]
  18. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  19. E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
    [Crossref]
  20. C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
    [Crossref]
  21. L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
    [Crossref] [PubMed]
  22. D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
    [Crossref] [PubMed]
  23. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
    [Crossref] [PubMed]
  24. Z. Liu, G. Liu, X. Liu, Y. Wang, and G. Fu, “Titanium resonators based ultra-broadband perfect light absorber,” Opt. Mater. 83, 118–123 (2018).
    [Crossref]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-difference Time-domain Method, second ed. (Artech House, 2000).
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
    [Crossref] [PubMed]
  28. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
    [Crossref] [PubMed]
  29. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
    [Crossref] [PubMed]
  30. R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array,” Opt. Express 23(16), 21023–21031 (2015).
    [Crossref] [PubMed]
  31. G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
    [Crossref] [PubMed]
  32. B. Wei and S. Jian, “A near-infrared perfect absorber assisted by tungsten-covered ridges,” Plasmonics 14(1), 179–185 (2019).
    [Crossref]
  33. X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
    [Crossref]
  34. X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).
  35. Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
    [Crossref] [PubMed]
  36. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
    [Crossref] [PubMed]
  37. G. Zheng, J. Cong, L. Xu, and W. Su, “Angle-insensitive and narrow band grating filter with a gradient-index layer,” Opt. Lett. 39(20), 5929–5932 (2014).
    [Crossref] [PubMed]
  38. A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
    [Crossref]

2019 (5)

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

B. Wei and S. Jian, “A near-infrared perfect absorber assisted by tungsten-covered ridges,” Plasmonics 14(1), 179–185 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

2018 (9)

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
[Crossref] [PubMed]

Z. Liu, G. Liu, X. Liu, Y. Wang, and G. Fu, “Titanium resonators based ultra-broadband perfect light absorber,” Opt. Mater. 83, 118–123 (2018).
[Crossref]

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W. L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
[Crossref] [PubMed]

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

X. Wang, J. Wang, Z.-D. Hu, T. Sang, and Y. Feng, “Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures,” Appl. Phys. Express 11(6), 062601 (2018).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photon. Res. 6(3), 168–176 (2018).
[Crossref]

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

2017 (5)

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: The optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref] [PubMed]

2016 (3)

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. L. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for hightemperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
[Crossref]

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

2015 (6)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[Crossref] [PubMed]

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array,” Opt. Express 23(16), 21023–21031 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

2011 (2)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Abedini Dereshgi, S.

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: The optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Aközbek, N.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Aydin, K.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Bai, X.

Bhargava, R.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Bianco, G. V.

Bozhevolnyi, S. I.

Braun, P. V.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Bruno, G.

Butun, B.

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photon. Res. 6(3), 168–176 (2018).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: The optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Butun, S.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Cai, Z. J.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Cao, Y.

Cen, C.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Chen, J.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Chen, L.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array,” Opt. Express 23(16), 21023–21031 (2015).
[Crossref] [PubMed]

Chen, Q.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Chen, X.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Chen, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Chen, Y. H.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Chirumamilla, M.

Choy, W. C. H.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Cong, J.

Czaplewski, D.

D’Orazio, A.

Dai, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

de Ceglia, D.

De Vittorio, M.

Deng, H.

Dereshgi, S. A.

Ding, F.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. L. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for hightemperature applications,” Opt. Mater. Express 6(8), 2704–2714 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Ding, W.

Du, G.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Feng, R.

Feng, Y.

X. Wang, J. Wang, Z.-D. Hu, T. Sang, and Y. Feng, “Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures,” Appl. Phys. Express 11(6), 062601 (2018).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Fu, G.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Z. Liu, G. Liu, X. Liu, Y. Wang, and G. Fu, “Titanium resonators based ultra-broadband perfect light absorber,” Opt. Mater. 83, 118–123 (2018).
[Crossref]

Fu, G. L.

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Gao, B.

Gao, J.

Ghobadi, A.

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photon. Res. 6(3), 168–176 (2018).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: The optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Gokbayrak, M.

Grande, M.

Gu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

Guo, J.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Guo, L. J.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Hajian, H.

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photon. Res. 6(3), 168–176 (2018).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: The optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

He, S.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

He, W.

Ho, A. H. P.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Hu, E.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Hu, Y.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Hu, Z.-D.

X. Wang, J. Wang, Z.-D. Hu, T. Sang, and Y. Feng, “Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures,” Appl. Phys. Express 11(6), 062601 (2018).
[Crossref]

Huang, H.

Huang, K.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Huang, S.

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Huang, X.

Huang, Z.

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Ji, C.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Jian, S.

B. Wei and S. Jian, “A near-infrared perfect absorber assisted by tungsten-covered ridges,” Plasmonics 14(1), 179–185 (2019).
[Crossref]

Jiang, A.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Jin, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Kocer, H.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Kristensen, P. L.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, D.

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref] [PubMed]

Lee, K.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Lee, Y.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Lei, L.

Li, S.

Li, X.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Li, Y.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Li, Z.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[Crossref] [PubMed]

Liu, G.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Z. Liu, G. Liu, X. Liu, Y. Wang, and G. Fu, “Titanium resonators based ultra-broadband perfect light absorber,” Opt. Mater. 83, 118–123 (2018).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Liu, G. Q.

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Liu, L.

Liu, M. L.

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

Liu, X.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Z. Liu, G. Liu, X. Liu, Y. Wang, and G. Fu, “Titanium resonators based ultra-broadband perfect light absorber,” Opt. Mater. 83, 118–123 (2018).
[Crossref]

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Liu, X. S.

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Liu, Z.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Z. Liu, G. Liu, X. Liu, Y. Wang, and G. Fu, “Titanium resonators based ultra-broadband perfect light absorber,” Opt. Mater. 83, 118–123 (2018).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Liu, Z. Q.

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Lu, H.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Luo, M.

Luo, W.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Lynch, D. W.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Mo, L.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nguyen, D. M.

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref] [PubMed]

Ozbay, E.

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, “Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth,” Photon. Res. 6(3), 168–176 (2018).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: The optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Palacios, E.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Pan, P.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Pan, P. P.

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

Pang, Z.

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

Pedersen, K.

Petruzzelli, V.

Qi, Y.

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

Qian, Q.

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Qiu, J.

Ran, J.

Rashed, A. R.

Rho, J.

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref] [PubMed]

Roberts, A. S.

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Rosenmann, D.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sang, T.

X. Wang, J. Wang, Z.-D. Hu, T. Sang, and Y. Feng, “Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures,” Appl. Phys. Express 11(6), 062601 (2018).
[Crossref]

Scalora, M.

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Sha, W. E. I.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Shen, S.

Shen, W.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Shi, L.

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Stan, L.

Stomeo, T.

Su, W.

Sun, T.

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Tang, P.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Tang, Y.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Tao, K.

Tong, H.

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

Toprak, A.

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

Tu, Z.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Vincenti, M. A.

Wang, C.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Wang, D.

Wang, J.

X. Wang, J. Wang, Z.-D. Hu, T. Sang, and Y. Feng, “Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures,” Appl. Phys. Express 11(6), 062601 (2018).
[Crossref]

Wang, S.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Wang, X.

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

X. Wang, J. Wang, Z.-D. Hu, T. Sang, and Y. Feng, “Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures,” Appl. Phys. Express 11(6), 062601 (2018).
[Crossref]

Wang, Y.

Z. Liu, G. Liu, X. Liu, Y. Wang, and G. Fu, “Titanium resonators based ultra-broadband perfect light absorber,” Opt. Mater. 83, 118–123 (2018).
[Crossref]

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

Wei, B.

B. Wei and S. Jian, “A near-infrared perfect absorber assisted by tungsten-covered ridges,” Plasmonics 14(1), 179–185 (2019).
[Crossref]

Wei, W.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Wen, X.

Wu, P.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Wu, S.

Wu, X.

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

Wu, Y.

Xiao, S.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Xu, L.

Xu, P.

Yan, Y.

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Yang, C.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Yang, F.

Yang, H.

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

Yang, X.

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[Crossref] [PubMed]

Yao, Y.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Ye, X.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Yi, Z.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Yoshie, Q.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Yu, K.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Yu, M. D.

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

Zang, K.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Zhang, R.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Zhang, W. L.

Zhang, X. N.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Zhang, Y.

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

Zhao, H.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Zheng, G.

Zheng, J.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Zheng, Y.

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Zhou, H. Q.

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Zhou, L.

Zhou, Y.

Zhou, Z.

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Zhu, J.

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

ACS Photonics (2)

C. Yang, C. Ji, W. Shen, K. Lee, Y. Zhang, X. Liu, and L. J. Guo, “Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption,” ACS Photonics 3(4), 590–596 (2016).
[Crossref]

A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers,” ACS Photonics 5(11), 4203–4221 (2018).
[Crossref]

Adv. Funct. Mater. (1)

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Adv. Opt. Mater. (1)

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Opt. Mater. 5(13), 1700064 (2017).
[Crossref]

Appl. Phys. Express (1)

X. Wang, J. Wang, Z.-D. Hu, T. Sang, and Y. Feng, “Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures,” Appl. Phys. Express 11(6), 062601 (2018).
[Crossref]

Appl. Phys. Lett. (1)

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Carbon (1)

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Chin. Phys. B (1)

X. Wang, J. Zhu, H. Tong, X. Yang, X. Wu, Z. Pang, H. Yang, and Y. Qi, “A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer,” Chin. Phys. B 28(4), 044201 (2019).

Mater. Res. Express (1)

E. Hu, X. Liu, Y. Yao, K. Zang, Z. Tu, A. Jiang, K. Yu, J. Zheng, W. Wei, Y. Zheng, R. Zhang, S. Wang, H. Zhao, Q. Yoshie, Y. Lee, C. Wang, D. W. Lynch, J. Guo, and L. Chen, “Multilayered metal-dielectric film structure for highly efficient solar selective absorption,” Mater. Res. Express 5(6), 066428 (2018).
[Crossref]

Micromachines (Basel) (1)

Z. Yi, J. Chen, C. Cen, X. Chen, Z. Zhou, Y. Tang, X. Ye, S. Xiao, W. Luo, and P. Wu, “Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region,” Micromachines (Basel) 10(3), 194 (2019).
[Crossref] [PubMed]

Nanotechnology (2)

Z. Q. Liu, G. Q. Liu, H. Q. Zhou, X. S. Liu, K. Huang, Y. H. Chen, and G. L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

G. Q. Liu, M. D. Yu, Z. Q. Liu, X. S. Liu, S. Huang, P. P. Pan, Y. Wang, M. L. Liu, and G. Gu, “One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering,” Nanotechnology 26(18), 185702 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2(1), 479 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Opt. Express (6)

L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
[Crossref] [PubMed]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array,” Opt. Express 23(16), 21023–21031 (2015).
[Crossref] [PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22(25), 31511–31519 (2014).
[Crossref] [PubMed]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref] [PubMed]

X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W. L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. (1)

Z. Liu, G. Liu, X. Liu, Y. Wang, and G. Fu, “Titanium resonators based ultra-broadband perfect light absorber,” Opt. Mater. 83, 118–123 (2018).
[Crossref]

Opt. Mater. Express (2)

Photon. Res. (1)

Phys. Chem. Chem. Phys. (1)

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Plasmonics (1)

B. Wei and S. Jian, “A near-infrared perfect absorber assisted by tungsten-covered ridges,” Plasmonics 14(1), 179–185 (2019).
[Crossref]

Sci. Rep. (4)

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref] [PubMed]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6(1), 39445 (2016).
[Crossref] [PubMed]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: The optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, and Z. Liu, “Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters,” Sol. Energy Mater. Sol. Cells 190, 20–29 (2019).
[Crossref]

Z. Liu, G. Liu, Z. Huang, X. Liu, and G. Fu, “Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface,” Sol. Energy Mater. Sol. Cells 179, 346–352 (2018).
[Crossref]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-difference Time-domain Method, second ed. (Artech House, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) and (b) Systematic graphs of the MICM stacks with the IMI grating (enclosed by the green dashed rectangle) standing on the MIM continuous film stacks (enclosed by the blue dashed rectangle). The thickness of the bottom metal film is 200 nm. Other parameters of the MICM stacks are denoted as d1, d2, t1, t2, t3, p, s and w.
Fig. 2
Fig. 2 (a) Absorption spectra of the MICM stacks (black), IMI grating (purple), MIM film stacks (blue), and six-layer metal-insulator film stacks (pink) with the same structural parameters. (b) Calculated polarization angle resolved spectrum response of the ultra-broadband absorber. Here, d1 = d2 = 20 nm, t1 = t2 = t3 = 120 nm, p = 260 nm and w = 220 nm.
Fig. 3
Fig. 3 Electric field |E| and magnetic field |H| distributions of absorption wavelength at 895 nm. (a) Electric field and (b) magnetic field for the TM polarization. (c) Electric field and (d) magnetic field for the TE polarization. Here, d1 = d2 = 20 nm, t1 = t2 = t3 = 120 nm, p = 260 nm and w = 220 nm.
Fig. 4
Fig. 4 Electric field |E| and magnetic field |H| distributions of absorption wavelength at 2400 nm (a,b) and 3300 nm (c,d) for the TM polarization, respectively. Here, d1 = d2 = 20 nm, t1 = t2 = t3 = 120 nm, p = 260 nm and w = 220 nm.
Fig. 5
Fig. 5 Absorption spectra of the MICM stacks with different (a) and same (b) grating slit widths. Here, d1 = d2 = 20 nm, t1 = t2 = t3 = 120 nm and p increases from 200 nm to 310 nm, w = 190 nm in (a) and increases from 160 nm to 270 nm in (b).
Fig. 6
Fig. 6 Absorption spectra of the MICM stacks by changing the thickness of the top-layer (a) and middle-layer (b) Ti but keeping the thickness of the other layer of Ti invariable (20 nm). t1 = t2 = t3 = 120 nm, P = 260 nm and w = 220 nm. Insets: Electric field |E| distributions of wavelength at 1500 nm and 3300 nm for the TM polarization.
Fig. 7
Fig. 7 Absorption spectra of the MICM stacks by changing the thickness of the top-layer (a), middle-layer (b) and bottom-layer (c) Al2O3 but keeping the thicknesses of another two layers of Al2O3 invariable (120 nm). Other parameters are d1 = d2 = 20 nm, P = 260 nm and w = 220 nm.
Fig. 8
Fig. 8 The absorption spectra for (a) TM and (b) TE polarization with the incident light angle turning from 0° to 60°. d1 = d2 = 20 nm, t1 = t2 = t3 = 120 nm, P = 260 nm and w = 220 nm.
Fig. 9
Fig. 9 Calculated absorption spectra of the MICM stacks using metals of Ti, Cr, or W. Here, d1 = d2 = 20 nm, t1 = t2 = t3 = 120 nm, P = 260 nm and w = 220 nm.

Metrics